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Ensemble of Distributed Learners for Online
Classification of Dynamic Data Streams

Luca Canzian, Yu Zhang, and Mihaela van der Schaar

Abstract—We present a distributed online learning scheme
to classify data captured from distributed and dynamic data
sources. Our scheme consists of multiple distributed local learn-
ers, which analyze different streams of data that are correlated
to a common event that needs to be classified. Each learner
uses a local classifier to make a local prediction. The local
predictions are then collected by each learner and combined
using a weighted majority rule to output the final prediction. We
propose a novel online ensemble learning algorithm to update
the aggregation rule in order to adapt to the underlying data
dynamics. We rigorously determine an upper bound for the
worst-case mis-classification probability of our algorithm, which
tends asymptotically to 0 if the mis-classification probability of
the best (unknown) static aggregation rule is 0. Then we extend
our algorithm to address challenges specific to the distributed
implementation and prove new bounds that apply to these
settings. Finally, we test our scheme by performing an evaluation
study on several data sets.

Index Terms—Online learning, distributed learning, machine
learning, ensemble of classifiers, dynamic streams, concept drift,
big data, classification.

I. INTRODUCTION

Recent years have witnessed the proliferation of data-driven
applications that exploit the large amount of data captured
from distributed, heterogeneous, and dynamic (i.e., whose
characteristics are varying over time) data sources. Examples
of such applications include surveillance [1], driver assistance
systems [2], social multimedia [3], and network monitoring
[4]. However, the effective utilization of such high-volume data
also involves significant challenges that are the main concern
of this work. First, the captured data need to be analyzed online
(e.g., to make predictions and timely decisions based on these
predictions); thus, the learning algorithms need to deal with
the time-varying characteristics of the underlying data, i.e.,
adequately deal with concept-drift [5]. Second, the privacy
requirements and the communication and sharing costs make
it difficult to collect and store all the observed data. Third, the
devices that collect the data may be managed by different
entities (e.g., multiple hospitals, multiple camera systems,
multiple routers, etc.) and may follow policies (e.g., type of
information to exchange, rate at which data are collected, etc.)
that are not centrally controllable.
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To address these challenges, we propose an online ensemble
learning technique, which we refer to as Perceptron Weighted
Majority (PWM). Specifically, we consider a set of distributed
learners that observe data from different sources, which are
correlated to a common event that must be classified by
the learners. We focus on binary classification problems.1

Each learner works in the following manner. For each single
instance that enters the system, the learner makes the final
classification decision by collecting the local predictions of all
the learners and combining them using a weighted majority
rule as in [7]–[16]. After making the final prediction, the
learner is told the real value, i.e., the label, associated to
the event to classify. Exploiting such information, the learner
updates the aggregation weights adopting a perceptron learning
rule [17].

We remark that this paper considers a distributed structure in
which each learner waits to receive the local predictions from
all the other learners before making a final prediction. How-
ever, this does not imply that the physical network topology
must be a complete network (i.e., that each learner must be
directly connected to all the other learners); in fact, as long as
the network is connected, the local predictions can be spread
over the network using a multi-hop communication protocol.
This setting differs from the typical distributed implementation
of online inference algorithms, where at each step each agent
exchanges information only by means of local interactions
with its neighbors. The algorithm proposed in this paper is
open to generalizations to the latter scenario. A detailed study
of the implied convergence issue is left for future work.

The main features of the proposed scheme are:
DIS: Distributed data streams. The majority of the ex-

isting ensemble schemes proposed in literature assume that
the learners make a prediction after observing the same data
[8]–[16], [18], [19]. Our approach does not rely on such an
assumption, allowing for the possibility that the distributed
learners observe different correlated data streams. In particular,
the statistical dependency among the label and the observation
of a learner can be different from the statistical dependency
among the label and the observation of another learner, i.e.,
each data source can have a specific generating process [20].

DYN: Dynamic data streams. Many existing ensemble
schemes [7]–[11] assume that the data are generated from
a stationary distribution, i.e., that the concept is stable [5].
Our scheme is developed and evaluated, both analytically
and experimentally, considering the possibility that the data

1We remark that a multi-class classifier can be decomposed as a cascade
of binary classifiers [6].
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streams are dynamic, i.e., they may experience concept drift
[5].

ONL: Online learning. To deal with dynamic data streams
our scheme must learn the aggregation rule "on-the-fly". In
this way the learners maintain an up-to-date aggregation rule
and are able to track the concept drifts.

COM: Low complexity. Some online ensemble learning
schemes, such as [11]–[13], [18], need to collect and store
chunks of data, which are later processed to update the
aggregation model of the system. This requires a large memory
and high computational capabilities, thereby resulting in high
implementation cost. Different from these approaches, in our
scheme each data is processed only once “on-arrival”, thus
data are not stored in the system. Only the up-to-date ag-
gregation model is kept in the memory. The local prediction
of each learner, which is the only information that must be
exchanged, consists of a binary value. Moreover, our scheme
is scalable to a large number of sources and learners and the
learners can be chained in any hierarchical structure.

IND: Independence from local classifiers. Different from
[15], [16], [19], our scheme is general and can be applied to
different types of local classifiers, such as support vector ma-
chine, decision tree, neural networks, offline/online classifiers,
etc. This feature is important, because the different learners
can be managed by different entities, willing to cooperate in
exchanging information but not to modify their own local
classifiers. Also, our algorithm does not need any a priori
knowledge about the performance of the local classifiers,
it automatically adapts the configuration of the distributed
system to the current performance of the local classifiers.

DEL: Delayed labels, missing labels, and asynchronous
learners. In distributed environments there are many factors
that may impact the performance of the learning system. First,
because obtaining the information about the label may be both
costly and time consuming, one cannot expect that all the
learners always observe the label in a timely manner. Some
learners can receive the label with delay, or not receive it at
all. Second, the learners can be asynchronous, i.e., they can
observe data at different time instants. In this paper we first
propose a basic algorithm, considering an idealized scenario
in which the above issues are not present, and then we extend
our scheme to deal with the above issues.

The rest of this paper is organized as follows. Section II
reviews the existing literature in ensemble learning techniques.
Section III presents our formalism, framework, and algorithm
for distributed online learning. Section IV proves a bound
for the mis-classification probability of our scheme which
depends on the mis-classification probabilities of the best
(unknown) static aggregation rule, and of the best (unknown)
local classifier. Section V discusses several extensions to our
learning algorithm to deal with practical issues associated to
the distributed implementation of the ensemble of learners,
and proves new bounds that apply to these settings. Section VI
presents the empirical evaluation of our algorithm on several
data sets. Section VII concludes the paper.

II. RELATED WORKS

In this section we review the existing literature on ensemble
learning techniques and discuss the differences between the
cited works and our paper.

Ensemble learning techniques [21]–[23] combine a collec-
tion of base classifiers into a unique classifier. Adaboost [7],
for example, trains a sequence of classifiers on increasingly
more difficult examples and combines them using a weighted
majority rule. Our paper is clearly different with respect to
traditional offline approaches such as Adaboost, which rely on
the presence of a training set for offline training the ensemble
and assume a stable concept.

An online version of Adaboost is proposed in [11]. When
a new chunk of data enters the system, the current classifiers
are reweighed, a weighted training set is generated, a new
classifier (and its weight) is created on this data set, and
the oldest classifier is discarded. Similar proposals are made
in [12], [13], [18], [24]. Our work differs from these online
boosting-like techniques because (i) it processes each instance
"on arrival" only once, without the need for storage and
reprocessing chunks of data, and (ii) it does not require that
the local classifiers are centrally retrained (e.g., in a distributed
scenario it may be expensive to retrain the local classifiers or
unfeasible if the learners are operated by different entities).

An alternative approach to storing chunks of labeled data
consists in updating the ensemble as soon as data flows in the
system. [15] and [16] adopt a dynamic weighted majority al-
gorithm, refining, adding, and removing learners based on the
global algorithm’s performance. [19] proposes a scheme based
on two online ensembles with different levels of diversity. The
low diversity ensemble is used for system predictions, the high
diversity ensemble is used to learn the new concept after a drift
is detected. Our work differs from [15], [16], [19] because it
does not require that the local classifiers are centrally retrained.

