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ABSTRACT 

In this paper, we propose a systematic solution to the problem of scheduling delay-sensitive media data 

for transmission over time-varying wireless channels. We first formulate the dynamic scheduling 

problem as a Markov decision process (MDP) that explicitly considers the users’ heterogeneous 

multimedia data characteristics (e.g. delay deadlines, distortion impacts and dependencies etc.) and time-

varying channel conditions, which are not simultaneously considered in state-of-the-art packet scheduling 

algorithms. This formulation allows us to perform foresighted decisions to schedule multiple data units 

for transmission at each time in order to optimize the long-term utilities of the multimedia applications. 

The heterogeneity of the media data enables us to express the transmission priorities between the 

different data units as a priority graph, which is a directed acyclic graph (DAG). This priority graph 

provides us with an elegant structure to decompose the multi-data unit foresighted decision at each time 

into multiple single-data unit foresighted decisions which can be performed sequentially, from the high 

priority data units to the low priority data units, thereby significantly reducing the computation 

complexity. When the statistical knowledge of the multimedia data characteristics and channel conditions 

is unknown a priori, we develop a low-complexity online learning algorithm to update the value 

functions which capture the impact of the current decision on the future utility. The simulation results 

show that the proposed solution significantly outperforms existing state-of-the-art scheduling solutions. 

Keywords: Multimedia Streaming, Delay Sensitive Communications, Markov Decision Process, Directed 

Acyclic Graph, Scheduling. 

 

I. INTRODUCTION 

Existing wireless networks provide dynamically varying resources with only limited support for the 

Quality of Service (QoS) required by delay-sensitive, bandwidth-intense and loss-tolerant multimedia 

applications. One of the key challenges for delivering the multimedia data over wireless networks is the 

dynamic characteristics of both the wireless channels and the multimedia source data [1]. To overcome 
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this challenge, packet scheduling optimization has been extensively investigated in recent years in order 

to maximize the quality of the multimedia application given the underlying resource constraints. A brief 

summary of the existing research on packet scheduling is provided in Table 1. 

Table 1. Summary of various existing packet scheduling methods  

Methods 
Performance 

metric  
Heterogeneous traffic characteristics 

Time-varying 

channel conditions 

Transmission 

acknowledgement1 

[2][5] Average delay No Yes Immediate 

[3][4] 
Consumed 

energy 
Hard delay deadlines No Immediate 

[8][9][25] 
Application 

distortion 
Packet distortion impacts No Immediate 

[6][11] 
Application 

distortion 

Packet distortion impacts, hard delay 

deadlines, packet dependencies 
Yes Immediate 

[7][10][12] 
Application 

distortion 

Packet distortion impacts, hard delay 

deadlines, packet dependencies 
No Delayed 

[13] [26] 
Application 

distortion 

Packet distortion impacts, hard delay 

deadlines 
Yes Immediate 

Proposed 
Application 

distortion 

Packet distortion impacts, hard delay 

deadlines, packet dependencies 
Yes Immediate 

 

The multimedia data is often encoded and encapsulated into multiple data units (DUs), which can be 

video frames, packets etc. Different DUs often have different distortion impacts, delay deadlines and 

dependencies. Existing packet scheduling solutions often ignore these heterogeneous characteristics of 

multimedia applications. For example, in [2][5], a packet scheduling method is proposed for minimizing 

the incurred average delay under energy (or average power) constraints for homogeneous applications in 

which the packets are not differentiated. In [4], the optimal packet scheduling algorithm is developed for 

the transmission of a group of equally important packets, which minimizes the consumed energy while 

satisfying their common delay deadline. The packet scheduling algorithm in [4] is extended in [3] to the 

case in which each packet has its own individual delay constraint. However, the above papers disregard 

key properties of multimedia applications: the interdependencies among packets and their different 

distortion impacts.  

In [8][9][25], the packets are scheduled for transmission over a constant channel (with constant packet 

error rate) in order to minimize the application distortion while satisfying the imposed delay constraints. 

However, these solutions do not take into account the complicated dependencies between media packets. 

                                                      

1
 Immediate acknowledge means that the acknowledgement of one packet transmission is received before next packet starts to transmit.   
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In [26], a channel, deadline, and distortion-aware packet scheduling algorithm is developed, where only 

one frame is considered for transmission at each time and an i.i.d. channel is assumed. In this paper, the 

dependencies between video frames are not considered. In [13], the packet scheduling is optimized based 

on packets’ hard delay deadlines, distortion impacts and the underlying time-varying wireless channel. 

However, [13] did not explicitly take into account the dependencies between packets. To take into 

account the dependencies between packets, in [7][10][12], the packet scheduling is optimized using a 

rate-distortion framework (named RaDiO), which expresses the dependencies between packets as a 

DAG. However, RaDiO disregards the time-varying characteristics of the considered transmission 

network, thereby leading to a suboptimal performance over wireless networks.  In [6][11], the scheduling 

of video packets over a time-varying wireless channel is formulated as a cross-layer optimization 

problem. However, these cross-layer optimization solutions only maximize the quality of the currently 

transmitted video packets based on the observed channel conditions, without considering future 

transmission opportunities and the impact of current decisions on the long-term video quality. This type 

of optimization will be referred to in our paper as myopic optimization.  

In summary, a systematic packet scheduling optimization framework for media communication that 

explicitly considers both the heterogeneous characteristics of the multimedia traffic and the time-varying 

wireless conditions is still missing. To overcome this challenge, in this paper we develop a systematic 

energy-aware packet scheduling framework for single-user multimedia transmission over a time-varying 

wireless channel.  

To capture the heterogeneous characteristics of DUs, we first introduce the concept of a “context” at 

each time slot to represent the heterogeneity of the DUs available for transmission at each time slot. 

Through the context concept, we are able to capture the dynamic features of the multimedia packets 

across time. We then formulate the dynamic packet scheduling optimization as a Markov decision 

process (MDP) problem [14] by further considering the underlying channel dynamics. Within the MDP 

formulation, the packet scheduling is performed in a foresighted fashion in order to maximize the long-

term reconstructed multimedia quality.  

In the conventional MDP formulation, the foresighted decision for the packet scheduling is often 

coupled with the expectation over the experienced dynamics, which makes the packet scheduling 
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problem hard to solve in unknown environments (i.e. where the statistical knowledge of the multimedia 

data arrivals and channel state transitions is unknown). To resolve this obstacle, we introduce a post-

decision state (which is a “middle” state, in which the transmitter finds itself after packet transmission 

but before the new packet arrivals and new channel realization) and a corresponding post-decision state-

value function which represents the optimal long-term utility starting from the post-decision state. 

Through the post-decision state value function, we can separate the foresighted decision on the packet 

scheduling from the expectation over the underlying dynamics. In other words, the foresighted decision 

can be computed without knowing the experienced dynamics, given the post-decision state value 

function. The post-decision state value functions can then be updated online accordingly. Hence, the 

post-decision state concept allows us to separate the packet scheduling at each time slot into two phases 

(i.e. two-phase packet scheduling): one is the foresighted decision on the optimal scheduling given the 

post-decision state value function, and the other one is the online update on the post-decision state value 

function. 

In order to reduce the complexity involved in computing the packet scheduling policy, we define the 

transmission priorities of the DUs in each context based on the distortion impacts, delay deadlines and 

dependencies, and express them as a DAG, which we refer to simply as the priority graph. Different from 

the DAG expression on the source coding dependencies in [7], the proposed DAG construction 

represents the transmission priorities which include the packet dependencies. Through the priority graph, 

we are able to separate the multi-DU foresighted decision at each time slot into multiple single-DU 

foresighted decisions and the two-phase packet scheduling is applied to each individual DU, which 

significantly reduce the complexity in computing the optimal foresighted decisions.  

