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Abstract—In this paper, we consider decentralized sequential de-
cision making in distributed online recommender systems, where
items are recommended to users based on their search query as
well as their specific background including history of bought items,
gender and age, all of which comprise the context information of
the user. In contrast to centralized recommender systems, in which
there is a single centralized seller who has access to the complete
inventory of items as well as the complete record of sales and user
information, in decentralized recommender systems each seller/
learner only has access to the inventory of items and user infor-
mation for its own products and not the products and user infor-
mation of other sellers, but can get commission if it sells an item
of another seller. Therefore, the sellers must distributedly find out
for an incoming user which items to recommend (from the set of
own items or items of another seller), in order to maximize the rev-
enue from own sales and commissions. We formulate this problem
as a cooperative contextual bandit problem, analytically bound the
performance of the sellers compared to the best recommendation
strategy given the complete realization of user arrivals and the in-
ventory of items, as well as the context-dependent purchase proba-
bilities of each item, and verify our results via numerical examples
on a distributed data set adapted based on Amazon data. We eval-
uate the dependence of the performance of a seller on the inventory
of items the seller has, the number of connections it has with the
other sellers, and the commissions which the seller gets by selling
items of other sellers to its users.

Index Terms—Collaborative learning, contextual bandits,
distributed recommender systems, multi-agent online learning,
regret.

I. INTRODUCTION

O NE of the most powerful benefits of a social network is
the ability for cooperation and coordination on a large

scale over a wide range of different agents [1]. By forming a
network, agents are able to share information and opportuni-
ties in a mutually beneficial fashion. For example, companies
can collaborate to sell products, charities can work together to
raise money, and a group of workers can help each other search
for jobs. Through such cooperation, agents are able to attain
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much greater rewards than would be possible individually. But
sustaining efficient cooperation can also prove extremely chal-
lenging. First, agents operate with only incomplete informa-
tion, and must learn the environment parameters slowly over
time. Second, agents are decentralized and thus uncertain about
their neighbor’s information and preferences. Finally, agents are
selfish in the sense that, they don’t want to reveal their inventory,
observations and actions to other agents, unless they benefit.
This paper produces a class of algorithms that effectively ad-
dresses all of these issues: at once allowing decentralized agents
to take near-optimal actions in the face of incomplete informa-
tion, while still incentivizing them to fully cooperate within the
network.
The framework we consider is very broad and applicable to a

wide range of social networking situations. We analyze a group
of agents that are connected together via a fixed network, each
of whom experiences inflows of users to its page. Each time a
user arrives, an agent chooses from among a set of items to offer
to that user, and the user will either reject or accept each item.
These items can represent a variety of things, from a good that
the agent is trying to sell, to a cause that the agent is trying to
promote, to a photo that the agent is trying to circulate. In each
application, the action of accepting or rejecting by the user will
likewise have a distinct meaning. When choosing among the
items to offer, the agent is uncertain about the user’s acceptance
probability of each item, but the agent is able to observe spe-
cific background information about the user, such as the user’s
gender, location, age, etc. Users with different backgrounds will
have different probabilities of accepting each item, and so the
agent must learn this probability over time by making different
offers.
We allow for cooperation in this network by letting each agent

recommend items of neighboring agents to incoming users, in
addition to its own items. Thus if the specific background of
the incoming user makes it unlikely for him to accept any of
the agent’s items, the agent can instead recommend him some
items from a neighboring agent with more attractive offerings.
By trading referrals in this fashion, all of the agents that are
connected together can benefit. To provide proper incentives,
a commission will be paid to the recommending agent every
time an item is accepted by a user from the recommended agent.
When defined appropriately, this commission ensures that both
sides will benefit each time a recommendation occurs and thus
is able to sustain cooperation.
However, since agents are decentralized, they do not directly

share the information that they learn over time about user pref-
erences for their own items. So when the decision to recom-
mend a neighboring agent occurs, it is done based solely on
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the previous successes the agent had when recommending that
neighbor. Thus agents must learn about their neighbor’s accep-
tance probabilities through their own trial and error, unlike in
other social learning papers such as [2]–[5], where agents share
information directly with their neighbors.
Another key feature of our algorithms is that they are non-

Bayesian unlike [2], [3]. Instead we model the learning through
contextual bandits, where the context is based on the user’s
background. By building upon the theory of contextual ban-
dits, we produce a class of algorithms that allows agents to
take near-optimal actions even with decentralized learning. We
prove specific bounds for the regret, which is the difference be-
tween the total expected reward of an agent using a learning al-
gorithm and the total expected reward of the optimal policy for
the agent, which is computed given perfect knowledge about ac-
ceptance probabilities for each context. We show that the regret
is sublinear in time in all cases. We further show that our algo-
rithms can operate regardless of the specific network topology,
including the degree of connectivity, degree distribution, clus-
tering coefficient, etc., although the performance is better if the
network is more connected since each agent will have access to
more items of other agents.
The rest of the paper is organized as follows. Related work

is given in Section II. The problem formulation is given in
Section III. In Section IV, we consider the online learning
problem involving multiple decentralized agents and analyze
its regret. In Section IV-A we develop an algorithm to achieve
sublinear regret when the purchase probability of the items
depend on the other recommended items, and in Section IV-C
we develop a faster learning algorithm when item purchase
probabilities are independent of each other. The effect of
connectivity between the agents is given in Section V. In
Section VI, numerical results demonstrating the effects of
commissions, size of the set of items of agents and connectivity
of agents are given, using an artificial data set which is based
on a real data set. Finally, we conclude the paper in Section VII.

II. RELATED WORK

This work represents a significant departure from the other
works in contextual bandits, which consider only centralized
agents, single arms played at once, and no incentive issues.Most
of the prior work on contextual bandits is focused on a single
agent choosing one arm at a time based on the context infor-
mation provided to it at each time slot [6]–[9]. In these works
the system is centralized, so the agent can directly access all
the arms. Our framework in this paper differs from the cen-
tralized contextual bandit framework in two important aspects.
First, multiple agents who can only access a subset of arms, and
who only get feedback about this subset, cooperate to maximize
their total reward. Second, each agent can choose multiple arms
at each time slot, whichmakes the arm selection problem combi-
natorial in the number of arms. To the best of our knowledge, our
work is the first to provide rigorous solutions for online learning
by multiple cooperative agents selecting multiple arms at each
time step when context information is present. We had previ-
ously proposed a multi-agent contextual bandit framework in
[10] where each agent only selects a single arm at each time slot.
Different from this work, in this paper we assume that an agent