The literature closest to our work is represented by the
multiplicative weight update schemes [8]–[10], [14] that main-
tain a collection of given learners, predict using a weighted
majority rule, and update online the weights associated to
the learners in a multiplicative manner. Weighted majority [8]
decreases the weights of the learners in the pool that disagree
with the label whenever the ensemble makes a mistakes.
Winnow2 [9] uses a slightly different update rule, but the final
effect is the same as weighted majority. In [10] the weights of
the learners that agree with the label when the ensemble makes
a mistakes are increased, and the weights of the learners that
disagree with the label are decreased also when the ensemble
predicts correctly. To prevent the weights of the learners which
performed poorly in the past from becoming too small with
respect to the other learners, [14] proposes a modified version
of these schemes adding a phase, after the multiplicative
weight update, in which each learner shares a portion of its
weight with the other learners. In our algorithm, differently
from [8]–[10], [14], the weights are updated in an additive
manner and learners can also have negative weights (e.g., a
learner that is always wrong would receive a negative weight
and could contribute to the system as a learner that is always
right).
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DIS DYN ONL COM IND DEL
[7] X X

[11]–[13], [18], [24] X X X
[8]–[10], [14] X X X X

[15], [16], [19] X X X
our work X X X X X X

TABLE I: Comparison among different ensemble learning works.

Finally, we differentiate from all the cited works in another
key point: we consider a distributed scenario, allowing for
the possibility that the learners observe different data streams.
This is the reason why in Section V we extend our learning
algorithm to address challenges specific to the distributed
implementation.

Table I summarizes the differences between our approach
and the cited works in terms of the features described in
Section I.

III. DISTRIBUTED LEARNING FRAMEWORK AND THE
PROPOSED ALGORITHM

We consider a set of K distributed learners, denoted by
K = {1, . . . ,K}. Each learner observes a separate sequence
of instances. The time is slotted and the learners are syn-
chronized. Throughout the paper, we use the indices i and
j to denote particular learners, the indices n and m to denote
particular time instants, the index N to denote the possible
infinite time horizon (i.e., for how many slots the system
operates), and bold letters to denote vectors.

At the beginning of each time slot n, each learner i observes
an instance generated by a source S(n)

i . Let x(n)
i ∈ Xi denote

the multi-dimensional instance observed by learner i at time
instant n, and y(n) ∈ {−1, 1} denote the corresponding label,
a common event that the learners have to classify at time
instant n. We call the pair (x

(n)
i , y(n)) a labeled instance.

We formally define a source S
(n)
i ,

{
p
(n)
i (x

(n)
i , y(n))

}
for learner i at time instant n as the probability density
function p(n)i over the labeled instance (x

(n)
i , y(n)). We write

S(n) =
(
S
(n)
1 , . . . , S

(n)
K

)
for the vector of sources at time

instant n.
The task of a generic learner i at time instant n is to predict

the label y(n). The prediction utilizes the idea of ensemble data
mining: each learner adopts an individual classifier to generate
a local prediction, the local predictions are exchanged, and
learner i aggregates its local prediction and the received
ones to generate the final prediction ŷ

(n)
i ∈ {−1, 1}. Let

s
(n)
i ∈ {−1, 1} denote the local prediction of learner i at time

instant n. As in [8]–[10], [14], in this paper we assume that
the local classifiers are given (i.e., s(n)i is given ∀ i ∈ K) and
we focus on the adaptivity of the rule that aggregates the local
predictions.

Similarly to most ensemble techniques, such as [7]–
[16], we consider a weighted majority aggregation rule2,

2We point out that in the distributed detection and data fusion literature
[25]–[27] it is known that, for a set of fixed local decision rules, the optimal
fusion rule based on the data received from the sensors is a weighted sum of
the local decisions.

in which learner i maintains a weight vector w
(n)
i ,

(w
(n)
i0 , w

(n)
i1 , . . . , w

(n)
ik ) ∈ <K+1, combines it linearly with the

local prediction vector s(n) , (1, s
(n)
1 , . . . , s

(n)
k ), and predicts

−1 if the result is negative, 1 otherwise, i.e.,

ŷ
(n)
i = sgn

(
w

(n)
i · s(n)

)
=

{
1 if w(n)

i · s(n) ≥ 0
−1 otherwise

(1)

where sgn(·) is the sign function (we define sgn(0) , 1)
and w

(n)
i · s(n) , w

(n)
i0 +

∑K
j=1 w

(n)
ij s

(n)
j is the inner product

among the vectors w
(n)
i and s(n). The equation w

(n)
i0 +∑K

j=1 w
(n)
ij s

(n)
j = 0 defines an hyperplane in <K (the space of

the local predictions) which separates the positive predictions
(i.e., ŷ(n)i = 1) from the negative ones (i.e., ŷ(n)i = −1). Notice
that in most of the weighted majority schemes proposed in
literature, [7]–[16], w(n)

i0 = 0 which constrains the hyperplane
to pass through the origin. However, in our paper the weight
w

(n)
i0 can be thought of as the weight associated to a "virtual

learner" that always sends the local prediction 1, and we
introduce it to exploit an additional degree of freedom.

We consider the following rule to update the weight vector
w

(n)
i at the end of time instant n:

w
(n+1)
i =

{
w

(n)
i if ŷ(n)i = y(n)

w
(n)
i + y(n)s(n) otherwise

(2)

That is, after having observed the true label, learner i compares
it with its prediction. If the prediction is correct, the model is
not modified. If the prediction is incorrect, the weights of the
learners that reported a wrong prediction are decreased by one
unit, whereas the weights of the learners that reported a correct
prediction are increased by one unit.3

Algorithm Perceptron Weighted Majority (PWM)

1: Initialization: wij = 0, ∀ i, j ∈ K
2: For each learner i and time instant n
3: Observe x

(n)
i

4: Obtain s(n) = (1, s
(n)
1 , . . . , s

(n)
k )

5: Predict ŷ(n)i ← sgn(wi · s(n))
6: Observe y(n)

7: If y(n) 6= ŷ
(n)
i do wi ← wi + y(n)s(n)

Since (2) is analogous to the learning rule of a Perceptron
algorithm [17], we call the resulting online learning scheme
Perceptron Weighted Majority (PWM). We initialize to 0 the
weights w(1)

ij , i, j ∈ K. Because at the end of each time instant
n the value of w(n)

ij can remain constant, decrease by one unit,
or increase by one unit, w(n)

ij is always an integer number.
To summarize, the sequence of events that take place at time

instant n for each learner i adopting the PWM algorithm can
be described as follows.

3The proposed update rule increases / decreases the weights by one
unit because it assumes that all the mis-classification errors have the same
importance. However, the update rule can straightforwardly be modified to
take into account differences among mis-classification errors (i.e., among false
alarms and mis-detections): in this case the weight increase / decrease must
be larger when the most important mis-classification error occurs.
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Fig. 1: Illustrative system of two learners adopting the PWM scheme

K Number of learners
i, j Indexes to denote particular learners
N Time horizon
n, m Indexes to denote particular time instants

x
(n)
i Instance at time instant n
y(n) Label at time instant n

s
(n)
i Local prediction of learner i at time instant n
s(n) Local prediction vector at time instant n

ŷ
(n)
i Final prediction of learner i at time instant n

w
(n)
ij

Learner i’s weight used to combine learner j’s local
prediction at time instant n

w
(n)
i

Learner i’s weight vector used to combine the local
predictions at time instant n

DN A sequence of N labeled instances

Pi(DN )
Mis-classification probability of the local classifier

used by learner i

P ∗(DN )
Mis-classification probability of the most accurate

local classifier

v∗(DN )
Number of local classifiers whose mis-classification

probabilities are P ∗(DN )

wO Optimal static weight vector
PO(DN ) Mis-classification probability of learner i if it uses wO

PPWM
i (DN )

Mis-classification probability of learner i if it adopts
the PWM scheme

TABLE II: Summary of the considered notations.

1. Observation: learner i observes the instance x
(n)
i ;

2. Local prediction exchange: learner i sends its local
prediction s

(n)
i = f

(n)
i (x

(n)
i ) to the other learners, and

receives the local predictions s
(n)
j = f

(n)
j (x

(n)
j ), ∀ j 6= i,

from the other learners;
3. Final prediction: learner i computes and outputs its final

prediction ŷ(n)i = sgn
(
w

(n)
i · s(n)

)
;

4. Feedback: learner i observes the true label y(n);
5. Configuration update: learner i updates the weight

vector w(n)
i adopting (2).

Fig. 1 illustrates this sequence of events for a system of two
learners, whereas Table II summarizes the most important
notations used in this paper.

IV. PERFORMANCE OF PWM
In this section we analytically quantify the performance of

PWM in terms of its empirical mis-classification probability
(shortly, mis-prediction probability), which is defined as the
number of prediction mistakes per instance.