In the unknown environment, we further develop an online learning algorithm to estimate the post-

decision state value functions. Based on the separation developed for multi-DU foresighted optimization, 

we are able to estimate the post-decision state value functions for each DU using a low-complexity online 

learning method.  

The paper is organized as follows. Section II characterizes the attributes of the multimedia traffic. 

Section III formulates the packet scheduling problem for multiple independently decodable DUs as an 

MDP and develops structural solutions to determine the optimal packet scheduling policies. Section IV 
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further extends the structural results to the packet scheduling for interdependent DUs. Section V presents 

the simulation results, followed by the conclusions in Section VI.  

II. MULTIMEDIA TRAFFIC CHARACTERISTICS 

In this section, we discuss how the heterogeneous attributes of multimedia traffic2 can be represented. In 

past work, multimedia traffic (e.g. video traffic) is often modelled as a leaky bucket with constraints (e.g. 

peak rate constraint, average delay constraint etc.) [19]. However, this model only characterizes the rate 

change in multimedia traffic and does not explicitly consider the heterogeneous characteristics of 

multimedia data.  In this section, we aim to develop a general model to represent the encoded multimedia 

data with heterogeneous characteristics (e.g. various delay deadlines, distortion impacts, dependencies, 

etc.). Using this multimedia traffic model, we will be able to dynamically optimize packet scheduling for 

multimedia transmission over time-varying wireless networks, which is presented in Sections III and IV.   

A. Attributes of data units 

In this section, we discuss how the heterogeneous attributes of the multimedia data can be modelled. 

The multimedia data is often encoded periodically using a Group of Pictures (GOP) structure, which lasts 

a period of T  time slots. The multimedia data within one GOP are encoded interdependently using, e.g. 

motion estimation, while the data belonging to different GOPs are encoded independently. Note that the 

prediction-based coding schemes often lead to sophisticated dependencies. After being encoded, each 

GOP contains N  data units (DUs), each representing one type of DU (e.g. I, P, B frames in encoded 

video bitstream) and being indexed by { }1, ,j N∈ ⋯ . The set of DUs within GOP g ∈ ℕ  is denoted by 

{ }1 , ,
g g

Nf f⋯ . The attributes of DU g
jf  are listed below. 

Size: The size of DU g
jf  is denoted by g

jf
l  (measured in packets3), where [ ]max1,g

j jfl l∈ , and maxjl  is the 

maximum allowable size for the j -th DU at each GOP. The size of DU g
jf  is determined when DU g

jf  is 

encoded. To simplify the exposition, g
jl  is generated from an i.i.d. random variable4 with the probability 

                                                      

2 Multimedia traffic can be generated in real time or be pre-encoded. 
3
 For simplicity, we assume in this paper that each packet has the same length, but this does not affect our proposed solution. It just simplifies 

our exposition given the space limitations. 
4
 The DU size can also be modeled as a random variable depending on the previous DUs . 
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mass function ( )g
jf

PMF l . Note that ( )g
jf

PMF l  is the same for the j -th DU across different GOPs, but it 

differs for different types of DUs. 

Distortion impact: Each DU g
jf  has a distortion impact g

jf
q  per packet, which is assumed to be the 

same for all the GOPs, i.e. , ,g g
j j
f f

q q g g′ ′= ∀ . The distortion impact g
jf

q  represents the amount by which 

the multimedia distortion is reduced if one packet from DU g
jf  is received at the decoder side.  

Delay deadline: The delay deadline of DU g
jf  represents the time by which the DU should be decoded 

in order to be displayed. We denote by g
jf

d  the delay deadline of DU g
jf . Since the GOP structure is 

fixed, the difference between the delay deadlines of the two DUs within one GOP is constant, i.e. 

0g g
j j
f f jjd d d

′
′− = >△  where j j ′> , and the delay deadlines of the same types of DUs from different 

GOPs satisfy  1g g
j j
f f

d d T−− = . In other words, the j -th DU periodically appears at each GOP with the 

period of T  time slots, which is the length of one GOP.  

Dependency: When one DU g
jf  is encoded based on the prediction from the other DU g

j
f ′ , we say that 

DU g
jf  depends on DU g

j
f ′ . Note that the dependencies between DUs only occur within one GOP and 

DUs from different GOPs can be decoded independently (i.e. no dependency between them.). The 

dependencies between the DUs within one GOP are expressed as a directed acyclic graph (DAG) [7]. 

The DAG remains the same for a fixed GOP structure. In this paper, we assume that, if DU g
jf  depends 

on DU g

j
f ′  (i.e. there exists a path directed from DU g

jf  to DU g

j
f ′  in the DAG and denoted by g g

jj
f f′ ≺ ), 

then g g
j j
f fd d

′
≥  and g g

j j
f fq q

′
≤ . In other words, DU g

j
f ′  should be decoded prior to DU g

jf  and DU g

j
f ′  has 

higher distortion impact.  

B. Traffic state representation in each time slot 

We consider a time-slotted system in which the n -th time slot is defined as the time interval 

( )[ ), 1n t n t+△ △ , where t△  is the length of one time slot. In this subsection, we discuss how to represent 

the multimedia traffic which is ready for transmission at each time slot. At time slot t , as in [7], we 

assume that the wireless user will only consider for transmission the DUs with delay deadlines in the 

range of [ ),t t W+ , where W is referred to as the scheduling time window (STW) and assumed to be 
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determined a priori5. In this paper, we further assume that the STW is chosen to satisfy the following 

condition: if DU g
jf  directly depends on DU g

j
f ′ (i.e. there is a direct arc from g

jf  to g

j
f ′  in the DAG), then 

g g
j j
f fd d W

′
− < . This assumption ensures that DU g

jf  and g

j
f ′  can be considered for transmission at the 

same time slot.  

At time slot t , we introduce a context to represent the set of DUs that are considered for transmission, 

i.e. whose delay deadlines are within the range of [ ),t t W+ 6 . We denote the context by 

[ ){ }| ,g
j

g
t fjC f d t t W= ∈ + . Since the GOP structure is fixed, it is easy to show that tC  is periodic with 

the period of T , which means that, for any g
tjf C∈ , there exists 1g

t Tjf C+
+∈  and vice versa. Hence, tC  

and t TC +  have the same types of DUs and the same DAG between these DUs. For example, as shown in 

Figure 1, { }1 2 3, ,g g g
tC f f f=  and { }1 1 1

3 1 2 3, ,g g g
tC f f f+ + +
+ = , where 3T = . Since the context represents 

the set of DUs to be transmitted, it implicitly represents the dependencies between the DUs. Due to the 

periodicity, there are only T different contexts. The transition from context tC  to 1tC +  is deterministic. It 

is worth to know that, the context indicates the distortion impacts of the DUs and the dependencies 

between DUs and the context transition indicates the delay deadlines of the DUs. 

Given the current context tC , we let  ,f tx  denote the number of packets in the buffer associated with 

DU tf C∈ . Note that ,f t fx l≤ , where fl  represents the amount of the originally available packets for 

DU f . We denote the buffer state of the DUs in tC  by { }, |t f t tx f C= ∈x . The traffic state tT  at time 

slot t  is then defined as ( ),t t tT C= x , where the context represents the types of DUs, the dependencies 

between them, and the buffer state tx  represents the amount of packets remaining for transmission. 

Hence, the traffic state tT  is able to capture heterogeneous multimedia traffic and is a super-set of 

existing well-known single-buffer models (i.e. which ignore packet dependencies and delay deadlines) or 

multi-buffer models (i.e. which ignore packet dependencies or delay deadlines).  