TABLE I
COMPARISON WITH RELATED WORK IN MULTI-ARMED BANDITS

can select multiple arms, and the expected reward of the agent
from an armmay depend on the other selected arms. This makes
the problem size grow combinatorially in the arm space, which
requires the design of novel learning algorithms to quicken the
learning process. Combinatorial bandits [11] have been studied
before in the multi-armed bandit setting, but to the best of our
knowledge we are the first to propose the decentralized con-
textual combinatorial bandit model studied in this paper. This
decentralization is important because it allows us to analyze a
social network framework and the fundamental challenges as-
sociated with it including commissions, third-party sellers, etc.
We are also able to consider the specific effects of the network
structure on the regret in our model. In contrast, our approach
in [10] does not address the network structure concerns. Several
other examples of related work in contextual bandits are [12],
in which a contextual bandit model is used for recommending
personalized news articles based on a variant of the UCB1 algo-
rithm in [13] designed for linear rewards, and [14] in which the
authors solve a classification problem using contextual bandits,
where they propose a perceptron based algorithm that achieves
sublinear regret.
Apart from contextual bandits, there is a large set of literature

concerned in multi-user learning using a multi-armed bandit
framework [15]–[19]. We provide a detailed comparison be-
tween our work and related work in multi-armed bandit learning
in Table I. Our cooperative contextual learning framework can
be seen as an important extension of the centralized contex-
tual bandits framework [6]. The main differences are that: (i)
a three phase learning algorithm with training, exploration and
exploitation phases is needed instead of the standard two phase
algorithms with exploration and exploitation phases that are
commonly used in centralized contextual bandit problems; (ii)
the adaptive partitions of the context space should be formed in
a way that each learner can efficiently utilize what is learned by
other learners about the same context; (iii) since each agent has
multiple selections at each time slot, the set of actions for each
agent is very large, making the learning rate slow. Therefore, the
correlation between the arms of the agents should be exploited
to quicken the learning process. In our distributed multi-agent
multiple-play contextual bandit formulation, the training phase,
which balances the learning rates of the agents, is necessary
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TABLE II
COMPARISON WITH PRIOR WORK IN RECOMMENDER SYSTEMS

since the context arrivals to agents are different which makes
the learning rates of the agents for various context different.
There is also an extensive literature on recommender systems

that incorporates a variety of different methods and frameworks.
Table II provides a summary of how our work is related to other
work. Of note, there are several papers that also use a similar
multi-armed bandit framework for recommendations. For ex-
ample, [20] considers a bandit frameworkwhere a recommender
system learns about the preferences of users over time as each
user submits ratings. It uses a linear bandit model for the ratings,
which are assumed to be functions of the specific user as well
as the features of the product. [21] is another work that utilizes
multi-armed bandits in a recommendation system. It considers
a model that must constantly update recommendations as both
preferences and the item set changes over time.
There are also numerous examples of works that do not use a

bandit framework for recommendations. One of the most com-
monly used methods for recommendations are collaborative fil-
tering algorithms such as [22]–[28], which make recommenda-
tions by predicting the user’s preferences based on a similarity
measure with other users. Items with the highest similarity score
are then recommended to each user; for instance items may be
ranked based on the number of purchases by similar users. There
are numerous ways to perform the similarity groupings, such as
the cluster model in [24], [27] that groups users together with
a set of like-minded users and then makes recommendations
based on what the users in this set choose. Another possibility
is presented in [25], which pre-filters ratings based on context
before the recommendation algorithm is started.
An important difference to keep in mind is that the rec-

ommendation systems in other works are a single centralized
system, such as Amazon or Netflix. Thus the system has com-
plete information at every moment in time, and does not need
to worry about incentive issues or pay commissions. However,

in this paper each agent is in effect its own separate recommen-
dation system, since agents do not directly share information
with each other. Therefore the mechanism we propose must be
applied separately by every agent in the system based on that
agent’s history of user acceptances. So in effect our model is a
giant collection of recommendation systems that are running in
parallel. The only cross-over between these different systems
is when one agent suggests which of its items should be recom-
mended by another agent. This allows for an indirect transfer
of information, and lets that other agent make better choices
than it could without this suggested list of items.
Also, it is important to note that decentralization in the con-

text of our paper does not mean the same thing as in other papers
such as [29]. Those papers assume that the are decentral-
ized, and develop mechanisms based on trust and the similarity
of different users in order to allow to recommend items
to each other. We are assuming that the are decentral-
ized, and so each user still only gets a recommendation from one
source, it is just that this source may be different depending on
which agent this user arrives at. Thus this paper is fundamen-
tally different from the works in that literature.

III. PROBLEM FORMULATION

There are decentralized agents/learners which are indexed
by the set . Let . Each
agent has an inventory of items denoted by , which it can
offer to its users and the users of other agents by paying some
commission. Users arrive to agents in a discrete time setting
( ). Agent recommends items to its user at
each time slot. For example, can be the number of recom-
mendation slots the agent has on its website, or it can be the
number of ads it can place in a magazine. We assume that is
fixed throughout the paper. Each item has a fixed price

. We assume that the inventories of agents are mutually
disjoint.1 For now, we will assume that all the agents in the net-
work are directly connected to each other, so that any agent can
sell items to the users of any other agent directly without in-
voking intermediate agents. We will discuss the agents in more
general network topologies in Section V. Let
be the set of items of all agents. We assume that there is an un-
limited supply of each type of item. This assumption holds for
digital goods such as e-books, movies, videos, songs, photos,
etc. An agent does not know the inventory of items of the other
agents but knows an upper bound on ,2 which is
equal to .
We note that our model is suitable for a broad range of ap-

plications. The agent can represent a company, an entrepreneur,
a content provider, a blogger, etc., and the items can be goods,
services, jobs, videos, songs, etc. The notion of an item can be
generalized even further to include such things as celebrities
that are recommended to be followed in Twitter, Google+, etc.
And the prices that we introduce later can also be generalized
to mean any type of benefit the agent can receive from a user.
For expositional convenience, we will adopt the formulation of
firms selling goods to customers for most of the paper, but we

1Even when an item is in the inventory of more than one agent, its price can be
different among these agents, thus different IDs can be assigned to these items.
We do not assume competition between the agents, hence our methods in this
paper will work even when the inventories of agents are not mutually disjoint.
2For a set , denotes its cardinality.
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emphasize that many other interpretations are equally valid and
applicable.

Notation

Natural logarithm is denoted by . For sets and ,
denotes the elements of that are not in . is

the probability operator, is the expectation operator. For
an algorithm , denotes the expectation with respect to
the distribution induced by . Let . Let

.