We prove two upper bounds for the mis-classification
probability of our scheme. The first bound depends on the
mis-classification probability of the best (unknown) static
aggregation rule, and is particularly useful when the local
classifiers are weak (i.e., their performance are comparable
to random guessing) but their combination can result in an
accurate ensemble.4 The second bound depends on the mis-
classification probability of the best (unknown) local classi-
fiers, and is particularly useful when there are accurate local
classifiers in the system. We then combine these two bounds
into a unique bound. We show that the resulting bound and
the mis-classification probability of PWM tend asymptotically
to 0 if the mis-classification probability of the best static
aggregation rule or the mis-classification probability of the
best local classifier tends to 0. Then we formally define
the notions of concept and concept drift and we show that
the mis-classification probability of PWM tends to 0 if, for
each concept, there exists a (unknown) static aggregation
rule whose mis-classification probability (for the considered
concept) tends to 0.

Importantly, we remark that PWM is designed in absence of
a priori knowledge about the sources and the performance of
the local classifiers. We do not need to know a priori whether
there are accurate local classifiers or accurate aggregation
rules. It is the scheme itself that adapts the configuration of
the distributed system to the current performance of the local
classifiers.

A. Definitions

Given the sequence of N labeled instances DN ,(
x
(n)
1 , . . . ,x

(n)
K , y(n)

)
n=1,...,N

, we denote by Pi(DN ) the

mis-classification probability of the local classifier used by
learner i, by P ∗(DN ) the mis-classification probability of the
most accurate local classifier, and by v∗(DN ) the number
of local classifiers whose mis-classification probabilities are
P ∗(DN ),5

Pi(DN ) ,
1

N

N∑
n=1

I{s(n)i 6= y(n)}

P ∗(DN ) , min
i∈K

Pi(DN )

v∗(DN ) , |{i : Pi(DN ) = P ∗(DN )}| (3)

where |·| denotes the cardinality of the considered set. Notice
that the considered mis-classification probabilities are defined
adopting an empirical formulation.

Also, we denote by PO(DN ) the mis-classification prob-
ability of learner i if it combines the local predictions of all
the learners using the optimal static weight vector wO that
minimizes its number of mistakes (notice that PO(DN ) and
wO are the same for all the learners, hence we do not use the

4It is known that the combination of weak classifiers can result in a high
accurate ensemble [28], in particular when the classifiers are diverse and their
errors are independent.

5This paper does not distinguish among different classification errors, i.e.,
among false alarms and mis-detections.
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subscript i),

wO , argmin
w

1

N

N∑
n=1

I{sgn
(
w · s(n)

)
6= y(n)}

PO(DN ) ,
1

N

N∑
n=1

I{sgn
(
wO · s(n)

)
6= y(n)} (4)

Remark 1. PO(DN ) ≤ P ∗(DN ). Indeed learner i can at least
achieve the mis-classification probability of the most accurate
local classifier using a static weight vector, this is achieved by
assigning a positive weight to the local prediction belonging
to the most accurate local classifier and zero weights to all the
other local predictions.

Remark 2. The computation and adoption of wO would
require to know in advance, at the beginning of time instant
1, the sequences of local predictions s(n) and labels y(n), for
every time instant n = 1, . . . , N .

Moreover, we denote by PPWM
i (DN ) the mis-classification

probability of learner i if it adopts the PWM scheme,

PPWM
i (DN ) ,

1

N

N∑
n=1

I{sgn
(
w(n) · s(n)

)
6= y(n)} (5)

where w
(1)
ij = 1, ∀ i, j, and w

(n)
i evolves according to (2).

We denote by PPWM (DN ) the average mis-classification
probability of the distributed system if all the learners adopt
the PWM scheme,

PPWM (DN ) ,
1

K

K∑
i=1

PPWM
i (DN ) (6)

Remark 3. In this section PPWM (DN ) = PPWM
i (DN ),

∀ i, because the weight vectors of the learners are equally
initialized and we assumed that the learners are synchronized
and always observe the labels, hence w

(n)
i and w

(n)
j evolve

in the same way and PPWM
i (DN ) = PPWM

j (DN ), ∀ i, j.
However, in Section V we describe several extensions to our
online learning algorithm, in which w

(n)
i and w

(n)
j evolve

differently, and consequently PPWM
i (DN ) 6= PPWM

j (DN ),
i 6= j.

B. Bounds for PWM mis-classification probability

In this subsection we derive the following results. Lemma 1
proves a bound for PPWM (DN ) as a function of PO(DN ).
Lemma 2 proves a bound for PPWM (DN ) as a function of
P ∗(DN ). Theorem 1 combines these two bounds into a unique
bound. Finally, as a special case of Theorem 1, Theorem
2 shows that PPWM (DN ) converges to 0 if P ∗(DN ) or
PO(DN ) converge to 0.

Lemma 1. For every sequence of labeled instances DN ,
the mis-classification probability PPWM (DN ) is bounded by

B1(DN ) , 2KPO(DN ) +
K(K + 1)

N
.

Proof: See Appendix A.

Remark 4. Lemma 1 shows that it is not always beneficial to
have many learners in the system. On one hand, an additional

learner can decrease the benchmark prediction probability
PO(DN ). On the other hand, it increases the number of
learners K, and as a consequence the maximum number or
errors needed to approach the benchmark weight vector wO

increases. The final impact on PPWM (DN ) depends on which
of the two effects is the strongest. As an extreme case, if the
K learners are such that the product 2KPO(DN ) is larger
than 1, then the bound B1(DN ) becomes meaningless. In
the other extreme case, if the K learners are such that the
optimal static weight vector wO allows to predict always
correctly the labeled instances DN , i.e., PO(DN ) = 0, then
PPWM (DN ) ≤ K(K+1)

N . In this case, the bound increases
quadratically in the number of learners K, but decreases
linearly in the number of instances N .

We define the function f(x, y) , 2x + K+1
2Ny +√(

K+1
2Ny

)2
+ 2(K+1)x

Ny .

Lemma 2. For every sequence of labeled instances DN ,
the mis-classification probability PPWM (DN ) is bounded by
B2(DN ) , f (P ∗(DN ), v∗(DN )) .

Proof: See Appendix B.

Remark 5. If the best local classifier always predicts cor-
rectly the labeled instances DN , i.e., P ∗(DN ) = 0, then
PPWM (DN ) ≤ K+1

N ·v∗(DN ) . This bound is K · v∗(DN ) times
better than the bound in Remark 4.

Remark 6. Asymptotically, for N → +∞, B1(DN ) →
2KPO(DN ) and B2(DN ) → 2P ∗(DN ). On one hand, if
the local classifiers are weak (i.e., P ∗(DN ) ' 0.5) but their
aggregation is very accurate (i.e., PO(DN ) � 1), the first
bound is usually stricter than the second. On the other hand,
if the performance of the best local classifier is comparable
with the performance of the optimal static aggregation rule
(i.e., P ∗(DN ) ' PO(DN )), the second bound is K times
stricter than the first one. Notice that also the bound computed
in [8], for the multiplicative update rule, depends linearly on
the accuracy of the best classifier.

In the following theorem, we combine B1(DN ) and
B2(DN ) into a unique bound.

Theorem 1. For every sequence of labeled instances DN ,
the mis-classification probability PPWM (DN ) is bounded by
B(DN ) , min {B1(DN ),B2(DN ), 1} .

Proof: We simply combine Lemmas 1 and 2, and the fact
that the mis-prediction probability cannot be larger than 1.

Importantly, notice that the bound B(DN ) is valid for any
time horizon N and for any sequence of labeled instances DN .
As a particular case, if the time horizon tends to infinity and
there exists either 1) a static aggregation weight vector whose
mis-classification probability tends to 0 (i.e., PO(DN )→ 0),
or 2) a local classifier whose mis-classification probability
tends to 0 (i.e., P ∗(DN ) → 0), we obtain that the mis-
classification probability of PWM tends to 0 as well. Notice
that P ∗(DN ) → 0 is a specific case of PO(DN ) → 0,
because PO(DN ) ≤ P ∗(DN ). Hence, in the statement of the
following theorem we consider only the case PO(DN )→ 0.
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Theorem 2. If limN→+∞ PO(DN ) = 0, then
limN→+∞ PPWM (DN ) = 0.

Proof: PPWM (DN ) ≤ 2KPO(DN ) + K(K+1)
N and the

right hand side tends to 0 for N → +∞.

C. Bound in the Presence of Concept Drifts

Given two time instants n and m, n > m, we write S(n)
i =

S
(m)
i if the labeled instances (x

(n)
i , y

(n)
i ) and (x

(m)
i , y

(m)
i ) are

independently sampled from the same distribution. We write
S(n) = S(m) if S(n)

i = S
(m)
i , ∀ i ∈ K. As in [5], we refer

to a particular vector of sources as a concept. The expression
concept drift [4], [5], [12]–[16], [18], [19], [29]–[31] refers
to a change of concept that occurs in a certain time instant.
According to [5], we say that at time instant n there is a
concept drift if S(n+1) 6= S(n).