                                                      

5
 The STW can be determined based on the channel conditions experienced by the user in each time slot. For example, the STW can be set 

small when the channel conditions are poor (i.e. in the low SNR regime), and large whenever the channel condition are good (i.e. in the large 

SNR regime). 
6
 We assume that j jd t W− ≥  which means that the DUs that are considered for transmission at the time slot t  must arrive no later than 

time slot.  
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Figure 1. . DAG-based dependencies and traffic states at each time slot using IBPBP GOP structure 

III. PACKET SCHEDULING FOR INDEPENDENTLY DECODABLE DUS 

We first consider how the packet scheduling optimization should be performed for the DUs that can be 

independently decoded (e.g. motion JPEG), and consider the interdependent DUs in Section IV.   

At each time slot t , the wireless user experiences a channel condition th ∈ H , where H  is the set of 

finite possible channel conditions and th  is referred to as the channel state. In this paper, we assume that 

the channel condition th  can be modelled as a finite-state Markov chain (FSMC) [18] with transition 

probability ( ) [ ]| 0,1hp h h′ ∈ . We further define the state which the wireless user experiences at each 

time slot t  as ( ), ,t t t ts C h= x , which includes the current context, buffer state and channel state. At time 

slot t , the wireless user decides how many packets should be transmitted from each DU in the current 

context. The decision is represented by ( ) { },, , |t t t t f t tC h y f C= ∈y x , where ,f ty  represents the amount 

of packets transmitted from DU f  and , ,0 f t f ty x≤ ≤ . We know that the decision in time slot t  is a 

function of the current state ts . In this paper, we consider the following utility7 at each time slot t : 

 ( ) ( ), ,, ,
t t

t t f f t t f tf C f C
u s q y h yλρ

∈ ∈
= −∑ ∑y  (1) 

In this utility function, the first term represents the distortion reduction obtained by transmitting the 

amount of data [ ],
t

t f t f C
y

∈
=y  from the DUs in the current context. The second term represents the 

negative value of the consumed energy by transmitting the amount ,
t

f tf C
y

∈∑  of packets, where 0λ >  

is the parameter trading-off the distortion reduction and the consumed energy. The energy consumption 

                                                      

7
 In this paper, we consider that the multimedia quality is defined as the total distortion reduction of the received media packets.  
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function ( ),h yρ  is assumed to be a convex function of y  given the channel condition h . One example is 

( ) ( )2 2, 1 /yh y e hρ σ= − , which is derived from the information-theoretic rate-power function [20].  

Then, the wireless user aims to maximize the following long-term expected discounted utility:  

 
( )

( )
,

0

max ,
t t

t
t t

s t
t

u sα

∞

∀
=

    
   
∑E

y
y  (2) 

where [ )0,1α ∈  is the discount factor. Note that when 1α → , the optimal solution to the optimization in 

(2) is equivalent to the optimal solution to the problem maximizing the average utility. For independently 

decodable DUs, given the decision ( )t tsy  in time slot t , the buffer state transition is  

 
, , 1

, 1
1 \

f t f t t t

f t
f t t

x y if f C C
x

l if f C C

+

+
+

 − ∈= 
 ∈

∩
, (3) 

where the notation “ 1t tC C +∩  ” represents the set of DUs persist from time slot t  to time slot 1t +  (i.e. 

do not expired at the end of time slots t ) and 1 \t tC C+  represents the set of DUs that arrive in time slot 

1t + .  

From the above discussion, we know that the channel state transition and buffer state transition are 

Markovian. We further notice that the buffer state transition also depends on  ty , which is the decision 

made by the wireless user. Hence, the transition of the state ( ), ,t t t ts C h= x  is Markovian and the 

problem in Eq. (2) can be formulated as an MDP [14].  In the subsequent sections, we will discuss how 

the packet scheduling problem can be solved using an MDP formulation.   

A. MDP formulation and post-decision state-based dynamic programming  

In the problem in Eq. (2), the decision in each time slot t  is to determine the amount of data, ,f ty  to be 

transmitted for each DU tf C∈ . From [14], we know that the optimal decision can be found by solving 

the following Bellman’s equations: 

 ( ) ( )( )
1 1, , | , 1 1 1

0
, , max , , ,

t t t
t t

t t

t t t f f t t f t h h t t t t t

f C f C

V C h q y h y V C hλρ α
+ + + + +

≤ ≤
∈ ∈

     = − + − ⊕      
∑ ∑ E l

y x
x x y l , (4) 

where ( ), ,t t tV C hx  is the state-value function representing the optimal long-term utility starting from the 

state ( ), ,t t tC hx  and { }
1

1 \t t
t f f C C

l
+

′+ ′∈
=l . The operator 1t t+⊕z l  represents 

{ } { }
1 1

, \t t t t
f t ff C C f C C

z l
+ +

′ ′∈ ∈∩
∪  where { }

1
,

t t
f t f C C

z
+∈ ∩

 represents the remaining data (i.e. data which was 

not transmitted at time slot t ) in DU 1t tf C C +∈ ∩  after the data transmission at time slot t  and 
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{ }
1\t t

f f C C
l

+
′ ′∈

 represents the newly arriving data in DU 1 \t tf C C+′ ∈  at time slot 1t + . It is easy to see 

that the buffer state fulfils the following condition: ( )1 1t t t t+ += − ⊕x x y l . The expectation in Eq. (4) is 

taken over all the possible new channel states 1th +  with the probability of ( )1 |t tp h h+  and over the 

possible data arrival for the DUs in the set 1 \t tC C+  with the probability of ( )
1\t t

f ff C C
PMF l

+
′ ′′∈∏ . Note 

that the context transition in Eq. (4)  is deterministic.  

From Eq. (4),  it is worth to note that the expectation (over the data arrival and channel state 

transition) is embedded into the term to be maximized. However, in a real system, the distribution of the 

data arrival for each DU and channel state transition is often unavailable a priori, which makes it 

computationally impossible to directly optimize the long-term utility shown in Eq. (2). Similar to [21], 

we introduce an intermediate state which represents the state after transmitting the data (making the 

decision), but before the new data arrives and new channel state is realized. This intermediate state is 

referred to as the post-decision state tsɶ . In order to differentiate the “post-decision” state tsɶ  from the 

state ts , we refer to the state ts  as the “normal” state.  The post-decision state at time slot t  is also 

illustrated in Figure 2. From this figure, we know that the post-decision state is a deterministic function 

of the normal state ts  and the decision ty ,  which is given by ( ), ,t t t ts C h=ɶ z , where t t t−z = x y .  

 
Figure 2. Post-decision state illustration 

Similarly, we introduce the post-decision state-value function ( ), ,t t tU C hz  to represent the optimal 

long-term utility starting from the post-decision state ( ), ,t t t ts C h=ɶ z . Then, we can rewrite the 

Bellman’s equations in Eq. (4) as:  

 ( ) ( )
1 1| , 1 1 1, , , ,

t t tt t t h h t t t tU C h V C h
+ + + + += ⊕E lz z l  and (5) 
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 ( ) ( ), ,
0

, , max , , ,
t t

t t

t t t f f t t f t t t t t

f C f C

V C h q y h y U C hλρ α
≤ ≤

∈ ∈

     = − + −      
∑ ∑

y x
x x y  (6) 

The first equation shows that the post-decision state-value function U  is obtained from the normal 

state-value function V  by taking the expectation over the possible data arrivals and possible channel 

transitions. The second equation shows that the normal state-value function is then obtained from the 

post-decision state-value function U  by performing the maximization over the possible decision, which 

is referred to as the foresighted decision since the optimal decision is found by maximizing the long-term 

utility. However, when performing the foresighted decision illustrated in Eq. (6), we face the following 

challenges:  

• At each time slot, there are multiple DUs that are available for transmission. Determining the amount 

of data to transmit for each DU is a multivariable optimization which is often too complicated to 

solve at each time slot. However, it is fortunate that the DUs can be prioritized based on their 

heterogeneous data features. This prioritization will allow us to separate the multi-DU foresighted 

decision in Eq. (6) into multiple single-DU foresighted decisions (which is single-variable 

optimization). The separation will be presented in Sections III.C.  