Definition of Users With Contexts

At each time slot , a user with a specific search
query indicating the type of item the user wants, or other infor-
mation including a list of previous purchases, price-range, age,
gender etc., arrives to agent . We define all the properties of
the arriving user known to agent at time as the context of
that user, and denote it by . We assume that the contexts
of all users belong to a known space , which without loss of
generality is taken to be in this paper, where is the di-
mension of the context space. Although the model we propose
in this paper has synchronous arrivals, it can be easily extended
to the asynchronous case where agents have different user ar-
rival rates, and even when no user arrives in some time slots.
The only difference of this from our framework is that instead
of keeping the same time index for every agent, we will have
different time indices for each agent depending on the number
of user arrivals to that agent.

Definition of Commissions

In order to incentivize the agents to recommend each other’s
items, they will provide commissions to each other. In this paper
we focus on sales commission, which is paid by the recom-
mended agent to the recommending agent every time a user
from the recommending agent purchases an item of the recom-
mended agent. We assume that these commissions are fixed at
the beginning and do not change over time. The systemmodel is
shown in Fig. 1. Basically, if agent recommends an item of
agent to its user, and if that user buys the item of agent , then
agent obtains a fixed commission which is equal to .
All of our results in this paper will also hold for the case when
the commission is a function of the price of the item sold by
agent , i.e., . However we use the fixed commission as-
sumption, since privacy concerns may cause the agent or the
user to not want to reveal the exact sales price to agent . We
assume that for all , . Otherwise, full
cooperation can result in agent obtaining less revenue than it
would have obtained without cooperation. Nevertheless, even
when for some , by restricting the set of
items that agent can recommend to agent to , all our
analysis for agent in this paper will hold.
Agents may also want to preserve the privacy of the items of-

fered to the users, hence the privacy of their inventory in addi-
tion to the privacy of prices. This can be done with the addition
of a regulator to the system. The regulator is a non-strategic en-
tity whose goal is to promote privacy among the agents. If agent
wants to recommend an item from agent , it can pass this re-
quest to the regulator and the regulator can create private keys
for agent and the user of agent , such that agent sends its
recommendation to agent ’s website in an encrypted format so
that recommendation can only be viewed by the user, who has

Fig. 1. Operation of the system for agent for recommendations. At
each time a user arrives to agent with context , agent recommends a set
of its own items and items from other agents, which is denoted by .

the key. The regulator can also control the transaction between
agent and agent ’s user such that agent pays its commis-
sion to agent if the item is sold. Note that the regulator does
not need to store the previous purchase histories or the inven-
tories of the agents. Also it only regulates transactions between
the agents but not the recommendations of an agent to its own
users.

A. Recommendations, Actions and Purchase Probabilities

The items that agent recommends to its user are chosen
in the following way: An item can be chosen from the inventory
of agent , or agent can call another agent and send the

context information of of its user, then agent returns back
an item with price 3 to be recommended to agent based
on . Let be the set of items recommended by agent
to its user at time . Let be the set of subsets of with
items. Let be a set of recommended items.
Consider agent . Let . For , let

( ) denote the event that is recommended (not
recommended) to agent ’s user. For , let
denote the event that agent requests (distinct) items to
be recommended to its user from agent . Let

be an action for agent . Based on this, let

be the set of actions available to agent . We assume that
for all . Let be the components of vector
with nonzero . Since means the corresponding

3Another method to preserve the privacy of prices is the following: Agent ’s
item will be recommended by agent without a price tag, and when the user
clicks to agent ’s item it will be directed to agent ’s website where the price
will be revealed to the user.
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item will not be recommended for , and the corre-
sponding agent will not recommend any items to agent for

, is enough to completely characterize the ac-
tion of agent . Thus, for notational simplicity we denote an
action of agent by . With an abuse of notation
means that corresponding to is in . For ,
we let be the value of in the vector corre-
sponding to . Let be the set of agents in that
recommend at least one item to agent , when it chooses ac-
tion . We define as the number of items agent rec-
ommends to agent when agent chooses action .
Clearly we have for , and

. Let be the
recommendation vector given action ,

and be the set of own items recommended by
agent to its user when it takes action . For a set of
recommended items , let and

. Let . Below,
we define the purchase probability of an item that is recom-
mended to a user with context along with the set of items

.
Assumption 1: Group-dependent purchase probability:

We assume that the inventory of each agent forms a separate
group (or type) of items. For example, if agents are firms,
then firm may sell televisions while firm sells headphones.
For each item recommended together with the set of items

, if is an item of agent , i.e., it belongs to group
, then its acceptance probability will depend on other recom-

mended items in the same group, i.e., . The acceptance
probability of an item may also depend on groups of
other items offered together with and also on their number,
i.e., , but not on their identities. For , a user with
context will buy the item with an unknown probability

. For all , users with
contexts similar to each other have similar purchase probabili-
ties. This similarity is characterized by a Hölder condition that
is known by the agents, i.e., there exists , such
that for all , we have

where denotes the Euclidian norm in .
In Assumption 1, we do not require the purchase probabili-

ties to be similar for different sets of recommendations from the
same group, i.e., for and such that

, the purchase probability of can be different for con-
text . Even though the Hölder condition can hold with
different constants and for each item , taking to
be the largest among and to be the smallest among we
get the condition in Assumption 1. For example, the context can
be the (normalized) age of the user, and users with ages similar
to each other can like similar items. We will also consider a sim-
plified version, in which the purchase probability of an item is
independent of the set of other items recommended along with
that item.
Assumption 2: Independent purchase probability: For

each item offered along with the items in the set ,
a user with context will buy the item with an unknown
probability , independent of the other items

in , for which there exists , such that for all
, we have .

When Assumption 2 holds, the agents can estimate the pur-
chase probability of an item by using the empirical mean of the
number of times the item is purchased by users with similar
context information. The purchase probabilities of items can be
learned much faster in this case compared with Assumption 1,
since the empirical mean will be updated every time the item is
recommended. However, when the purchase probability of an
item is group-dependent, the agents need to learn its purchase
probability separately for each group the item is in.