Theorem 2 states that PPWM (DN )→ 0 if PO(DN )→ 0.
Unfortunately, in presence of concept drifts it is highly im-
probable that PO(DN ) → 0. In fact, the accuracies of the
local classifiers can change consistently from one concept to
another, and the best weight vector to aggregate the local pre-
dictions changes accordingly. In the following we generalize
the result of Theorem 2 considering an assumption that is more
realistic if there are concept drifts.

We denote by DNc
a sequence of Nc labeled instances

generated by the concept S(n)
c . We say that the concept S(n)

c

is learnable if, ∀DNc
,

lim
Nc→+∞

min
wO

i,c

1

Nc

Nc∑
n=1

I{sgn
(
wO
i,c · s(n)

)
6= y(n)} = 0 (7)

That is, the concept S
(n)
c is learnable if there exists a static

weight vector wO
i,c whose asymptotic mis-classification prob-

ability, over the labelled instances generated by that concept,
tends to 0.

Theorem 3. If DN , for N → +∞, is generated by a finite
number of learnable concepts and a finite number of concept
drifts occurred, then limN→+∞ PPWM (DN )→ 0.

Proof: See Appendix C.
Remark 7. Theorem 2 requires the existence of a unique
weight vector, wO, whose mis-classification probability over
the labeled instances generated by all concepts converges to
0. Theorem 3 requires the existence of one weight vector for
concept, wO

i,c, whose mis-classification probability over the
labeled instances generated by concept S(n)

c converges to 0.

V. EXTENDED PWM

So far we have considered an idealized setting in which all
the learners always observe an instance at the beginning of
the time instant (i.e., they are synchronous), and they always
observe the corresponding label at the end of the time instant.
In a distributed environment one cannot expect that these
assumptions are always satisfied: sometimes the learners can
be asynchronous, receive the label with delay, or not receive
it at all. In this section we address these challenges proposing,
for each of them, a modification to the basic PWM scheme

introduced in Section III, and we extend Theorems 1 and
3 for each modified version of PWM.6 At the end of this
section we explicitly write the extended PWM algorithm that
includes all the proposed modification to jointly deal with all
the considered challenges.

A. Delayed and Out-Of-Order Labels
In some cases the true label corresponding to a time

instant n is observed with delay. For example, in a distributed
environment one learner can observe the label immediately,
and communicate it to the other learners at a later stage. In
this subsection we show that our algorithm can be modified in
order to deal with this situation, with a price to pay in terms
of increased memory.

We denote by d
(n)
i the number of time slots after which

learner i observes the n-th label. We assume that d(n)i is not
known a priori, but is bounded by a maximum delay di, ∀n,
which is known. Also, we allow for the possibility that the
labels are received out of order (e.g., it is possible that learner i
observes the label y(n+1) before the label y(n)), but we assume
that, when a label is received, the time instant it refers to is
known.

PWM is modified as follow. Learner i maintains in memory
all the local prediction vectors that refer to the not yet observed
labels. As soon as learner i receives the label y(m), it computes
the prediction ŷ

(m)
i = sgn(w

(n)
i · s(m)) which it would have

made at time instant m with the current weight vector w
(n)
i ,

and updates the weight vector according to

w
(n+1)
i =

{
w

(n)
i if ŷ(m)

i = y(m)

w
(n)
i + y(m)s(m) otherwise

(8)

This update rule is similar to (2), but now the updates may
happen with delays. In particular, since different learners
experience different delays, the weight vectors w(n)

i and w
(n)
j ,

i 6= j, follow different dynamics.

Theorem 4. For every sequence of labeled instances DN ,

PPWM (DN ) is bounded by B(DN ) +

∑K
i=1 di
NK

.

Proof: See Appendix D.

Remark 8. The term
∑K

i=1 di
NK can be interpreted as the maxi-

mum loss for the delayed labels.

Theorem 5. If DN , for N → +∞, is generated by a finite
number of learnable concepts and a finite number of concept
drifts occurred, then limN→+∞ PPWM (DN )→ 0.

Proof: The proof applies the same is methodology as the
proof of Theorem 4. The number of errors a generic learner i
makes in each concepts can be divided into two contributions.
The first contribution represents the number of errors i makes
over the sequence of labeled instances it observes. Theorem
3 proves that such a term tends to 0. The second contribution
represents the number of errors learner i makes over the
label instances whose labels are not observed. Such a term
is bounded by di

N , that tends to 0.

6Notice that Theorem 3 is a more general version of Theorem 2, and hence
we do not need to extend also Theorem 2.
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B. Missing Labels

In a distributed environment one cannot expect that all
the learners always receive the label, in particular in those
scenarios in which obtaining the information about the label
may be both costly and time consuming. In this subsection
we show that our scheme can be easily extended to deal
with situations in which the true labels are only occasionally
observed.

Let g(n)i , 1 if learner i observes the label y(n) at the end to
time instant n, g(n)i , 0 otherwise. The following update rule
represents the natural extension of (2) to deal with missing
labels:

w
(n+1)
i =

{
w

(n)
i if g(n)i = 0 or ŷ(n)i = y(n)

w
(n)
i + y(n)s(n) otherwise

(9)

That is, learner i updates the weight vector w(n)
i only when it

observes the true label and it recognizes it made a prediction
error. Notice that different learners observe different labels;
therefore, the weight vectors w

(n)
i and w

(n)
j , i 6= j, follow

different dynamics.
Now we consider a simple model of missing labels and we

derive the equivalent for the Theorems 1 and 3. We assume
that g(n)i is an independent and identically distributed (i.i.d.)
process, ∀ i, and denote by µ the probability that g(n)i = 1,
0 < µ < 1.7 That is, at the end of a generic time instant n
learner i observes the label with probability µ.

Denote by NPWM
e the number of prediction errors observed

by learner i, i.e., the number of times i observes the label
and recognizes it made a prediction mistake. We define the
function

λ (y, z) ,

√
1

2z
ln

1

y
(10)

Theorem 6. Given the sequence of instances DN , for any
level of confidence ε > 0 such that λ(ε, L̃PWM

i ) ≤ µ, with
probability at least 1−ε we have that PPWM (DN ) is bounded

by
B(DN )

µ− λ (ε,NPWM
e )

.

Proof: See Appendix E.

Remark 9. The denominator µ − λ(ε,NPWM
e ), which is

lower than 1, can be interpreted as the maximum loss for the
missing labels. Notice that, for any given level of confidence
ε, the function λ

(
ε,NPWM

e

)
is decreasing in the number of

observed errors NPWM
e , and tends to 0 if NPWM

e → +∞.
As a consequence, the bound defined by Theorem 6 tends to
B(DN ) divided by the probability to observe a label µ.

Theorem 7. If DN , for N → +∞, is generated by a finite
number of learnable concepts and a finite number of concept
drifts occurred, then limN→+∞ PPWM (DN )→ 0.

Proof: If the number of errors N
PWM

e,c PWM makes in

concept c is finite, then
N

PWM
e,c

N → 0. If N
PWM

e,c is unbounded,

7We can extend the analysis considering an observation probability µi that
depends on the learner i. The results would be similar to those obtained with
a unique µ, but the notations would be much messier.

then by a Chernoff-Hoeffding bound [32] we have NPWM
e,c =

µ ·NPWM

e,c with probability 1. Using the same arguments as in

the proof of Theorem 3, we can say that
NPWM

e,c

N → 0, hence
N

PWM
e,c

N → 0. Therefore, PPWM (DN ) =
∑

cN
PWM
e,c

N → 0.

C. Asynchronous Learners

Another important factor that may impact the performance
of an online learning distributed system is the synchronization
among the learners. So far we have assumed that each learner
observes an instance in every time instant. However, in many
practical scenarios different learners may capture instances in
different time instants, and they can have different acquisition
rates. In this subsection we extend our scheme to deal with
this situation.

PWM is modified as follow. A learner does not send
a local prediction when it does not observe the instance;
however, it can still output a final prediction exploiting the
local predictions received from the other learners. A generic
learner i maintains two weight vectors: w(n)

i,s and w
(n)
i,a . At the

time instants in which all the learners observe the instances
(i.e., when the learners are synchronized), learner i aggregates
all the local predictions using w

(n)
i,s and then, after having

observed the label, updates w(n)
i,s using (2). At the time instants

in which some learners do not observe the instances (i.e., when
the learners are not synchronized), learner i set to 0 the non
received local predictions (i.e., it treats the learners that do
not observe the instances as "abstainer"), aggregate the local
predictions using w

(n)
i,a , and then, after having observed the

label, updates w
(n)
i,a using (2) (notice that the weights of the

abstainers are not modified).
Given the sequence of labelled instances DN , we denote

by M the number of times in which the instances are jointly
observed by all the learners. We define the synchronization
index α , N−M

N . Notice that 0 ≤ α ≤ 1, the lower α the
more synchronized the learners.