• In video transmission systems, we do not know the statistical knowledge of the underlying dynamics 

(e.g. channel state transition, the amount of packets for newly arriving DUs). However, after 

introducing the post-decision state ( ), ,t t t ts C h=ɶ z , we can separate the media transmission system 

into two phases: the foresighted decision phase, which is governed by Eq. (6) and the dynamic 

realization phase, which is governed by Eq. (5). We further notice that, given the post-decision state-

value function U , the foresighted decision phase is independent of the dynamic realization phase. 

This motivates us to directly learn the post-decision state-value function when the underlying 

dynamics are unknown. In Section III.D, we will present how the post-decision state-value functions 

can be learned over time for the separated foresighted decisions.  

B. Transmission priority of DUs 

In this section, we aim to define the transmission priorities between DUs. At each time slot t , the optimal 

amount of data to be transmitted from DU tf C∈  is denoted by  *
,f ty .  
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Definition (Transmission priority): At any time slot t , if , tf f C′ ∈   and ( )* *
, , , 0f t f t f tx y y ′− =  for any 

0t ≥x  and any channel state th , then DU f  has a higher transmission priority than DU  f ′ , which is 

denoted by f f ′⊲ .  

The above definition on the priority indicates that, when DU f  has a higher transmission priority than 

DU f ′ , then the data from DU f  will be transmitted before the data from DU f ′  is transmitted. Given 

the optimal post-decision state value function ( ), ,t t tU C hx , we can prioritize the DUs as follows. 

Lemma 1 (Prioritization using optimal post-decision state value functions): For any two DUs 

, tf f C′ ∈ , if  

 ( ) ( ) ( ), , , , / ,t f t t t ff fU C e h U C e h q q α′ ′+ − + < − ∀x x x , (7) 

where fe  is a vector which has the same dimension as x  and the element corresponding to DU tf C∈  is 

1 and the elements corresponding to all other DUs are 0, then  f f ′⊲ .  

Proof: see Appendix A. 

This lemma shows that, if the optimal post-decision state value function ( ), ,t t tU C hx  satisfies the 

inequality in Eq. (7) at the current context tC  and channel state th , then the optimal decision is to 

transmit the data from DU f  before the data from DU f ′ , which means that DU f  has a higher 

transmission priority than DU  f ′ .  

However, as shown in Lemma 1, in order to determine the priorities of the DUs, we have to compute 

the optimal post-decision state value function first, which may not be possible in practical video 

transmission systems since we cannot obtain the post-decision state value function without first solving 

the Bellman’s equations in Eqs. (5) and (6). However, we are able to derive the priorities between the 

DUs based on the heterogeneous attributes of DUs without computing the optimal post-decision state 

value functions.  

Lemma 2 (Prioritization using the heterogeneous attributes of independent DUs): For DUs 

, tf f C′ ∈ , if f fq q ′≥  and f fd d ′≥  (equalities do not hold at the same time), then f f ′⊲ .  

Proof: see Appendix B. 
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The priority f f ′⊲  indicates that ( )* *
, , , 0f t f t f tx y y ′− =  at any time slot t  when , tf f C′ ∈ . This 

further implies that: (i) The buffer state ,f tx ′  of DU f ′  does not affect the decision on the amount of data, 

*
,f ty , to be transmitted from DU  f  at any time slot t ; (ii) When starting to transmit the data from DU f ′ , 

all the data from DU f  must be transmitted, i.e. the post-decision traffic state for DU f  is zero. In the 

next section, we will utilize the priorities between DUs and present the separation in the multi-DU 

foresighted decision given in Eq. (6) and develop a low-complexity scheduling algorithm. 

C. Priority graph-assisted scheduling 

Given the transmission priority between DUs derived based on the DUs’ attributes as shown in Lemma 2, 

we are able to construct a DAG to represent the priorities of the DUs at each time slot, which is referred 

to as the priority graph and denoted by ,t t tPG C E= , where tC  is the set of DUs available for 

transmission and tE  is the set of edges representing the priorities between two DUs. In this priority 

graph, if f f ′⊲ , then there is an edge in tE  pointed from DU f ′  to DU f . Two examples of priority 

graphs are shown in Figure 3. Note that the priority graph is different from the dependency graph [7], 

which is built only based on the source coding dependencies between DUs.  

 
Figure 3. Examples of priority graphs with five DUs: (a) all DUs are prioritized (chain); (b) only part of the DUs are 

prioritized (e.g. the priorities of DUs 2 and 3 are unknown). 

In the following, we will try to separate the multi-DU foresighted decision in Eq. (6) into multiple 

one-DU foresighted decisions.  We first consider that the DUs available for transmission at each time slot 

can be fully prioritized (i.e. the corresponding priority graph is a chain as shown in Figure 3 (a)).  The 

following theorem shows that we can decompose the multi-DU foresighted decision into multiple single-

DU foresighted decisions at each time slot.  

Theorem 1 (Separation principle for multi-DU foresighted decision with priority graph of chain): 

When the DUs in each context are prioritized as a chain, then the optimal decision for each DU at each 

time slot can be computed as  
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 ( )
, ,

*
, , , , ,,

0
arg max , , ,

f t f t
f t f f t t f t f t f t f t tf t

y x
f f

y q y h x y U C x y hλρ α′
≤ ≤ ′

     = − + + −      
∑
⊲

, (8) 

where the post-decision state value function ( ), ,f t tU C x h  satisfies the following Bellman’s equations:  

if 1t tf C C +∈ ∩ , then  

( )

( )
1 , 11

1

,

, 1 1 , 1 , , 1
| 0: , /

, /

, ,

max , , ,
t t f ttf

t t

f t f t t

f f t t f t f t f t f t tfh h y xl f f f C C
f f f C C

U C x h

q y h l y U C x y hλρ α
+ +′ +

+

+ + + +′′ ′ ≤ ≤∈ ′ ′∀ ∈

=

     − + + −      
∑E E

⊲
⊲

 (9) 

and if 1/t tf C C +∈ , then ( ), , 0f t tU C x h = . 

Proof: See Appendix C.  

Remark 1: Theorem 1 indicates that, we can find the optimal decision *
,f ty  for  each DU tf C∈  by 

solving the foresighted decision given in Eq. (8) from the highest priority DU to the lowest priority DU. 

In this foresighted decision, the post-decision state-value function ( ), ,, ,f t f t f t tU C x y h−  only depends on 

the buffer state , ,f t f tx y−  of DU f  and is independent of the buffer states of the other DUs in the current 

context tC . This is because when transmitting the data from DU f , the data from DU ( )f f f′ ′ ⊲  has 

been transmitted (i.e. the buffer state is zero), and the data from DU ( )f f f′ ′⊲  cannot be transmitted 

(i.e. the buffer state will not affect the foresighted decision in Eq. (8)). We note that, when making the 

foresighted decision for DU f , the transmission cost is  ( ) ( ),, ,, ,t f t tf t f tf f f f
h x y h xρ ρ′ ′′ ′

+ −∑ ∑⊲ ⊲
, 

which is the marginal transmission cost of transmitting the data from DU f . However, the term 

( ),,t f tf f
h xρ ′′∑ ⊲

 is independent of the decision variable ,f ty  and hence, it is not shown in the 

foresighted decision in Eq. (8).  

Remark 2: The post-decision state value function for DU f  is computed as in Eq. (9). If DU f  is expired 

at time slot 1t + , then  the post-decision state value function is zero, otherwise it is computed by solving 

the Bellman’s equations for DU f . In the Bellman’s equations, we note that the post-decision state-value 

function for DU f  is not affected by DUs ( )f f f′ ′⊲ . In fact, it only depends on the buffer states of the 

DUs that arrive at time slot 1t +  and have a higher priority than DU f . We can also note that the update 

of the post-decision state-value function for DU f ′  is not affected by DU f .  