B. Objective, Rewards and the Regret

The goal of agent is to maximize its total expected reward
(revenue). However, since it does not know the purchase prob-
ability of any item or the inventories of other agents a-priori, it
must learn how to make optimal recommendations to its users
over time. In this subsection we define the optimal actions for
the agents and the “oracle” benchmark (optimal) solution the
agents’ learning algorithms compete with, which is derived
from the unknown purchase probabilities and inventories.
The expected reward of agent at time from recommending

a set of items to its user with context is given by

where is the agent who owns item . Based on this, given
a user with context , the set of items which maximizes the
one-step expected reward of agent is

(1)

Since the inventory of other agents and , ,
are unknown a priori to agent , is unknown to agent

for all contexts . For a recommendation vector
, agent has actions for which
for all . Denote this set of actions of

agent by . For an action , let

be the purchase rate of action 4 for a user with context .
The purchase rate is equal to the expected number of items in

sold to a user with context , when the number of items
recommended together with from the other groups is
given by the vector . For actions of agent such that

, the best set of items agent can recommend to
agent (which maximizes agent ’s expected commission from
agent ) for a user with context is , where

According to the above definitions, the expected reward of ac-
tion to agent for a user with context is defined as

(2)

4If , then .
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Then, given a user with context , the best action of agent is

(3)

Note that for both Assumptions 1 and 2,
. Let be the recommendation strategy adopted

by agent for its own users, i.e., based on its past observations
and decisions, agent chooses a vector at each time
slot. Let be the recommendation strategy adopted by agent
when it is called by another agent to recommend its own items.
Let and . Let be
the expected total reward of agent by time from item sales
to its own users and users of other agents and commissions
it gets from item sales of other agents to its own users. For

, let be a random variable which is equal to 1
when agent recommends its own item to its user at time (0
otherwise), let be a random variable which is equal
to 1 when agent recommends its own item to agent when
it is called by agent at time (0 otherwise). For , let

be a random variable that is equal to 1 when agent asks
for recommendations from agent at time for its own user (0
otherwise). Let the (random) reward agent gets from the set
of recommendations made by to its user at time be

(4)

and let

be the total expected reward agent can get based only on rec-
ommendations to its own users by time . Let

(5)

be the number of items of agent purchased by agent ’s user at
time . Clearly we have

We can see that . Agent ’s goal is to max-
imize its total reward from its own users for any .
Since agents are cooperative, agent also helps other agents

to maximize by recommending its items to
them. Hence the total reward the agent gets, , is at least

.
We assume that user arrivals to the agents are independent

of each other. Therefore, agent will also benefit from agent
if its item can be sold by agent . In this paper, we develop
distributed online learning algorithms for the agents in
such that the expected total reward for any agent

is maximized. This corresponds to minimizing the regret,
which is given for agent at time as

(6)

Note that the regret is calculated with respect to the highest ex-
pected reward agent can obtain from its own users, but not the
users of other agents. Therefore, agent does not act strategi-
cally to attract the users of other agents, such as by cutting its
own prices or paying commissions even when an item is not sold
to increase its chance of being recommended by another agent.
We assume that agents are fully cooperative and follow the rules
of the proposed algorithms. We provide a comparison between
cooperative and strategic agents in the following remark.
Remark 1: In our cooperative algorithms, an agent when

called by agent recommends a set of items that has the highest
probability of being purchased by agent ’s user. This recom-
mendation does not decrease the reward of agent , compared to
the case when agent does not cooperate with any other agent,
since we assume that for all . However, when
the commission is fixed, recommending the set of items with the
highest purchase rate does not always maximize agent ’s re-
ward. For example, agent may have another item which has a
slightly smaller probability of being purchased by agent ’s user,
but has a much higher price than the item which maximizes the
purchase rate. Then, it is of interest to agent to recommend that
item to agent rather than the item that maximizes the purchase
rate. This problem can be avoided by charging a commission
which is equal to a percentage of the sales price of the item,
i.e., for some for .
Our theoretical results will hold for this case as well. We will
numerically compare the effects of a fixed commission and a
commission which is equal to a percentage of the sales price on
the learning rates and set of items recommended by the agents
in Section VI.
Wewill show that the regret of the algorithms proposed in this

paper will be sublinear in time, i.e., , ,
which means that the distributed learning scheme converges to
the average reward of the best recommender strategy
given in (1) (or equivalently given in (3)) for each
, , i.e., . Moreover, the regret also

provides us with a bound on how fast our algorithm converges
to the best recommender strategy.

IV. CONTEXTUAL PARTITIONING ALGORITHMS FOR
MULTIPLE RECOMMENDATIONS

In this section we propose a series of distributed online
learning algorithms called Context Based Multiple Recommen-
dations (CBMR). We denote the part of CBMR which gives
an action to agent at every time slot for its own user with

, and the part of CBMR which gives an action to agent
at every time slot for the recommendation request of another
agent with . When clear from the context, we will drop
the superscript. Basically, an agent using CBMR forms a par-
tition of the context space , depending on the final time
, consisting of sets where each set is a -dimensional
hypercube with dimensions . The
sets in this partition are indexed by .
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Fig. 2. Pseudocode of CBMR-d for agent .

We denote the set with index with . Agent learns about
the rewards and purchase rates of its actions in each set in
the partition independently from the other sets in the partition
based on the context information of the users that arrived to
agent and the users for which agent is recommended by
another agent. Since users with similar contexts have similar
purchase probabilities (Assumptions 1 and 2), it is expected
that the optimal recommendations are similar for users located
in the same set . Since the best recommendations are
learned independently for each set in , there is a tradeoff
between the number of sets in and the estimation of the
best recommendations for contexts in each set in . We will
show that in order to bound regret sublinearly over time, the
parameter should be non-decreasing in .
There are two versions of CBMR: one for group-dependent

purchase probabilities given by Assumption 1, which is called
CBMR-d, and the other for independent purchase probabilities
given by Assumption 2, which is called CBMR-ind. The dif-
ference between these two is that CBMR-d calculates the ex-
pected reward from each action in for agent separately,
while CBMR-ind forms the expected reward of each action in
based on the expected rewards of the items recommended in

the chosen action. We have

Fig. 3. Pseudocode of the training, exploration and exploitation modules for
agent .

which grows combinatorially in and and polynomially
in . We will show that CBMR-ind provides much faster
learning than CBMR-d when Assumption 2 holds. We explain
these algorithms in the following subsections.

A. Definition of CBMR-d

The pseudocode of CBMR-d is given in Fig. 2. At any time
in which agent chooses an action , for any agent