Algorithm Extended PWM

Initialization: wij,s = wij,a = 0, ∀ i, j ∈ K
For each learner i and time instant n

If s(n)j is received ∀ j ∈ K
ŷ
(n)
i ← sgn(wi,s · s(n))

Else
For each j such that s(n)j is not received do s(n)j ← 0

ŷ
(n)
i ← sgn(wi,a · s(n))

For each instant m ≤ n such that y(m) is observed
If s(m)

j 6= 0 ∀ j
If y(m) 6= sgn(wi,s · s(m)) do wi,s ← wi,s + y(m)s(m)

Else
If y(m) 6= sgn(wi,a ·s(m)) do wi,a ← wi,a+y(m)s(m)

Theorem 8. Given the sequence of instances DN ,
PPWM (DN ) is bounded by B(DN ) + α.

Proof: See Appendix F.
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Remark 10. The synchronization index α can be interpreted
as the maximum loss for non synchronized learners. If the
learners are always synchronous (i.e., α = 0), Theorem 8 is
equal to Theorem 1.

Theorem 9. If DN , for N → +∞, is generated by a finite
number of learnable concepts and a finite number of concept
drifts occurred, then limN→+∞ PPWM (DN ) ≤ α.

Proof: Using the notations and considerations of the
proof of Theorem 8 we can state that, for a generic learner,
the mis-classification probability in the sequence DM tends
to 0 (because we can apply Theorem 3), whereas the mis-
classification probability over the instances in which some
learners do not observe the instances is bounded by α.

Remark 11. Different from Theorems 3, 5, and 7, in Theorem
9 the mis-classification probability does not tend to 0. In fact,
the consequence of non synchronized learners is that a learner
does not have, in all the time instances, the local predictions of
all the other learners, and this lack of information may result
in a mis-classification.

Remark 12. Theorem 9 can be used as a tool to design the
acquisition protocol adopted by the learners. Indeed, if we
know that the concepts are learnable and we have to satisfy a
mis-classification probability constraint Pmis, we can choose
the acquisition protocol such that the synchronization index α
is equal to or lower than Pmis.

VI. EXPERIMENTS

In this section we evaluate empirically the basic PWM
algorithm and the extended PWM algorithm we proposed in
Sections III and V, respectively. In order to compare PWM
with other state-of-the-art ensemble learning techniques that
do not deal with a distributed environment, in the first set
of experiments (Subsection VI-A) all the learners observe the
same data stream, but they are pre-trained on different data sets
and hence their local predictions are in general different. In the
second set of experiments (Subsection VI-B), different learners
observe different data streams. In this case we compare PWM
against a learner that predicts using only its local prediction,
and analyze the impact on their performance of delayed labels,
missing labels, and asynchronous learners.

A. Unique Data Stream

In this subsection we test PWM and other state-of-the-art
solutions using real data sets that are generated from a unique
data stream. First, we shortly describe the data sets, then we
discuss the results.

1) Real Data Sets: We consider four data sets, well known
in the data mining community, that refer to real-world prob-
lems. In particular, the first three data sets are widely used by
the literature dealing with concept drift (which is the closest
to our work), because they exhibit evident drifts.

R1: Network Intrusion. The network intrusion data set,
used for the KDD Cup 1999 and available in the UCI archive
[33], consists of a series of TCP connection records, labeled
either as normal connections or as attacks. For a more detailed

description of the data set we refer the reader to [4], that shows
that the network intrusion data set contains non-stationary data.
This data set is widely used in the stream mining literature
dealing with concept drift [4], [13], [19], [34].

R2: Electricity Pricing. The electricity pricing data set
holds information for the Australian New South Wales elec-
tricity market. The binary label (up or down) identifies the
change of the price relative to a moving average of the last
24 hours. For a more detailed description of this dataset we
refer the reader to [35]. An appealing property of this data
set is that it contains drifts of different types, due to changes
in consumption habits, the seasonability, and the expansion
of the electricity market. This data set is widely used in the
stream mining literature dealing with concept drift [16], [19],
[35]–[40].

R3: Forest Cover Type. The forest cover type data set
from UCI archive [33] contains cartographic variables of four
wilderness areas of the Roosevelt National Forest in northern
Colorado. Each instance refers to a 30 × 30 meter cell of
one of these areas and is classified with one of seven possible
classes of forest cover type. Our task is to predict if an instance
belong to the first class or to the other classes. For a more
detailed description of this dataset we refer the reader to [41].
The forest cover type data set contains drifts because data are
collected in four different areas. This data set is widely used
in the stream mining literature dealing with concept drift [13],
[39], [42], [43].

R4: Credit Card Risk Assessment. In the credit card risk
assessment data set, used for the PAKDD 2009 Data Mining
Competition [44], each instance contains information about
a client that accesses to credit for purchasing on a specific
retail chain. The client is labeled as good if he was able to
return the credit in time, as bad otherwise. For a more detailed
description of this dataset we refer the reader to [44]. This data
set does not contain drifts because the data were collected
during one year with a stable inflation condition. In fact, to
the best of our knowledge, the only work dealing with concept
drift that uses this data set is [19].

2) Results: In this experiment we compare our scheme with
other state-of-the-art ensemble learning algorithms. Table III
lists the considered algorithms, the corresponding references,
the parameters we adopted (that are equal to the ones used in
the corresponding papers, except for the window size that is
obtained following a tuning procedure), and their performance
in the considered data sets.

We shortly describe the considering algorithms in the fol-
lowing. Average Majority (AM) [4] is a simple static scheme
that gives the same weight to the all the local predictions.
Adaboost (Ada) [7] trains a sequence of classifiers on in-
creasingly more difficult examples and combines them using
a weighted majority rule. First it weights the training data
set to increase the importance of the examples in which the
current ensemble fails, then it creates a new learner on the
weighted training data set, and finally it assigns a weight to
the learner based on its performance on the weighted data set.
Fan’s Online Adaboost (OnAda) and Wang’s Online Adaboost
(Wang) represent online versions of Adaboost. When a new
chunk of data enters the system the current classifiers are
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reweighed, a weighted training set is generated, and a new
classifier (and its weight) is created on this data set. OnAda
maintains the most recent classifiers, whereas Wang maintains
classifiers with the highest prediction accuracy on the current
chunk of data. Diversity for Dealing with Drifts (DDD) [19] is
a scheme based on two online ensembles with different levels
of diversity. The low diversity ensemble is used for system
predictions, the high diversity ensemble is used to learn the
new concept after a drift is detected. Weighted Majority (WM)
[8] maintains a collection of given learners, predicts using a
weighted majority rule, and updates the weights associated
to the learners in a multiplicative manner, by decreasing the
weights of the learners in the pool that disagree with the
label whenever the ensemble makes a mistakes. In the WM
variant proposed in [10] (Blum) the weights of the learners
that agree with the label when the ensemble makes a mistakes
are increased, and the weights of the learners that disagree
with the label are decreased also when the ensemble predicts
correctly. The WM variant proposed in [14] (TrackExp) tries
to prevent the weights of the learners which performed poorly
in the past from becoming too small with respect to the other
learners, by adding a phase, after the multiplicative weight
update, in which each learner shares a portion of its weight
with the other learners

For each data set we consider a set of 8 learners and we use
logistic regression classifiers for the learners’ local predictions.
Each local classifier is pre-trained using an individual training
data set and kept fixed for the whole simulation (except for the
OnAda, Wang, and DDD schemes, in which the base classifiers
are retrained online). The training and testing procedures are
as follow. From the whole data set we select 8 training data
sets, each of them consisting of Z sequential records. Z is
equal to 5, 000 for the data sets R1 and R3, and 2, 000 for R2
and R4. Then we take other sequential records (20, 000 for R1
and R3, and 8, 000 for R2 and R4) to generate a set in which
the local classifiers are tested, and the results are used to train
offline Adaboost. Finally, we select other sequential records
(20, 000 for R1 and R3, 21, 000 for R2, and 26, 000 for R4)
to generate the testing set that is used to run the simulations
and test all the considered schemes.