We now consider a general scenario where the priorities of DUs at each time slot are represented by a 
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general priority graph instead of a chain. The priority graph for the DUs at time slot t  is given by 

,t t tPG C E= . Similar to Theorem 1, for any two DUs , tf f C′ ∈ , if f f ′⊲ , then we should transmit 

the data from DU f  first and the buffer state of DU f ′  does not affect the foresighted decision for DU 

f . However, the buffer state of DU f  will affect the transmission cost of DU f ′  in the foresighted 

decision, but will not affect the update of the post-decision state value function. If f  and f ′  are not 

prioritized, we have to decide which DU should be transmitted first and how much data should be 

transmitted from this selected DU. The following theorem answers this question. 

Theorem 2 (Separation principle for multi-DU foresighted decision with general priority graph): 

Given the priority graph ,t t tPG C E=  at time slot t , the optimal decisions for the DUs are performed 

as in Algorithm 1. After determining the optimal decisions, the post-decision state value function of DU 

f  is updated as follows. 

If 1t tf C C +∈ ∩ , then 

 

( )

( )

1 1

, 1 ,
1

,
| : , /

, 1 1 , 1 1 , , 1 1
0

, /

, ,

max , , ,

t t tf

f t f t
t t

f t f t t
h h l f f f C C

f f t t f t f t f t f t tfy x
f f f C C

U C x h

q y h l y U C x y hλρ α

+ ′ +

+
+

′ ′∈

+ + + + + +′≤ ≤ ′ ′∈

=

     − + + −      
∑

E E
ɶ⊲

ɶ⊲

 (10) 

else, ( ), , 0f t tU C x h = , where f f′ ɶ⊲ 8 means that the transmission order of DU f ′  is earlier than DU f , 

which is determined in Algorithm 1.  

Algorithm 1: Optimal packet scheduling induced by the priority graph for independent DUs 

Input: tPG , ( ), ,, ,f t f t f t tU C x y h−  

Initialize: 0
t tPG PG=  

For 1, , tk C= ⋯ : 

 
( )

( )
, ,

1
*

, , , ,,0
1

arg max max , , ,j
k

f t f tt

k
k

f f t t f t f t f t f t tf t
y xf root PG

j

f q y h y y U C x y hλρ α

−

≤ ≤∈ =

     = − + + −      
∑  (11) 

 ( )
, ,

1
* *

,, , , , ,0
1

arg max , , ,jk k k k k k k

k kf t f t

k

t t tf tf t f f t f t f f t f t
y x

j

y q y h y y U C x y hλρ α

−

≤ ≤
=

     = − + + −      
∑  (12) 

where  ( )k
troot PG  is the operator extracting the roots of the priority graph k

tPG  and 

{ }1 1/k k k
t tPG PG f− −= .  

Return ( )1, , tCf f⋯  and ( )1
* *
, ,, , Ctf t f ty y⋯ . 

Proof: The proof can be derived similarly to that of Theorem 1.   
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The optimal packet scheduling illustrated in Algorithm 1 can be easily explained as follows. Starting 

from the priority graph tPG , we compare the DUs that are the roots in the priority graph k
tPG  and select 

the DU with the highest long-term utility to transmit as shown in Eq. (11). The optimal scheduling for the 

selected DU is found by solving the corresponding foresighted decision as shown in Eq. (12). Finding the 

optimal packet scheduling in state ( ), ,t t t ts C h= x  as illustrated in Algorithm 1 can also be interpreted by 

using a priority tree, which is uniquely constructed from the priority graph tPG  corresponding to the 

context tC . Two examples of priority trees, which correspond to the priority graphs in Figure 3, are 

given in Figure 4. The root of the priority tree is the priority graph tPG  and each node is a priority graph. 

The child nodes of each node in the priority tree are obtained by removing one of the root packets in the 

priority graph at this node. Then, finding the optimal packet scheduling is equivalent to “travelling” the 

priority tree induced by the priority graph tPG .  

The update of the post-decision state-value function ( ), ,f t tU C x h  for DU f  is performed 

independently of the other DUs in the current context tC  as shown in Eq. (10), which is the same as the 

update of the post-decision state value function for the fully prioritized DUs presented in Theorem 1. 

However, unlike in Theorem 1, when updating the post-decision state-value function ( ), ,f t tU C x h , we 

cannot directly prioritize all the DUs arriving at time slot 1t + , i.e. the DUs in the set of 1 \t tC C+  

because we may not be able to compare the transmission priority between the arriving DUs with the DUs 

persisting from time slot t , i.e. in the set of 1t tC C+ ∩ . Hence,  we resort to the priority graph built for 

the DUs in the set of { }1 \t tC C f+ ∪  and Algorithm 1 in order to determine the transmission orders of 

the DUs in this set. When the transmission order of the DUs { }1 \t tC C f+ ∪  is determined, we can 

update the post-decision state-value function ( ), ,f t tU C x h  for DU f  which only depends on the DUs that 

are transmitted before it (i.e. DUs f ′  such that f f′ ɶ⊲ ) at the same time slot. It is easy to show that 

Algorithm 1 preserves the transmission priority (i.e. DUs with higher priorities are always transmitted 

before DUs with lower priorities).   

                                                                                                                                                                           

8
 f f′ ⊲  implies that f f′ ɶ⊲  but not vice versa.  
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Figure 4. Priority trees induced from (a) the graph in which all packets are prioritized (chain) (b) the graph in 

which some packets are prioritized and others are not. 

D. Online learning 

In multimedia transmission systems, we do not know the statistical knowledge about the packet arrivals 

for each DU and the underlying channel state transition. Without this statistical knowledge, we cannot 

directly update the post-decision state value function for each DU as shown in Eq. (10). In the following, 

we present how we can update the post-decision state-value functions for the DUs without having the 

statistical knowledge about the underlying dynamics.  

From Eq. (10), we know that the expectation over the dynamics is performed outside of the 

maximization and that the dynamics (including the packet arrivals and channel state transition) are 

independent of the buffer states. Then, we are able to update the post-decision state-value function using 

time-average as presented in [22]. That is, we can update the post-decision state-value function for all the 

possible buffer states for each DU at each time slot. The online learning algorithm for each DU tf C∈  is 

presented as follows. At time slot t , we first perform Algorithm 1 to determine the optimal decision for 

all the DUs in the context of tC  and the transmission order ( )1, , tCf f⋯ . Then the post-decision state-

value function for DU 1t tf C C −∈ ∩  is updated for all the possible  buffer state [ ]max0, fx l∈ as follows:  

 

( )

( ) ( )

( )

, 1
1

, 1 1

, , , 1 ,
0

, /

, 1 1 1

, ,

1 max , , ,

, ,

f t
t t

f t t t

t f f t t f t f t t f t tfy x
f f f C C

t f t t t

U C x h

q y h l y U C x y h

U C x h

β λρ α

β

+
−

− −

−′≤ ≤ ′ ′∈

− − −

=

     − − + + −      
+

∑
ɶ⊲

.  (13) 

where tβ  is a diminishing step size, e.g. 1/t tβ = . As in [22], we can further show that the post-decision 

state-value function updated as in Eq. (13) is concave in the buffer state x  given the context and channel 
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state. Then, we are able to adopt a piece-wise linear function to approximate the post-decision state-value 

function and perform the online learning algorithm with adaptive approximation presented in [22], which 

can significantly reduce the complexity of the online learning algorithm. We omit the details here and 

refer the interested readers to [22].  