, it should send a request to that agent for
recommendations along with the context of its user and
the recommendation vector . If the agents do not want to
share the set of recommendations and prices theymade for agent
’s user with agent , they can use the regulator scheme proposed
in Section III-C. CBMR-d can be in any of the following three
phases at any time slot : the training phase in which agent
chooses an action such that it trains another agent by asking
it for recommendations and providing ’s user’s context infor-
mation , so that agent will learn to recommend its set of

items with the highest purchase rate for a user with con-
text , the exploration phase in which agent forms accurate es-
timates of the expected reward of actions by selecting
and observing the purchases, and the exploitation phase in

which agent selects the action in with the highest estimated
reward to maximize its total reward. The pseudocodes of these
phases are given in Fig. 3.
At each time , agent first checks which set in the partition
context belongs to. We separate the set of actions in

into two. Let

be the set of actions in which all recommendations are from ,
and be the set of actions in which at least one
recommendation is from an agent in .
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The training phase is required for actions in , while only
exploration and exploitation phases are required for actions in
. When agent chooses an action , the agents

recommend items from to agent . Recall
that denotes the set of items that is recommended to
agent ’s user at time , based on the actions chosen by agent
and the recommendations chosen by other agents for agent .
For , let be the number of times action is
selected in response to a context arriving to the set by
time . Since agent does not know and the purchase rates
for , before forming estimates about the reward
of action , it needs to make sure that will almost always
recommend its set of items with the highest purchase
rate for agent ’s user. Otherwise, agent ’s estimate about the
reward of action might deviate a lot from the correct reward
of action with a high probability, resulting in agent choosing
suboptimal actions most of the time, hence resulting in a high
regret. This is why the training phase is needed for actions in .
In order to separate training, exploration and exploitation

phases, agent keeps two counters for actions for each
. The first one, i.e., , counts the number of

user arrivals to agent with context in set in the training
phases of agent by time , in which it had chosen action .
The second one, i.e., , counts the number of user
arrivals to agent with context in set in the exploration and
the exploitation phases of agent by time , in which it had
chosen action . The observations made at the exploration
and the exploitation phases are used to estimate the expected
reward of agent from taking action . In addition to the
counters , and , agent also keeps
control functions, , , and , which
are used together with the counters determine when to train,
explore or exploit. The control functions are deterministic and
non-decreasing functions of that are related to the minimum
number of observations of an action that is required so that the
estimated reward of that action is sufficiently accurate to get a
low regret in exploitations. We will specify the exact values of
these functions later when we prove our regret results.
In addition to the counters and control functions mentioned

above, for each and , agent keeps a sample
mean reward which is the sample mean of the rewards
(sum of prices of sold items and commissions divided by
number of times is selected except the training phase) agent
obtained from its recommendations when it selected action
in its exploration and exploitation phases for its own user with
context in by time . Agent also keeps a sample mean pur-
chase rate which is the sample mean of the number of
agent ’s own items in sold to a user (either agent ’s own
user or user of another agent) with context in set when agent
selects action for that user.5 Note that when agent chooses
action , agent has different sets of items
to recommend to agent . In order for agent to recommend
to agent its best set of items that maximizes the commission
agent will get, agent must have accurate sample mean
purchase rates for its own actions .

5We will explain how agent selects an action when agent requests items
from when we describe .

Therefore, when a user with context arrives at time
, agent checks if the following set is nonempty:

in order to make sure that it has accurate estimates of the ex-
pected rewards of each of its actions , as well as to
make sure that other agents have accurate estimates about the
purchase rates of their own set of items for a user with context
in set .
For , let be the set of rewards collected

from selections of action at times when agent ’s
user’s context is in set , and all the other agents in are
trained sufficiently, i.e., . For , let

be the set of rewards collected from action by time
. If , then agent trains or explores by randomly
choosing an action . If , this implies
that all actions in have been trained and explored sufficiently,
so that agent exploits by choosing the action with the highest
sample mean reward, i.e.,

(7)

We have .6 When there is

more than one action which has the highest sample mean re-
ward, one of them is randomly selected.
The other part of CBMR-d, i.e., , gives agent the set of

items to recommend to agent when agent takes an action
for which , and sends to agent

its user’s context and the recommendation
vector . In order to recommend the set of items with the
maximum purchase rate for the user of agent , agent should
learn the purchase rate of its own items for the recommenda-
tion vector . Agent responds to agent ’s request in the
following way. If there is any for which the pur-
chase rate is under-explored, i.e., , then agent
recommends to agent the set of items . Otherwise if all
purchase rates of actions in are explored sufficiently,
i.e., for all , then agent rec-
ommends to agent the set of its own items which maximizes
the sample mean purchase rate, i.e., , where

In the following subsection we prove an upper bound on the
regret of CBMR-d.

B. Analysis of the Regret of CBMR-d

For each and , let ,
, and
. Let be the context at the center

6Agent does not need to keep in its memory. Keeping and updating
online, as new rewards are observed is enough.
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of the set . We define the optimal reward action of agent for
set as

and the optimal purchase rate action of agent for agent given
agent selects action for set as

Let

be the set of suboptimal reward actions for agent at time , and

be the set of suboptimal purchase rate actions of agent for
agent , given agent chooses action at time , where ,

. The agents are not required to know the values of the
parameters and . They are only used in our analysis of the
regret. First, we will give regret bounds that depend on values
of and , and then we will optimize over these values to find
the best bound. Let , which is the
maximum expected loss agent can incur for a time slot in which
it chooses a suboptimal action.
The regret given in (6) can be written as a sum of three

components:

where is the regret due to training and explorations by
time , is the regret due to suboptimal action selections
in exploitations by time , and is the regret due to near
optimal action ( ) selections in exploitations
by time of agent , which are all random variables. In the fol-
lowing lemmas we will bound each of these terms separately.
The following lemma bounds . Due to space limita-
tions we give the lemmas in this and the following subsections
without proofs. The proofs can be found in our online appendix
[31].
Lemma 1: When CBMR-d is run with parameters

, ,
and ,7 where and , we
have

From Lemma 1, we see that the regret due to explorations is
linear in the number of sets in partition , i.e., , hence
exponential in parameters and . We conclude that and
should be small to achieve sublinear regret in training and ex-
ploration phases.
For any and , the sample mean repre-

sents a random variable which is the average of the independent
samples in set . Different from classical finite-armed
bandit theory [13], these samples are not identically distributed.
In order to facilitate our analysis of the regret, we generate two
different artificial i.i.d. processes to bound the probabilities
related to , . The first one is the best process
in which rewards are generated according to a bounded i.i.d.