Table III reports the final mis-classification probability in
percentages (i.e., multiplied by 100) obtained for each data
set for the considered schemes. For the first three data sets,
which exhibit concepts drifts, the schemes that update their
models after each instance (DDD, WM, Blum, TrackExp, and
PWM) outperform the static schemes (AM and Ada) and the
schemes that update their model after a chunk of instances
enters the system (OnAda and Wang). This result shows that
the static schemes are not able to adapt to changes in concept,
and the schemes that need to wait for a chunk of data adapt
slowly because 1) they have to wait for the last instance of
the chuck before updating the model, and 2) a chuck of data
can contain instances belonging to different concepts, hence
the model built on it can be inaccurate to predict the current
concept.

Importantly, in the first three data sets PWM outperforms
all the other schemes, whereas the second best scheme is
WM. The gain of PWM (in terms of reduction of the mis-

classification probability) with respect to WM is about 34%
for R1, 38% for R2, and 71% for R3. We remark that the main
differences among our scheme and WM are 1) the weights
update rule (additive vs. multiplicative), and 2) the weight w(n)

i0

associated to the virtual learner that always sends the local
prediction 1. To investigate the real reason of the gain of PWM
we tested also a version of PWM in which w

(n)
i0 = 0, ∀n,

obtaining the following percentage of mis-classifications in the
first three data sets: 0.23, 14.4 and 4.1. Hence, the weight w(n)

i0

can slightly help to increase the accuracy of the distributed
system, but the main reason why PWM outperforms WM in
these data sets is the update rule.

Differently from the first three data sets, in R4, the data
set that does not contain drifts, Ada, OnAda, and Wang
outperform the other schemes. In fact, they exploit many stored
labeled instances to build their models, and this results in more
accurate models when the data are generated from a static
distribution.

B. Different Data Streams

In this subsection we evaluate PWM using synthetic data
sets in which different learners observe different data streams,
and analyze the impact of delayed labels, missing labels, and
asynchronous learners. First, we shortly describe the data sets,
then we discuss the results.

1) Synthetic Data Sets: We consider three synthetic data
sets to carry on different experiments. The first data set
represents a separating hyperplane that rotates slowly, we use
it to simulate gradual drifts [5], [19], [37]. Similar data sets
are widely adopted in the stream mining literature dealing with
concept drift [4], [13], [19], [31]. In the third data set, similarly
to [45], each learner observes a local event that is embedded
in a zero-mean Gaussian noise. Concept drifts occur because
the accuracies of the observations evolve following Markov
processes. The third data is a simple Gaussian distributed data
set in which the concept is stable. We use this data set because
we can analytically compute the optimal mis-classification
probability PO(DN ) and investigate how strict the bound
B(DN ) is.

S1: Rotating Hyperplane. Each learner i observes a 3-
dimensional instance x

(n)
i = (x

(n)
i,1 , x

(n)
i,2 , x

(n)
i,3 ) that is uni-

formly distributed in [−1 1]3, and is independent from x
(m)
i ,

n 6= m, and from x
(m)
j , i 6= j. The label is a deterministic

function of the instances observed by the first K < K learners
(the other K − K learners observe irrelevant instances).
Specifically, y(n) = 1 if

∑K
i=1

∑3
`=1 θ

(n)
i,` x

(n)
i,` ≥ 0, y(n) = 0

otherwise. The parameters θ(n)i,` are unknown and time-varying.
As in [31], each θ(1)i,` is independently generated according to
a zero-mean unit-variance Gaussian distribution N (0, 1), and
θ
(n)
i,` = θ

(n−1)
i,` + δ

(n)
i,` where δ(n)i,` ∼ N (0, 0.1).

S2: Distributed Event Detection. Each learner i monitors
the occurrence of a particular local event. Let e(n)i , 1 if the
local event monitored by learner i occurs at time instant n,
e
(n)
i , −1 otherwise. e(n)i is an i.i.d. process, the probability

that e(n)i = 1 is 0.05, ∀ i, n. The observation of learner i is
x
(n)
i = e

(n)
i +β

(n)
i , where β(n)

i is an i.i.d. zero-mean Gaussian
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Abbreviation Name of the Scheme Reference Parameters Performance
R1 R2 R3 R4

AM Average Majority [4] – 3.07 41.8 29.5 34.1
Ada Adaboost [7] – 5.25 41.1 57.5 19.7

OnAda Fan’s Online Adaboost [11] Window size: W = 100 2.25 41.9 39.3 19.8
Wang Wang’s Online Adaboost [12] Window size: W = 100 1.73 40.5 32.7 19.8
DDD Diversity for Dealing with Drifts [19] Diversity parameters: λl = 1, λh = 0.1 0.72 39.7 24.6 20.0
WM Weighted Majority algorithm [8] Multiplicative parameter: β = 0.5 0.29 22.9 14.1 67.4
Blum Blum’s variant of WM [10] Multiplicative parameters: β = 0.5, γ = 1.5 1.64 37.3 22.6 68.1

TrackExp Herbster’s variant of WM [14] Mult. and sharing parameters: β = 0.5, α = 0.25 0.52 23.1 14.8 22.0
PWM Perceptron Weighted Majority our work – 0.19 14.3 4.1 31.5

TABLE III: The considered schemes, their parameters, and their percentages of mis-classifications in the data sets R1-R4
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Fig. 2: mis-classification probability of learner 1 if it predicts alone
and if it uses PWM, for the data set S1

process. To simulate concept drifts, we assume that a source
can be in two different states: good or bad. In the good state
β
(n)
i ∼ N (0, 0.5), in the bad state β(n)

i ∼ N (0, 1). The state
of the source evolves as a Markov process with a probability
0.01 to transit from one state to the other.

S3: Gaussian Distribution. The labels are generated ac-
cording to a Bernoulli process with parameter 0.5, and the
instance x(n) = (x

(n)
1 , . . . , x

(n)
K ) is generated according to a

K-dimensional Gaussian distribution x(n) ∼ N
(
y(n) · µ,Σ

)
,

where Σ is the identity matrix. That is, if the label is 1 (−1)
each component x(n)i is independently generated according
to a Gaussian distribution with mean µ (−µ) and unitary
variance. A generic learner i observes only the component
x
(n)
i of the whole instance x(n).
2) Results: In the first set of experiments we adopt the

synthetic data set S1 to evaluate the mis-prediction probability
of a generic learner, which we refer to as learner 1, when it
predicts by its own (ALONE), and when it adopts PWM. We
consider a set of K = 16 learners, in which the last 8 learners
observe irrelevant instances. For each simulation we generate
a data set of 1, 000 instances. We use non pre-trained online
logistic regression classifiers for the learners’ local predictions.
We run 1, 000 simulations and average the results. The final
results are reported in the four sub-figures of Fig. 2, and are
discussed in the following.

The top-left sub-figure shows how the mis-classification
probability of learner 1 varies, in the idealized setting (i.e.,
without the issues described in Section V), with respect to
the the number of learners that PWM aggregates. If there

is only one learner, ALONE and PWM are equivalent, but
the gap between the performance obtainable by ALONE and
the performance achievable by PWM increases as the number
of learners that PWM aggregates increases. In particular,
if the local predictions of all the learners are aggregated,
the mis-classification probability of PWM is less than half
the mis-classification probability of ALONE. Notice that the
performance of PWM remains constant from 8 to 16 learners,
and this is a positive result because the last 8 learners observe
irrelevant instances. PWM automatically gives them a low
weight such that their (noisy) local predictions do not influence
the final prediction. In fact, the simulation for K = 16 learners
shows that the average absolute weight of the first 8 learners is
about twice the average absolute weight of the last 8 learners.
In all the following experiments we consider K = 16 learners.

Now we assume that learner 1 observes the labels after
some time instants, and each delay is uniformly distributed
in [0 D]. The top-right sub-figure shows how the mis-
classification probability varies with respect to the average
delay D

2 . We can see that the delay does not affect considerably
the performance, in fact both mis-classification probabilities
slightly increases if the delay increases and the gap between
them remain constant.

In the next experiment we analyze the impact of missing
labels on the performance of learner 1. The bottom-left sub-
figure shows how the mis-classification probability varies with
respect to the probability that learner 1 observes a label.
Even when the probability of observing a label is 0.1, the
mis-classification probability of PWM is about half the mis-
classification probability of ALONE. This gain is possible
because learner 1, adopting PWM, automatically exploits the
fact that the other learners are learning.

Similar considerations are valid when learner 1 observes
an instance with a certain probability (see the bottom-right
sub-figure), which can be interpreted as the reciprocal of the
arrival rate. The impact on the mis-classification probabilities
of missing instances is stronger (i.e., the mis-classification
probabilities are higher) than the impact of missing labels. In
fact, when instances are not observed, not only learner 1 does
not update the weight vector, it also waits more time between
two consecutive predictions, hence the concept between two
consecutive predictions can change consistently. When the
probability of observing an instance is 0.1, the gain of PWM,
with respect to ALONE, is about 40%.