IV. PACKET SCHEDULING FOR INTERDEPENDENT DUS  

In this section, we aim to develop a packet scheduling solution for interdependent DUs. Different from 

the independent DUs case, due to inter-dependencies, the scheduling decision on each DU f  will be 

affected by the amount of data transmitted from the DUs on which DU f  depends on. As discussed in 

Section II, the dependency between DUs is expressed by a DAG which is different from the priority 

graph defined in Section III.B. In order to capture the impact of the dependency between the DUs, we 

introduce a dependency factor ( ) [ ]0,1fp v ∈  for each DU f  to represent the impact on the distortion 

reduction of those DUs that depend on DU f , which is a function of the amount of data remaining when 

DU f  is expired. One example of dependency factor is ( ) exp( )f fp z zβ= −  as given in [23][24]. Then, the 

utility at each time slot is given by   

 ( ) ( ) , ,,, ,
f

t t

t t f f t t f tf f d
f C f Cf f

u s p z q y h yλρ
′′ ′

′∈ ∈

  = −    
∑ ∑∏

≺

y .  (14) 

where , ff dz
′′  is the remaining amount of data in the post-decision state of DU f ′  at time slot fd ′  (i.e. the 

amount of data from DU f ′  that are not received by the decoder). The difference between Eq. (14) and 

Eq. (1) is that the distortion reduction in Eq. (14) depends on not only the number of packets transmitted 

for each DU as shown in Eq. (1) , but also the dependency factors of the DUs that the current DUs 

depend on. The long-term utility is the same as in Eq. (2).  

For the interdependent DUs, in order to capture the Markovian property of the scheduling problem, 

we define the state at each time slot t  as ( ), , ,t t t t ts C h= p x  to include the current context tC , buffer 

states tx , channel state th  and dependency factor vector tp  from the parent DUs. The dependency factor 

vector tp  is given by ( ),
,f

t
t f f d

f f f C
p z

′′ ′ ′ ∈

 =    ≺
p . That is, the dependency factor vector includes all the 

dependency factors of the DUs that the DUs in the set tC depend on. The post-decision state is defined as 
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the state after the scheduling decision but before the new DU arrivals and the new channel state 

realization. We note that the post-decision dependency factor vector is the same as tp . We directly use 

tp  as the post-decision dependency factor vector in the post-decision state. Hence, the multi-DU 

foresighted decision based on the post-decision states is given as follows: 

 ( ) ( ) ( ), ,,
0

, , , max , , , ,
f

t t
t t

t t t t f f t t f t t t t t tf f d
f C f Cf f

V C h p z q y h y U C hλρ α
′′ ′

≤ ≤ ′∈ ∈

    = − + −      
∑ ∑∏

≺
y x

p x p x y , (15) 

where ( ), , ,t t t tU C hp z  is the post-decision state value function. 

Similar to the independent DUs, we aim to separate the multi-DU foresighted decision in Eq. (15) into 

multiple single-DU foresighted decision. We can introduce the priority between interdependent DUs to 

differentiate the transmission orders of the DUs in the current context tC . However, due to the 

dependency, we cannot directly apply Lemma 2 here. Instead, we can prioritize the DUs using their 

heterogeneous attributes in the following lemma.  

Lemma 3 (Prioritization using heterogeneous attributes of interdependent DUs): For any context 

tC , if , tf f C′ ∈  and f f ′≺ , then f f ′⊲ .  

Proof: First, we notice that, if f f ′≺ , then f fq q ′≥  and f fd d ′≤ . Furthermore, when f f ′≺ , from (14), 

we know that, the gained distortion reduction from DU f ′  (i.e. , ,f t f f tp q y′ ′ ′ ) is discounted by the 

dependency factor ,f tp ′  which is impacted by the amount of remaining data at DU f . In other words, 

transmitting the data from DU f  will always achieve higher long-term utility than transmitting the data 

from DU f ′ , which means f f ′⊲ . ■ 

From Lemma 3, we note that, based on the dependencies between DUs, we can construct the priority 

graph ,t t tPG C E=  for each context tC . It is clear that the priority graph tPG  is the dependency graph 

corresponding to the DUs in the current context tC . At time slot t , given the priority graph tPG  and the 

dependency factors vector ( ), , ff t f f d
f f

p z
′′ ′ ′

 =    ≺
p  for each DU tf C∈ , we can perform the foresighted 

decision for each DU as in Algorithm 2.  
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 Algorithm 2: Optimal packet scheduling induced by the priority graph for interdependent DUs 

Input: tPG , tp , ( ), ,, , ,f t f t f t tU C x hp  

Initialize: 0
t tPG PG=  

For 1, , tk C= ⋯ : 

 
( )

( )
, ,

1
*

, , , , , ,,0
1

arg max max , , , ,j
k

f t f tt

k
k T

f t f f t t f t f t f t f t f t tf t
y xf root PG

j

f q y h y y U C x y hλρ α

−

≤ ≤∈ =

     = ⋅ − + + −      
∑1 p p  (16) 

 ( )
, ,

1
* *

,, , , , , , ,0
1

arg max , , , ,jk k k k k k k k k

k kf t f t

k
T

t t tf tf t f t f f t f t f f t f t f t
y x

j

y q y h y y U C x y hλρ α

−

≤ ≤
=

     = ⋅ − + + −      
∑1 p p  (17) 

where  ( )k
troot PG  is the operator extracting the roots of the priority graph k

tPG , { }1 1/k k k
t tPG PG f− −=  

and update 1
, , , , k
f t f f f≠ ⋯p .  

Return ( )1, , tCf f⋯  and ( )1
* *
, ,, , Ctf t f ty y⋯ . 

 

In Algorithm 2, we separate the multi-DU foresighted decision and perform it by travelling the 

priority tree as illustrated in Section III.C, which preserves the priorities between DUs. Similarly, we can 

also update the post-decision state value function ( ), ,, , ,f t f t f t tU C x hp  as follows:  

If 1t tf C C−∈ ∩  (i.e. DU f  is not expired at both time slots),  

 

( )

( ) ( )

( )

, 1

1

, 1 , 1 1

, , , , 1 , 1 ,
0

,

/

, 1 1 , 1 1

, , ,

1 max , , , ,

, ,

i

f t i

i
t t

f t t f t t

T
t f t f f t t f t f t t f t f t tfy x

f i k

f C C

t f t t f t t

U C x h

q y h l y U C x y h

U C x h

β λρ α

β

+

−

− − −

− −
≤ ≤

<

∈

− − − −

=

        − ⋅ − + + −          

+

∑1

p

p p

p

. (18) 

If 1 \t tf C C−∈  (i.e. DU f  is expired at time slot t ),  

 

( )

( ) ( )
, 1

1

, 1 , 1 1

, 1 , , , 1 , 1 ,
0

: ,

/

, 1 1 , 1

, , ,

1 max , , , ,

,

i

if t

i
t t

f t t f t t

T
t t t tf t f f t f t f t f t f tfy x

f f f f i k

f C C

t f t t f t

U C x h

q y h l y U C x y h

U C

β λρ α

β

′ +

−

− − −

′ ′ ′ ′ ′ ′ ′− − −
≤ ≤′ ′ <

∈

− − −

=

        − ⋅ − + + −          

+

∑ ∑1
≺

p

p p

p( )1, , tx h −

.(19) 

When DU f  is not expired at both time slots 1t −  and t , we update the post-decision state value 

function using a time-average similar to the one in Eq. (13). However, when DU f  is expired at time slot 

t  (i.e. 1 \t tf C C−∈ ), due to the dependency, the post-decision state of DU f  at time slot 1t −  will 

affect the decision of those DUs in the context tC  that depend on DU f . Hence, the post-decision state 

value function of DU f  is updated as in Eq. (19) to take into account the dependency impact on the 

descendent DUs, which is different from the case of independent DUs, where the post-decision state 
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value function is zero.  