7For a number , let be the smallest integer that is greater than or
equal to .

process with expected reward , the other one is the worst
process in which rewards are generated according to a bounded
i.i.d. process with expected reward . Let denote
the sample mean of the samples from the best process and

denote the sample mean of the samples from
the worst process. We will bound the terms and

by using these artificial processes along with the
Hölder condition given in Assumption 1. Details of this are
given in [31]. The following lemma bounds .
Lemma 2: When CBMR-d is run with parameters

, ,
and , where and , given
that , we have

From Lemma 2, we see that the regret increases exponentially
with parameters and , similar to the result of Lemma 1. These
two lemmas suggest that and should be as small as possible,
given that the condition

is satisfied.
When agent chooses an action such that

, there is a positive probability that agent will choose a
suboptimal set of items to recommend to agent ’s user,
i.e., it will choose a suboptimal purchase rate action for agent
’s action. Because if this, even if agent chooses a near optimal
action it can still get a low reward. We need
to take this into account in order to bound . The fol-
lowing lemma gives the bound on .
Lemma 3: When CBMR-d is run with parameters

, ,
and , where and , given
that , we have

From Lemma 3, we see that the regret due to near optimal
actions depends exponentially on which is related to the neg-
ative of and . Therefore, and should be chosen as large
as possible to minimize the regret due to near optimal actions.
Combining the above lemmas, we obtain the finite time regret
bound for agents using CBMR-d, which is given in the fol-
lowing theorem.
Theorem 1: When CBMR-d is run with pa-

rameters ,
, and

, we have

i.e., , where
.
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Proof: The highest orders of regret come from explorations
and near optimal arms, which are and re-
spectively. We need to optimize them with respect to the con-
straint , which is
assumed in Lemmas 2 and 3. The values that minimize the regret
for which this constraint holds are ,

and . The result follows
from summing the bounds in Lemmas 1, 2 and 3.
Remark 2: A uniform partition of the context space such as
may not be very efficient when user arrivals have contexts

that are concentrated into some (unknown) regions of the con-
text space. In such a case, it is better to explore and train these
regions more frequently than regions with few context arrivals.
Algorithms that start with the entire context space as a single
set and then adaptively partition the context space into smaller
regions as more and more users arrive may achieve faster con-
vergence rates, i.e., smaller regret, for the types of arrivals men-
tioned above. Such an algorithm that will work for is
given in [32].
Theorem 1 indicates that agent can achieve sublinear regret

with respect to the best “oracle” recommendation strategy
which knows the purchase probabilities of all the items in .
However, the learning rate of CBMR-d can be slow when ,
and are large since the set of actions is combinatorial in

these parameters. As a final remark, since regret is sublinear,
the average reward of CBMR-d converges to the average
reward of the best “oracle” recommendation strategy, i.e.,

.

C. Definition of CBMR-ind

In this subsection we describe the learning algorithm
CBMR-ind. We assume that Assumption 2 holds. Let

denote the set of the number of
recommendations agent can request from agent , where
we use the subscript to denote that the recommendations
are requested from agent . Let , and

be the set of arms of agent . We have
. We denote an arm of agent by index

. For arm , let be the agent that is called for item
recommendations to agent ’s user, and let be the number
of requested items from agent .8 For , and

. In CBMR-ind, at each time , agent chooses a set
of arms such that the total number of item recommendations
it makes to its user is . It is evident that choosing such a set
of arms is equivalent to choosing an action . Every
action maps to a unique set of arms. Thus, for an action

, let be the set of arms corresponding to .
Let be the set of items in with the

highest purchase probabilities for a user with context . For an
arm , let its purchase rate for a user with context be

, and for an arm , let it be
. Since Assumption 2 holds, we have

8 , is different from , , which denotes the agent that
owns item , and is different from , which denotes the number of
items agent should recommend when agent chooses action .

Fig. 4. Pseudocode of CBMR-ind for agent .

Different from CBMR-d, which estimates the reward of each
action in separately, CBMR-ind estimates the purchase rates
of the arms in , and uses them to construct the estimated re-
wards of actions in . The advantage of CBMR-ind is that the
purchase rate estimate of an arm can be updated based
on the purchase feedback whenever any action that contains
arm is selected by agent .
The pseudocode of CBMR-ind is given in Fig. 4. CMBR-ind

partitions the context space in the sameway as CBMR-d. Unlike
CBMR-d, CBMR-ind does not have exploration, exploitation
and training phases for actions . Rather than that, it
has exploration and exploitation phases for each arm ,
and exploration, exploitation and training phases for each arm

. Since a combination of arms is selected at each time
slot, selected arms can be in different phases. For each
and , CBMR-ind keeps the sample mean purchase rate

, which is the sample mean of the number of purchased
items corresponding to arm , purchased by users with contexts
in in exploration and exploitation phases of agent by time .
Similar to the counters and control functions of CBMR-d,

CBMR-ind also keeps counters and control functions for each
and . Basically, for , counts

the number of times arm is selected by agent to make a
recommendation to a user with context in by time . Counters

and are only kept for arms . The
former one counts the number of times arm is trained by agent
for times its users had contexts in by time , while the latter
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one counts the number of times arm is explored and exploited
by agent for times its users had contexts in by time . Let

(8)

where , , and are counters similar to
the counters of CBMR-d. Assume that . If
, then agent randomly chooses an action from the
set of actions for which . Else if
, then agent will choose the action

(9)
After action is chosen, the counters and sample mean pur-
chase rates of arms in are updated based on in which
phase they are in.
Agent responds to item requests of other agents with users

with contexts in in the following way. Any under-
explored item , i.e., is given priority to
be recommended. If the number of under-explored items is less
than the number of requested items, then the remaining items
are selected from the set of items in with the highest
sample mean purchase rates such that . The
pseudocode of this is not given due to limited space.

D. Analysis of the Regret of CBMR-ind

In this subsection we bound the regret of CBMR-ind. Under
Assumption 2, the expected reward of an item to agent for
a user with context is for and

for . For a set of items , let
denote the item in with the th highest expected

reward for agent . For an item and , let
, and . For the

set of the partition , the set of suboptimal arms of agent
at time is given by

We will optimize over and as we did in Section IV-B. The
set of near-optimal arms at time for is . Sim-
ilar to the approach we took in Section IV-B, we divide the
regret into three parts: , and , and bound
them individually. Different from the analysis of CBMR-d, here

denotes the regret in time slots in which all selected arms
are exploited and at least one them is suboptimal, while
denotes the regret in time slots in which all selected arms are
exploited and all of them are near-optimal. In the following
lemma, we bound the regret of CBMR-ind due to explorations
and trainings.

Lemma 4: When CBMR-ind is run by the agents with
, ,

and , where and , we have

In the next lemma, we bound .
Lemma 5: When CBMR-ind is run by the agents with

, ,
and , where and , given
that , we have

Different from Lemma 2, is linear in instead
of in . In the next lemma, we bound the .
Lemma 6: When CBMR-ind is run by the agents with

, ,
and , where and , given
that , we have

Combining the above lemmas, we obtain the regret bound for
agents using CBMR-ind.
Theorem 2: When CBMR-ind is run by the agents with

, ,

and , we have

i.e., , where
.

Proof: The highest orders of regret come from
and , which are and , re-
spectively. We need to optimize them with respect to the
constraint , which
is assumed in Lemmas 5 and 6. This gives us ,

and .
The result follows from summing the bounds in Lemmas 4, 5
and 6.
The result of Theorem 2 indicates that the regret of

CMBR-ind is sublinear in time and has the same time order
as the regret of CBMR-d. However, the regret of CMBR-ind
depends linearly on , which is much better than the linear
dependence of the regret of CBMR-d on .
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We would also like to note that the number of train-
ings and explorations, and hence the regret, can be
significantly reduced when agent knows for all

. In this case, agent can use the control func-
tion to decide if it needs to
train arm .