In the second set of experiments we use a similar set-up
as in the first set of experiments, but we adopt the synthetic
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Fig. 3: mis-classification probability of learner 1 if it predicts alone
and if it uses PWM, for the data set S2

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

µ

M
is

−
c
la

s
s
. 
P

ro
b
.

Idealized setting

 

 

ALONE
AM

PWM
Bound

Fig. 4: The bound B(DN ) and the mis-classification probability of
learner 1 if 1) it predicts by its own, 2) it uses AM, 3) it uses PWM,
for the data set S3

data set S2. We consider a set of K = 8 learners and for
each simulation we generate 10, 000 instances. Each learner
uses a non pre-trained online logistic regression classifiers to
learn the best threshold to adopt to classify the local event. We
run 100 simulations and average the results. The final results
are reported in the four sub-figures of Fig. 3, and are briefly
discussed in the following. The top-left sub-figure shows that
the mis-classification probability of PWM decreases linearly in
the number of learners until the local prediction of all learners
are aggregated, in this case the mis-classification probability of
PWM is about 0.01, whereas the mis-classification probability
of ALONE is about 0.47. As in the first set of experiments, the
delay does not affect the performance of the two schemes, and
the performance of PWM is much better than the performance
of ALONE even when the probability of observing the label
is very low. Differently from the first set of experiments, with
the data set S2 the performance of PWM is strongly affected
by the synchronicity of the learners, and when the learners
observe few instances the mis-classification of PWM becomes
close to the mis-classification of ALONE.

In the last experiment we adopt the data set S3 to investigate
how strict the bound B(DN ) is. For each simulation we
consider K = 8 learners and generate a data set of 1, 000
instances. We assume that the local prediction of learner i
is −1 if its observation x

(n)
i is negative, 1 otherwise. It is

possible to show that, given the structure of the problem, this
represents the most accurate policy for the local prediction,
and the best possible aggregation rule is the average majority
(AM). We run 10, 000 simulations and average the results.

Fig. 4 shows the bound B(DN ) and the mis-classification
probability of learner 1 if 1) it predicts by its own (ALONE),
2) it uses AM, and 3) it uses PWM, varying the parameter
µ. If µ is low the instances corresponding to negative and
positive labels are similar, hence it is more difficult to predict
correctly the labels. Fig. 4 shows that, in this case, the mis-
classification probability of PWM is much lower than the
bound, and it is very close to the mis-classification probability
of AM , that is the best aggregation rule in this scenario. With
the increase of µ, the mis-classification probabilities of all the
schemes decrease, and the bound become stricter to the real
performance of PWM.

Notice that the curve representing the bound has a cusp at
about µ = 1.75. In fact, before this value B1(DN ) is stricter
than B2(DN ), whereas for µ > 1.75 B2(DN ) is lower than
B1(DN ). This agrees with Remark 6: when µ is low the local
classifiers are inaccurate (see ALONE), but their ensemble
can be very accurate (see AM), and B1(DN ) is stricter than
B2(DN ); whereas, when µ is high the local classifiers are
very accurate and B2(DN ) becomes stricter than B1(DN ).

VII. CONCLUSION

We proposed a distributed online ensemble learning algo-
rithm to classify data captured from distributed and dynamic
data sources. Our approach requires limited communication,
computational, energy, and memory requirements. We rigor-
ously determined a bound for the worst-case mis-classification
probability of our algorithm, which depends on the mis-
classification probabilities of the best static aggregation rule
and of the best local classifier. Importantly, this bound tends
asymptotically to 0 if the mis-classification probability of
the best static aggregation rule tends to 0. We extended our
algorithm and the corresponding bounds such that they can
address challenges specific to the distributed implementation,
e.g., learners can be asynchronous, receive the label with delay,
or not receive it at all. Simulation results show the efficacy of
the proposed approach. When applied to real data sets widely
used by the literature dealing with dynamic data streams and
concept drift, our scheme exhibits performance gains ranging
from 34% to 71% with respect to state-of-the-art solutions.

APPENDIX A
PROOF OF LEMMA 1

Proof: Since PPWM (DN ) = PPWM
i (DN ), ∀ i, we

can derive the bound with respect to the mis-classification
probability PPWM

i (DN ) of a generic learner i.
The proof departs from [46, Theorem 2], which states that,

for a general Perceptron algorithm (i.e., s(n)i can belong to
whatever subset of <), if ‖s(n)‖ ≤ R, ∀n, then for every γ > 0
and vector u ∈ <K+1, ‖u‖ = 1, the number of prediction
errors NPWM

e (DN ) of the online Perceptron algorithm on
the sequence DN is bounded by

NPWM
e (DN ) ≤

(
R+
√
γD

γ

)2

(11)
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where D =
∑m
n=1 dn, dn = max

(
0, γ − yn(u · s(n))

)
.

Starting from this bound, we exploit the structure of our
problem (i.e., s(n)i ∈ {−1, 1}) to derive the bound B1(DN ).

Since in our case ‖s(n)‖ =
√
K + 1, we can consider

R =
√
K + 1. Notice that the last K elements of s(n),

i.e., the local predictions, represent a particular vertex of an
hypercube in <K , and the optimal a posteriori weight vector
wO represents an hyperplane in <K which separates the
2K vertexes of the hypercube in two subsets V−1 and V1,
representing the vertexes resulting in a negative and positive
prediction respectively. Now we consider two scenarios: (1)
either V−1 or V1 are empty; (2) both V−1 and V1 are not
empty.

We consider the first scenario. In this situation the optimal
policy wO predicts always −1 or 1, independently of the local
predictions (this case is not very interesting in practice, but we
analyze it for completeness). The geometric interpretation is
that the separating hyperplane does not intersect the hyper-
cube. Let γ be the distance between the separating hyperplane
and the closest vertex of the hypercube, and u = wO

‖wO‖ . If
wO predicts correctly the n-th instance, then yn(u ·s(n)) ≥ γ,
hence dn = 0. If wO makes a mistakes in the n-th instance,
then yn(u · s(n)) ≤ −γ and yn(u · s(n)) ≥ −γ − 2

√
K

(because the closest vertex is 2
√
K distant from the far-

thest one), therefore dn ≤ 2γ + 2
√
K. Hence, we obtain

D ≤ 2NO(DN )
(
γ +
√
K
)

, where NO
e (DN ) is the number

of mistakes made adopting wO, and

(
R+
√
γD

γ

)2

≤


√
K + 1 +

√
2NO

e (DN )γ
(
γ +
√
K
)

γ


2

(12)
The right side of the above inequality is decreasing in γ. Since
we can consider other optimal a posteriori weight vectors wO

and since there is no constraint on how far the separating
hyperplane could be with respect to the hypercube, taking the
limit for γ → +∞ and dividing everything by N we finally
obtain

PPWM
i (DN ) ≤ 1

N
lim

γ→+∞

(
R+
√
γD

γ

)2

≤ 2PO(DN ) ,

(13)
which is compatible with PPWM (DN ) ≤ B1(DN ).

Now we consider the second scenario. In this case the
separating hyperplane intersects the hypercube. Among all the
optimal a posteriori weight vectors wO, we want to consider
the one which separates the vertexes in V−1 from the vertexes
in V1 with the largest margin possible in order to find the
strictest bound defined by (11). However, since the bound must
be valid for every linearly separable sets of vertexes V−1 and
V1, we have to consider the worst case possible (in term of
separating margin) with respect to the sets V−1 and V1. It is
easy to see that the worst case corresponds to the situation in
which one vertex must be separated by all the vertexes it is
connected with through an edge, and the best separating hy-
perplane must be equidistant from all these vertexes. Since the
distances between the vertexes and the separating hyperplane

are invariant with respect to translation and rotation of both
the hypercube and the hyperplane, we consider the hypercube
with vertexes v = (v1, . . . , vK), vi ∈ 0, 2, and we want to find
the hyperplane defined by the parameters (a0, . . . , aK) which
separates with the largest margin the vertex v(0) = (0, . . . , 0)
from the vertexes v(i) = (0, . . . , 0, 2, 0, . . . , 0) having 2 in
position i, i = 1, . . . ,K. Imposing that the signed distance
between v(0) and the separating hyperplane is the opposite
of the signed distance between v(i) and the separating hyper-
plane, we obtain

a0 + v
(0)
1 a1 + . . .+ v

(0)
K aK√∑K

i+1 a
2
i

= −
a0 + v

(i)
1 a1 + . . .+ v

(i)
K aK√∑K

i+1 a
2
i

→ a0 = −ai (14)

Repeating the same procedure for every vertex v(i), i =
1, . . . ,K, we obtain that the best separating hyperplane must
satisfy a0 = −ai, ∀ i, hence the distance between it and v(0)

is |a0|√
Ka20

= 1√
K

. This means that we are always able to find

an optimal a posterior weight vector wO which separates the
local prediction vectors which a margin of at least γ = 1√

K
.