However, since the dependency factor vector ,f tp  often has large dimensions (because the DUs in the 

set  tC  depend on many DUs) and takes real values in the range of [ ]0,1 , it is difficult to compute and 

store the post-decision state value function directly. Instead of computing the post-decision state-value 

function ( ),, , ,f t f t t tU C hp z  directly, we approximate it by ( ), , ,T
f t f t t tU C h⋅1 p z , where ( ), ,f t t tU C hz  is 

the post-decision state-value function corresponding to the case that ,f t = 1p  which means that all the 

DUs that DU f  depends on are successfully received. Then ( ), ,f t t tU C hz  can be updated using Eqs. (18) 

and (19) by setting ,f t = 1p  and ,f t f f′ ′= ∀1, ≺p . It is clear that the approximation allows us to 

represent the post-decision state-value function as presented in Section III.D, which significantly reduces 

the dimensionality of the post-decision state-value function. This is because the dependency factor vector 

is not the component of the arguments in the approximated post-decision state-value function any longer.  

V. SIMULATION RESULTS 

In this section, we perform several numerical experiments to verify the performance of the proposed 

framework and compare with various state-of-art solutions for multimedia communications.  

A. Performance comparison of various packet scheduling solutions for video transmission 

In this section, we compare our proposed packet scheduling solution with several start-of art solutions 

which only consider either the heterogeneous media characteristics or the time-varying channel 

conditions. In the experiment, to compress the video data, we used a scalable video coding scheme [15], 

which is attractive for wireless streaming applications because it provides on-the-fly application 

adaptation to channel conditions, support for a variety of wireless receivers with different resource 

capabilities and power constraints, and easy prioritization of various coding layers and video packets. We 

choose for this experiment three video sequences (Foreman, Coastguard and Mobile at CIF resolutions, 

30 frames/second), exhibiting different motion activities. The video sequences Foreman and Coastguard 

are encoded at the bit rate of 512 kbps and Mobile, due to its high-frequent texture and complicated 

motion, is encoded at 1024kbps. In this simulation, each GOP contains 16 frames and each encoded 

video frame can tolerate a delay of 266ms, corresponding to the half duration of a GOP.  
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The energy function for transmitting the amount of y  (in bits) traffic at the channel state h  is given 

by ( ) ( ) 22, 2 1 /yc h y hσ= − ,  where 2σ  is the variance of the white Gaussian noise [20]. In this 

simulation, we choose 2 2/h σ =0.14, where h  is the average channel gain. We divide the entire channel 

gain range into eight regions each of which is represented by a representative state. The states are 

presented in Table 2. We choose 0.95α = . The transmission system is time-slotted with the time slot 

length of 10ms.  

Table 2. Channel states used in the simulation 

Channel gain ( 2 2/h σ ) regions Representative states 

(0,  0.0280],     (0.0280, 0.0580]   (0.0580,  0.0960]    

(0.0960, 0.1400]  (0.1400,  0.1980]  (0.1980,  0.2780], 

(0.2780, 0.4160]  (0.4160, ∞ ]  

0.0131, 0.0418, 0.0753, 0.1157, 0.1661, 

0.2343, 0.3407, 0.6200 

We consider three comparable solutions: (i) our proposed packet scheduling solution which takes into 

account both the heterogeneous multimedia traffic characteristics (e.g. delay deadlines, distortion impacts 

and dependencies etc.) and time-varying network conditions; (ii) the packet scheduling solution [6] 

which only considers the distortion impact of each media packet and the observed channel conditions and 

is referred to as “distortion-impact” driven packet scheduling; (iii) the packet scheduling solution 

obtained by solving the rate-distortion optimization assuming the constant channel conditions (i.e. using 

average channel conditions) and linear transmission cost as in RaDiO [7], which is referred to as the rate-

distortion optimized packet scheduling.  

In Figure 5 (a)~(c), , we show the Peak-Signal-to-Noise Ratio (PSNR) as a function of the consumed 

energy curves under the different scheduling solutions for the three video sequences. From these figures, 

we note that our proposed cross-layer optimization solution outperforms both the ”distortion-impact” 

driven packet scheduling and rate-distortion optimized packet scheduling by, on average, around 2dB and 

5dB in “Foreman”, 1.5dB and 3.5dB in “Coastguard”, and 0.5dB and 2.5dB in “Mobile” in terms of 

PSNR. The improvement comes from the fact that our proposed solution schedules the packets based on 

the heterogeneous characteristics of the multimedia packets as well as the time-varying channel 

conditions. We also notice that the “distortion-impact”-driven solution obtains higher received video 

quality than the rate-distortion optimized packet scheduling. It shows that the time-varying channel 

conditions and the characteristics (dependencies, distortion impacts and delay constants) of media 
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packets play a very important role in improving the media quality.  

 
(a) “Foreman” 

 
(b) “Coastguard” 
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(c) “Mobile” 

Figure 5. PSNR-energy curve of “Foreman”, “Coastguard” and “Mobile” sequences for different transmission 

solutions 

B. Performance of packet scheduling optimization with various delay constraints and GOP structures 

In this section, we further compare the performance of the packet scheduling optimization solutions 

for streaming the Coastguard video sequence with various delay constraints and GOP structures. The 

wireless channel settings are the same as in Section V.A. We compare our solution with different 

combinations of delay deadlines and GOP structures. The PSNR versus consumed energy curves are 

given in Figure 6 and Figure 7. From Figure 6, we notice that, when the video sequence is encoded with 

the GOP of 16 frames, by increasing the delay from 266 ms to 533 ms, the packet scheduling 

optimization can improve, on average, 1 dB in terms of PSNR. From Figure 7, we further notice that, 

when the video sequence is encoded with the GOP of 8 frames, by increasing the delay from 133ms to 

266ms, the packet scheduling optimization can improve, on average, 1.5 dB in terms of PSNR. The 

improvement comes from the fact that, by increasing the delay, each media packet has more transmission 

opportunities and will be scheduled for transmission when a better channel condition is encountered. By 

increasing the number of frames in one GOP, the video sequence can be encoded more efficiently and 

there are fewer packets to be transmitted, which accordingly improves the video quality.  
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Figure 6. Video quality of “Coastguard” sequence with various delay deadlines when 16-frame GOP is used 

 

Figure 7. Video quality of “Coastguard” sequence with various delay deadlines when 8-frame GOP is used 

VI. CONCLUSIONS 

In this paper, we formulate the problem of packet scheduling optimization for delay-sensitive packetized 

media applications as a Markov decision process. Based on the heterogeneous characteristics of the 

media packets, we express the transmission priorities between DUs as a DAG. Using the DAG 

expression, we are able to separate the multi-data unit foresighted decision at each time slot into multiple 

single-data unit foresighted decisions, which can subsequently be performed from the high priority DU to 

the low priority DU. The post-decision state-value function associated with each DU is updated 

individually using the online learning algorithms. The simulation results show that the proposed 

foresighted optimization solution significantly outperforms the start-of-art solutions which (partially) 

ignore the media characteristics and time-varying network conditions. This proposed systematic 
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scheduling framework is general and can be easily applied to many other multimedia-related problems. 

For example, using the proposed context to represent the heterogeneous video data encoded by different 

video codecs, e.g. H.264 [16], SVC [15][17], etc., the proposed packet scheduling can also be applied to 

energy-efficient video encoding/decoding systems with dynamic voltage scaling [27], by separating the 

multi-DU scheduling decision into multiple single-DU scheduling decisions. When the transmission 

acknowledgement is delayed, as it is the case for multi-hop wired and wireless networks, we can easily 

extend the proposed scheduling framework using a partially-observed MDP formulation and then apply 

the proposed separation for the foresighted decision. We further notice that the packet scheduling 

algorithm can also be deployed in the middle nodes of a multi-hop networks (e.g. mesh or sensor 

networks) to relay the multimedia data from other nodes.  