E. Comparison of CBMR-d and CBMR-ind

In this subsection we compare CBMR-d and CBMR-ind in
terms of their regret bounds, training and exploration rates, and
memory requirements. Note that the regret bound of CBMR-d
depends on the size of the action space , which grows com-
binatorially with and , and is an degree polynomial
of . In contrast the size of the arm space is just

. This is due to the fact that CBMR-d explores and
exploits each action without exploiting the correlations between
different actions.When the purchase probabilities depend on the
set of items offered together, in the worst case there may be no
correlation between rewards of different actions, and therefore
the best one can do is to form independent sample mean esti-
mates for each action in . However, when the purchase prob-
abilities are independent of the items offered together, since the
expected reward of agent from an action is the sum of
the expected rewards of the individual arms chosen by agent
in that action, substantial improvement over the regret bound is
possible due to smaller number of explorations and trainings.
Another advantage of CBMR-ind is that it requires a sig-

nificantly smaller amount of memory than CBMR-d. CBMR-d
needs to keep sample mean rewards and sample mean purchase
rates for all actions and for all partitions of the context space,
while CBMR-ind only needs to keep sample mean purchase
rates for all arms and for all partitions of the context space.

V. PERFORMANCE AS A FUNCTION OF THE NETWORK

In our analysis in the previous section we assumed that all
agents are directly connected to each other. In reality some
agents may not be connected to each other. For example, agents
and can both be connected to agent , but there may not
exist a direct link between agent and agent . This can happen
when, for example, a pair of companies has a trade agreement
between each other, but there is no trade agreement between
companies and . We assume that whenever a trade link exists
between agents and it is bidirectional. In this case, even
though cannot ask for items to recommend, can ask and
can ask for an item. Then, if sells ’s item, agent will get

commission from , while agent will get commission
from agent so that it recovers the payment it made

to agent from agent . We call agent the relay agent. Let
denote the set of agents that are directly connected to

agent .
If agent only cooperates with the agents in and all

cooperating agents use CBMR-d or CBMR-ind, then agent
can achieve the sublinear regret bounds given in Theorems 1
and 2, with respect to the optimal distributed recommendation
policy involving only the agents in . However, since
agent cannot exploit the advantage of the items of other agents
which are in , its regret can be linear with respect
to the optimal distributed recommendation policy involving all
the agents.

CBMR-d and CBMR-ind can be modified in the following
way to account for agents distributed over the network. Let

be the set of relay agents between agents and when
they are connected through path . Let . Let

be the agent that is connected directly to agent in path
, let be the agent that is connected directly to agent

, and so on. Then, the commission framework is modified
such that when agent sells agent ’s item it gets a commis-
sion from agent , agent gets a commission

from agent , and so on, such that
, where is the item recommended by

agent to agent ’s user. Using this scheme, all agents benefit
from the series of transactions described above, thus it is better
for them to cooperate based on the rules of the commission
scheme than to act on their own. We assume that agent will
not recommend an item to agent if for
all . Assume a connected network of agents
in which the maximum degree is and the longest path has

hops, where denotes the set of direct links between the
agents. Assume that the commissions are given be-
tween any agent and with direct links. We define agent ’s
regret to be the difference between the expected
total reward of the optimal policy for which agent has access to
the set of all the items of all agents in the network (but
if the item is in , it gets the commission from agent , which
is the agent that is directly connected to agent in the lowest
commission path from agent to agent ) and the expected total
reward of the learning algorithm used by agent . The explo-
ration and training control functions are run using
instead of . This way agent will help the relay agents
learn the other agent’s recommendations accurately such that
sublinear regret bounds can be achieved. The following the-
orem gives a bound on the regret of agents when they use the
modified version of CBMR-ind discussed above, which we call
CBMR-ind-N. A similar bound can also be proven for the mod-
ified version of CMBR-d.
Theorem 3: When Assumption 2 holds, if CBMR-ind-N

is run by all agents in , with agent running
CBMR-ind-N with the set of arms as described in
Section IV-C, defined using and instead of and
, control functions ,

, and

; and if commissions are such that all agents
will get a positive reward when their items are sold

by agent ,9 we have,

9If the commission an agent needs to pay to sell an item to the user of agent
is greater than the price of all the items of that agent, then that agent can be
removed from the set of agents which agent can cooperate with. Then, our
results will hold for the remaining set of agents.
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i.e., , where

.
Proof: The proof is similar to the proof of Theorem 2, but

more explorations and trainings are required to ensure that all
agents in all paths learn the rewards of their arms accurately for
each set in , before exploiting them.
Theorem 3 indicates that the regret increases exponentially

in and is an th degree polynomial in . While this
makes CBMR-ind-N impractical in non-small world networks,
CBMR-ind-N can achieve small regret in small world networks
in whichmost agents are not directly connected to each other but
all agents can be reached a with small number of hops. Because
of the additional commission the relay agent gets, an item which
will recommend when it is directly connected to agent may
not be recommended by when it is connected via agent . This
results in sub-optimality compared to the case when all agents
are connected. In Section VI we numerically compare the effect
of the agents’ commissions on the performance.
More refined versions of Theorem 3 can be derived if we

focus on specific networks. One interesting network structure
is when there is a monopolist agent which is directly connected
to all of the other agents, while other agents are only directly
connected to the monopolist agent. Corollary 1 gives the regret
bound for agent when it is the monopolist agent, and Corollary
2 gives the regret bound for agent when it is not the monopolist
agent.
Corollary 1: When agent is the monopolist agent, if it runs

CBMR-ind-N with and ev-
erything else remaining the same as in Theorem 3, it will achieve

.
Corollary 2: When agent is a non-monopolist agent, if it

runs CBMR-ind-N with
and everything else remaining the same as in Theorem 3, it will
achieve .
Corollaries 1 and 2 imply that the learning is much faster,

and hence the regret is much smaller when an agent has direct
connections with more agents. This is because agent learns
directly about the purchase probabilities of items in agent ’s
inventory when it is directly connected to it, while the learning
is indirect through a relay agent otherwise.