Notice also that the maximum distance between the hyperplane
defined by wO and a vertex in the hypercube is 2

√
K − 1√

K
.

Define γ = 1√
K

and u = wO

‖wO‖ . If wO predicts correctly the
n-th instance, then yn(u · s(n)) ≥ γ, hence dn = 0. If wO

makes a mistakes in the n-th instance, then yn(u ·s(n)) ≤ −γ
and yn(u · s(n)) ≥ −2

√
K + 1√

K
, therefore dn ≤ 2

√
K.

Finally, we obtain D ≤ 2
√
KNO

e (DN ) and

PPWM
i (DN )≤ 1

N

(
R+
√
γD

γ

)2

≤2KPO(DN )+
K(K + 1)

N

APPENDIX B
PROOF OF LEMMA 2

Proof: Since PPWM (DN ) = PPWM
i (DN ), ∀ i, we

can derive the bound with respect to the mis-classification
probability PPWM

i (DN ) of a generic learner i.
PWM updates its weight vector only on those instances in

which it makes a mistake. We denote with the superscript n
the parameters of the system during the n-th mistake. We have

‖wn+1
i ‖2 = ‖wn

i + ynsn‖2 = ‖wn
i ‖2 + ‖sn‖2 + 2ynwn

i · sn

≤ ‖wn
i ‖2 + ‖sn‖2 = ‖wn

i ‖2 +K + 1 (15)

where the first inequality is valid because the system makes
an error, hence ynwn

i · sn ≤ 0. By applying a straightforward
inductive argument we obtain ‖wn+1

i ‖2 ≤ n(K + 1).

To simplify the notations, we denote by z the number of
errors made by the most accurate classifier and by v∗ the
number of most accurate classifiers, i.e., z = NP ∗(DN ) and
v∗ = v∗(DN ) After the system makes n errors, the weight
associated to the most accurate classifiers is at least n−2z (it
increases by one unit at least n − z times, and decreases by
one unit at most z times). Hence, ‖wn+1

i ‖2 ≥ v∗ (n− 2z)2.
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Combining the two above inequalities we obtain v∗n2 −
(4v∗z +K + 1)n+ 4v∗z2 ≤ 0, which implies

n ≤ 2z +
K + 1

2v∗
+

√(
K + 1

2v∗

)2

+
2(K + 1)x

v∗
(16)

Dividing by N we obtain PPWM (DN ) ≤ B2(DN ).

APPENDIX C
PROOF OF THEOREM 3

Proof: We denote by w0
i,c the weight vector of learner

i at the beginning of a generic concept S
(n)
c , and use the

superscript n to denote the parameters of the system during
the n-th mistake inside the concept S(n)

c . We have

‖wn+1
i,c ‖

2 = ‖wn
i,c + ynmn‖2 = ‖wn

i,c‖2 + ‖mn‖2+

2ynwn
i,c ·mn ≤ ‖wn

i,c‖2 + ‖mn‖2 = ‖wn
i,c‖2 +K + 1

where the first inequality is valid because the system makes an
error, hence ynwn

i,c ·mn ≤ 0. By applying a straightforward
inductive argument we obtain ‖wn+1

i,c ‖2 ≤ ‖w0
i,c‖2+n(K+1).

Since the concept S(n)
c is learnable, there exists a unit vector

u ∈ <K+1, ‖u‖ = 1, and γ > 0 such that ynu ·mn ≥ γ,
for every labeled instances of the current concept. Hence, we
have wn+1

i,c · u = wn
i,c · u + ynmn · u ≥ wn

i,c · u + γ, from
which we obtain wn+1

i,c · u ≥ w0
i,c · u + nγ.

Combining the two inequalities we have derived we get√
‖w0

i,c‖2 + n(K + 1) ≥ ‖wn+1
i,c ‖ ≥ wn+1

i,c · u ≥

≥ w0
i,c · u + nγ ≥ −‖w0

i,c‖+ nγ (17)

For n ≥ ‖w0
i,c‖
γ (if this is not valid then n is bounded by

‖w0
i,c‖
γ which stricter than the following bound) we obtain

‖w0
i,c‖2 + n(K + 1) ≥ ‖w0

i,c‖2 − 2‖w0
i,c‖nγ + γ2n2

→ n ≤
2‖w0

i,c‖γ +K + 1

γ2
(18)

As shown in the proof of Lemma 1, we can take γ = 1√
K

.
Hence, we obtain

n ≤ 2
√
K‖w0

i,c‖+K(K + 1) (19)

In the first concept w0
i,1 is initialized to 0, thus the number

of errors at the end of the first concept is upper-bounded by
a bounded function of K, and in turns also the norm of the
weight vector wi,2 at the beginning of the second concept is
bounded by a function of K. Exploiting (19) and using an
inductive argument we can conclude that the number of errors
at the end of each concept is upper bounded by a bounded
function K. Since there are a finite number of concepts, the
total number of errors is upper-bounded by a bounded function
of K. Finally, dividing it by N , we obtain PPWM

i (DN )→ 0,
that implies PPWM (DN )→ 0.

APPENDIX D
PROOF OF THEOREM 4

Proof: Denote by y(n) the n-th label observed by learner
i, and by x(n) the corresponding instance. Let DM =(

(x(1), y(1)), . . . , (x(1)
` , y(1)), . . . , (x(M)

` , y(M))
)

the sequence
of the M labeled instances observed by learner i until time
instant N . Notice that N − di ≤ M ≤ N . We can applied
Theorem 1 to DM (the bound of Theorem 1 is valid also
for the mis-classification probability of a generic learner i),
obtaining PPWM

i (DM ) ≤ B(DM ). The sequence DM is
a permutation of a subset of DN , hence the number of
errors made by the optimal aggregation rule and by the best
classifier in DM cannot by higher than those made in DN , i.e.,
PO(DM )M ≤ PO(DN )N and P ∗(DM )M ≤ P ∗(DN )N .
The number of errors learner i makes over DN adopting the
PWM scheme are equal to the number of errors learner i makes
over DM plus the number of errors it makes over the label
instances whose labels are not observed. Since the last term
is bounded by di, we obtain

PPWM
i (DN ) ≤ 1

N
PPWM
i (DM )M +

di
N
≤ B(DN ) +

di
K

By applying (6) we we conclude the proof.

APPENDIX E
PROOF OF THEOREM 6

Proof: Inside this proof, to simplify the notations, we
denote by n = PPWM (DN )N the number of errors made by
PWM and by t = NPWM

e the number of observed errors. The
number of observed errors t is a binomial with parameters n
and µ. Exploiting a Chernoff-Hoeffding inequality [32] we can
write P [t ≤ n(µ− γ)] ≤ e−2γ

2n ≤ e−2γ
2t, which implies

P

[
n ≥ t

µ− γ

]
≤ e−2γ2t

Since PWM updates its weight vector only on those in-
stances on which an error is observed, the bound B(DN ) for
non perfectly observable labels must be interpreted as bounds

for the number of observed errors, i.e.,
t

N
≤ B(DN ). The two

inequalities above, with the change of variable e−2γ
2t = ε,

imply PPWM (DN ) ≤ B(DN )

µ− λ (ε,NPWM
e )

with probability at

least 1− ε.

APPENDIX F
PROOF OF THEOREM 8

Proof: Denote by DM the subset of labeled instances of
DN in which all the learners are synchronized. The number of
errors learner i makes over DN adopting the PWM scheme
is equal to the number of errors learner i makes over DM ,
plus the number of errors it makes over the N − M label
instances in which some learners do not observe the instances.
The weight vector w

(n)
i,s is used only to predict the instances

in DM , and is updated only in these instances. Therefore, we
can applied Theorem 1 to DM (the bound of Theorem 1 is
valid also for the mis-classification probability of a generic
learner i), obtaining PPWM

i (DM ) ≤ B(DM ). The sequence
DM is a subset of DN , hence the number of errors made by
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the optimal aggregation rule and by the best classifier in DM

cannot by higher than those made in DN , i.e., PO(DM )M ≤
PO(DN )N and P ∗(DM )M ≤ P ∗(DN )N . Therefore the
number of errors made by i in DM is PPWM

i (DM )M ≤
B(DM )M ≤ B(DN )N , which implies that the contribution
of i to PPWM (DN ) is at most B(DN ) + α. The proof is
concluded by summing the contributions of all learners and
dividing the result by K.
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