APPENDIX 

A. Proof of Lemma 1: 

Proof:  The optimal decision at time slot t  is denoted by ( )* * * *
, , ,, ,t f t f t f f ty y ′ ′− −=y y  where *

,f f t′− −y  

represents the optimal decision for the DUs other than DUs ,f f ′ . We assume that ( )* *
, , , 0f t f t f tx y y ′− ≠ , 

which means that *
, , 0f t f tx y− > and *

, 0f ty ′ > . We consider another decision 

( )* * *
, , ,1, 1,t f t f t f f ty y ′ ′− −= + −y y  which is feasible since *

, , 0f t f tx y− >  and *
, 0f ty ′ > . We compare the 

long-term utility associated with the decision ty  to the one associated with the optimal decision *
ty  (i.e. 

( ), ,t t tV C hx ) as follows. 
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The inequality is due to the fact that  

 
( ) ( )

( ) ( )

, , , ,

, , , , 0

f t t f t t t tf f

f t t t t t f tf f

q q U C h U C h

q q U C h U C h

α α

α α

′ ′

′ ′

− + − − + − −

′ ′= − + − + − − + >
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* *

x y e e x y

x y e x y e
 

where f-′ ′=x x e  and the inequality is from the condition given in Eq. (7).  
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Hence, ( )* *
, , , 0f t f t f tx y y ′− ≠  implies that *

ty  is not the optimal decision which contradicts the 

assumption. ■ 

B. Proof of Lemma 2: 

Proof: To prove this, we only need to show that  

 ( ) ( ) ( ), , , , / ,t f t t t f ff fU C e h U C e h q q , t dα′ ′+ − + < − ∀ ≤x x x  .  

We prove this using backward induction. 

At time slot ft d= , on the one hand, we have ( ) ( ), , , ,t f t t tU C e h U C h+ =x x  because DU f  will 

expire and be deleted at the next slot and have no contribution to the post-decision state value function. 

On the other hand, we can prove that ( ) ( )0 , , , ,t t t tf fU C e h U C h q′ ′≤ + − ≤x x  because the best utility 

we can obtain in the future time slots by transmitting one packet in DU f ′  is fq ′ . Then  

 
( ) ( )

( ) ( ) ( )

, , , ,

, , , , 0 /

t f t t tf f

t t t t ff f

q U C e h U C e h

U C h U C e h q q α

′ ′

′ ′

− ≤ + − +

= − + ≤ < −

x x

x x
. 

Now, we assume that, at time slot ft d≤ ,  ( ) ( ) ( ), , , , / ,t f t t t ff fU C e h U C e h q q α′ ′+ − + < − ∀x x x . 

We try to prove that ( ) ( ) ( )1 1 1 1, , , , / ,t f t t t ff fU C e h U C e h q q α′ ′− − − −+ − + < − ∀x x x  at time slot t . From 

the Bellman’s equation in Eq. (5), we know that ( ) ( )1 1 1, , , ,t t f t t t f tU C e h V C e h− − −+ = +Ex x  where 

1t+x  is derived from tx  by deleting the expired DUs and adding the new arriving DUs. Hence, it is 

equivalent to prove that ( ) ( ) ( ), , , , / ,t f t t t ff fV C e h V C e h q q α′ ′+ − + < − ∀x x x . We denote the optimal 

scheduling decision in computing ( ), ,t tV C hx  by ( )
*
ty x . Then the optimal decision in computing 

( ), ,t f tV C e h+x  can be in three cases: (1) ( ) ( )
* *
t f te+ =y x y x , i.e. the additional packet in DU f  is not 

transmitted; (2) ( ) ( )
* *
t f t f fe e e ′′+ = + −y x y x , i.e. transmitting the additional packet in DU f  instead 

of the packet in DU f ′′ ; (3). ( ) ( )
* *
t f t fe e+ = +y x y x , i..e transmitting the additional packet in DU f . 

Similarly, the optimal decision in computing ( ), ,t tfV C e h′+x  has also three cases. However, we have 

the following relationship: if ( )*
t fe+y x  is case 1,2, 3i = , then ( )*

t fe ′+y x  should be case 1, ,i i′ = ⋯ . 

For all the cases, we can prove that ( ) ( )1 1 1 1 1 1, , , , /t t f t t t t ff fV C e h V C e h q q α′ ′+ + + + + ++ − + ≤ −x x . For 

example, we consider that ( )*
t fe+y x  is case 3 and ( )*

t fe ′+y x  is case 1. Then 
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( ) ( )( )* * *
, ,, , 1, , ,

t t

t f t f t t t tf f t f f t
f C f C
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∑ ∑x x y x  and 

( ) ( )( )* * *
, ,, , , , ,

t t
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f C f C

V C e h q y q y h U C e hλρ α′ ′′ ′′ ′′ ′′ ′
′′ ′′∈ ∈

  + = − + − +  
∑ ∑x x y x . It is clear that  
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x x y x

x y x

, 

since ( )*
t fe ′+y x  is in case 3.  Hence, we can have ( ) ( ), , , ,t f t t t ff fV C e h V C e h q q′ ′+ − + ≤ −x x . 

We can similarly prove the other scenarios. Finally, we prove that 

( ) ( ) ( )1 1 1 1, , , , /t f t t t ff fU C e h U C e h q q α′ ′− − − −+ − + < −x x ■. 

C. Proof of Theorem 1: 

Proof: Since the DUs at each time slot are prioritized as a chain, from Lemma 1, we know that, the 

optimal decision for each DU is found, starting from the highest priority DU, by solving the following 

optimization. 

 
{ } { } { }( )

, ,

*
,

0

, , , ,, , ,
,

arg max

, , 0 ,

f t f t

t

f t
y x

f f t t f t t f t f t tf t f t f tf f f f
f f f C

y

q y h x y U C x y x hλρ α

≤ ≤

′ ′ ′′ ′
′ ′∈

=

     − + + −      
∑ ⊲ ⊲
⊲

∪ ∪

. 

where ,0f t′  represents that DU f ′  is empty. As we know, when performing the foresighted decision for 

DU f , all the data from DU f ′ ( )f f′ ⊲  has been transmitted and no data from DU f ′ ( )f f ′⊲  is 

transmitted. It is true for any time slot. Hence, we are able to split the post-decision state-value function 

in the above foresighted optimization into two parts:  

 { } { } { }( ) { }( )( ) { } { }( ), , , ,, , ,, 0 , , , , ,t f t f t t f t f t f t t t tf t f t f f f tf f f f f f
U C x y x h U C x y h U C x h′ ′ ′ ′′ ′ ′

− = − + ⊲⊲ ⊲ ⊲
∪ ∪  

where { }( )( ), ,, ,f t f t f t tU C x y h−  represents the long-term utility obtained for DU f  and 

{ } { }( ),, ,t tf f f t f f
U C x h′ ′ ′⊲ ⊲

 represents the long-term utility obtained for all the DUs ( )f f f′ ′⊲ . The 

reason that we can split it is that, the lower priority DU ( )f f f′ ′⊲  will not affect the foresighted 

decision for DU f  and the data from the lower priority DU can be transmitted only if the DUs from the 
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higher priority DUs have been transmitted (i.e. empty) at the current time slot. Hence, 

{ } { }( ),, ,t tf f f t f f
U C x h′ ′ ′⊲ ⊲

 only depends on the amount of data from DU ( )f f f ′⊲ observed before the 

foresighted decision (i.e. ,f tx ) and is independent of the decision at current time slot. Hence, the 

foresighted decision for DU f  can be rewritten as  

 ( )
, ,

*
, , , , ,,

0
,

arg max , , ,
f t f t

t

f t f f t t f t f t f t f t tf t
y x

f f f C

y q y h x y U C x y hλρ α′
≤ ≤ ′ ′∈

     = − + + −      
∑
⊲

 

which is the form given in Eq. (8) and ( ),, ,f t f t tU C x hɶ  is the post-decision state value function associated 

with DU f . 

The update of the post-decision state-value function can be shown using backward induction, as 

shown in [22]. We refer the interested reader to the proof in [22] for more details.  
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