VI. NUMERICAL RESULTS

A. Description of the Data Set

The Amazon product co-purchasing network data set in-
cludes product IDs, sales ranks of the products, and for each
product the IDs of products that are frequently purchased with
that product. This data is collected by crawling the Amazon
website [33] and contains 410,236 products and 3,356,824
edges between products that are frequently co-purchased
together. We simulate CBMR-ind and CBMR-d using the
following distributed data sets adapted based on Amazon data.
For a set of chosen products from the Amazon data set, we
take these products and other products that are frequently
co-purchased with the set of products as our set of items.
The set of products that are taken in the first step of the above

procedure is denoted by . The set of all products, i.e., ,
contains these products and the set of products frequently
co-purchased with them, which we denote by . We assume

that each item has a unit price of 1, but have different purchase
probabilities for different types of users. Since user information
is not present in the data set, we generate it artificially by as-
suming that every incoming user searches for a specific item
in . This search query (item) will then be the context infor-
mation of the user, hence the context space is . Thus, we set

. Based on this, the agent that the user arrives to rec-
ommends items to the user. The agent’s goal is to maximize
the total number of items sold to its users.
We generate the purchase probabilities in the following way:

For group-dependent purchase probabilities, when of the
products recommended for context are in the set of fre-
quently co-purchased products with item , then the purchase
probability of each of these products will be ,
where . For the other products which
are not frequently co-purchased with item , their purchase
probability is , where . For independent
purchase probabilities, when a product recommended for con-
text is in the set of frequently co-purchased products with
item , the purchase probability of that product will be .
When it is not, the purchase probability of that product will be
, for which we have .
We assume that there are 3 agents and evaluate the perfor-

mance of agent 1 based on the number of users arriving to agent
1 with a specific context , which we take as the first item in set
. We assume that , which means that 100,000

users with context arrive to agent 1. Since the arrival rate
of context can be different for the agents, we assume ar-
rivals with context to other agents are drawn from a random
process. We take , and . As a result,
we get 30 distinct items in which are distributed among the
agents such that for every agent . Since the context
space is discrete we have , and there is no Hölder con-
dition on the purchase probabilities as given in Assumptions 1
and 2, hence we take such that .
Unless otherwise stated, we assume that , ,

and .

B. Comparison of the Reward and Regret of CBMR-d and
CBMR-ind for Group-Dependent Purchase Probabilities

We run both CBMR-d and CBMR-ind for group-dependent
purchase probabilities assuming that both items that are fre-
quently co-purchased with context are in agent 1’s inven-
tory. The “oracle” optimal policy recommends one of the fre-
quently co-purchased items and another item in agent 1’s inven-
tory to the user with context , instead of recommending the
two frequently co-purchased items together. Expected total re-
ward of the “oracle” optimal policy, total rewards of CBMR-d
and CBMR-ind, and the number of trainings of CBMR-d and
CBMR-ind are shown in Table III for agent 1. We have
and .
We see that the total reward of CBMR-ind is higher than the

total reward of CBMR-d for this case. This is due to the fact
that CBMR-d spends more than double the time CBMR-ind
spends in training and exploration phases since it trains and ex-
plores each action in separately. The time averaged regrets
of CBMR-d and CBMR-ind are given in Fig. 5. It is observed
that CBMR-ind performs better than CBMR-d in all time slots,
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TABLE III
TOTAL REWARDS OF THE “ORACLE” OPTIMAL POLICY, CBMR-D AND
CBMR-IND, AND NUMBER OF TRAININGS OF CBMR-D AND CBMR-IND

FOR GROUP-DEPENDENT PURCHASE PROBABILITIES

Fig. 5. Time averaged regrets of CBMR-d and CBMR-ind for group-dependent
purchase probabilities.

TABLE IV
TOTAL REWARD OF AGENT 1 AS A FUNCTION OF THE

COMMISSION IT CHARGES TO OTHER AGENTS

and the time averaged regret goes to 0. From these results it
seems that CBMR-ind is a good alternative to CBMR-d even
for group-dependent purchase probabilities.

C. Effect of Commission on the Performance

In this subsection we numerically simulate the effect of com-
missions that agent 1 charges to other agents on the total
reward of agent 1. We consider CBMR-ind for independent pur-
chase probabilities. We assume that agent 1 has one of the fre-
quently co-purchased items for context , while agent 3 has the
other frequently co-purchased item. The total reward of agent
1 as a function of the commissions is given
in Table IV. We note that there is no significant difference in
the total reward when the commission is from 0 to 0.1. This
is because 0.1 commission is not enough to incentivize agent
1 to recommend other agent’s items to its users. However, for
commissions greater than 0.1, the optimal policy recommends
the two frequently co-purchased items together, hence agent 1
learns that it should get recommendations from agent 3. There-
fore, after 0.1 the total reward of the agent is increasing in the
commission. Another remark is that corresponds to the
case when agent 1 is not connected to the other agents. There-
fore, this example also illustrates how the rewards change as net-
work connectivity changes. Since prices of items are set to 1 in
this section, the commission agent 1 charges can increase up to
1. But if the prices are different, then the commission cannot ex-
ceed the recommended item’s price. In theory, in order to max-
imize its total reward from its own users, agent can adaptively
select its commissions , based on what it learned
about the purchase probabilities. CBMR-d and CBMR-ind can
be modified to adaptively select the commissions. Due to the
limited space, we leave this as a future research topic.

Fig. 6. Time averaged regret of CBMR-ind for independent purchase proba-
bilities when agent 1 has both frequently co-purchased items (C-1), only one
of the frequently co-purchased items (C-2) and none of the frequently co-pur-
chased items (C-3).

D. Effect of the Set of Items of Each Agent on the Performance

In this subsection we compare three cases for independent
purchase probabilities when agents use CBMR-ind. In C-1 agent
1 has both items that are frequently co-purchased in context ,
in C-2 it has one of the items that is frequently co-purchased in
context , and in C-3 it has none of the items that are frequently
co-purchased in context . The total reward of agent 1 for these
cases is 17744, 14249 and 9402 respectively, while the total ex-
pected reward of the optimal policy is 20000, 15000 and 10000
respectively. Note that the total reward for C-3 is almost half of
the total reward for C-1 since the commission agent 1 gets for
a frequently co-purchased item is 0.5. The time averaged regret
of CBMR-ind for all these cases is given in Fig. 6. We see that
the convergence rate for C-1 is slower than C-2 and C-3. This is
due to the fact that in all of the training slots in C-1 a suboptimal
set of items is recommended, while for C-2 and C-3 in some of
the training slots the optimal set of items is recommended.

VII. CONCLUSION

In this paper we have presented a novel set of algorithms for
multi-agent learning within a decentralized social network, and
characterized the effect of different network structures on per-
formance. Our algorithms are able to achieve sublinear regret in
all cases, with the regret being much smaller if the user’s accep-
tance probabilities for different items are independent. By co-
operating in a decentralized manner and using our algorithms,
agents have the benefit of retaining their autonomy and privacy
while still achieving near optimal performance.
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