
1

Context-Adaptive Big Data Stream Mining
Cem Tekin, Luca Canzian, Mihaela van der Schaar

Abstract—Emerging stream mining applications require clas-
sification of large data streams generated by single or multiple
heterogeneous sources. Different classifiers can be used to
produce predictions. However, in many practical scenarios the
distribution over data and labels (and hence the accuracies of
the classifiers) may be unknown a priori and may change in un-
predictable ways over time. We consider data streams that are
characterized by their context information which can be used
as meta-data to choose which classifier should be used to make
a specific prediction. Since the context information can be high
dimensional, learning the best classifiers to make predictions
using contexts suffers from the curse of dimensionality. In this
paper, we propose a context-adaptive learning algorithm which
learns online what is the best context, learner, and classifier
to use to process a data stream. Then, we theoretically bound
the regret of the proposed algorithm and show that its time
order is independent of the dimension of the context space.
Our numerical results illustrate that our algorithm outperforms
most prior online learning algorithms, for which such online
performance bounds have not been proven.

Index Terms—Stream mining, context-adaptive learning, dis-
tributed multi-user learning, contextual bandits.

I. INTRODUCTION

A plethora of Big Data applications including network
monitoring [1], surveillance [2] and health monitoring [3]
(see Fig. 1), are emerging which require online classifica-
tion of large data sets collected from single or distributed
sensors, monitors, multimedia sources, etc. The data streams
collected by such sources are heterogeneous and dynamically
evolving over time in unknown and unpredictable ways.
Hence, mining these data streams online, at run-time, is
known to be a very challenging problem [4], [5]. In this
paper, we tackle these online stream mining challenges by
exploiting the automatically generated meta-data, referred
to as “contexts”, which is gathered or associated to the
data streams in the process of capturing or pre-processing
them. Contexts can represent any side-information related
to the input data stream such as the location at which
the data was captured, and/or data type information (e.g.,
data features/characteristics/modality). We assume that each
data stream is processed by a decision maker/learner, which
upon receiving the data and associated contexts takes a
classification action (i.e., calls a local classifier or another
learner), which will return a prediction.

Classifiers can be anything ranging from separating hyper-
planes, naive Bayesian classifiers, random trees, etc., whose

C. Tekin: Department of Electrical Engineering, UCLA, Los Angeles,
CA. Email: cmtkn@ucla.edu.

L. Canzian: Department of Computer Science, University of Birmingham,
Birmingham, UK. Email: l.canzian@cs.bham.ac.uk.

M. van der Schaar: Department of Electrical Engineering, UCLA, Los
Angeles, CA. Email: mihaela@ee.ucla.edu.

Fig. 1. Various applications of Big Data stream mining.

expected accuracies are unknown a priori to the decision
maker/learner. The focus of this paper is to determine how
to learn online, based on the data and the labels (feedback)
received in the past, which type of context is the most
relevant given a vector of available contexts at each time
instance, and to choose the marginally best classifier (have
the highest accuracy given the value of a particular type
of context but not the entire context vector) according to
its estimated performance for that particular context. The
goal of each learner is to maximize its long term expected
total reward, which is the expected number of correct labels
minus the costs of classification. In this paper the cost is
a generic term that can represent any known cost such
as processing cost, delay cost, communication cost, etc.
Similarly, data is used as a generic term. It can represent
files of several Megabytes size, chunks of streaming media
packets or contents of web pages.

If multiple learners are available in the system to cap-
ture and process various data streams (possibly captured at
different locations), they can cooperate with each other to
process the streams. Each learner can then process (make a
prediction on) the incoming data in two different ways: either
it can exploit one of its own classifiers to make a prediction
or it can forward its input stream to another learner (possibly
by incurring some cost) to have it labeled. A learner learns
the accuracies of its own classifiers or other learners in an
online way, by comparing the result of the predictions with
the true label of its input stream which is revealed at the end
of each time slot. We consider cooperative learners which
classify other’s data when requested, such that the individual
utility (expected total reward) of each learner is maximized.

Each learner faces a sequential decision making problem

2

of what classification action to take based on its current
context vector and its history of observations and decisions.
Therefore, our focus in this paper is how to learn the best
classifiers from a given set of classifiers rather than designing
the classifiers. Since multi-armed bandit (or simply, bandit)
[6]–[9] based approaches are proven to be very effective
for sequential decision making problems, in this paper we
propose a novel bandit approach which adaptively learns to
make decisions based on the values of different types of
contexts.

The context information is usually correlated with the data
and the label, and can significantly improve the classification
performance if used smartly. However, when the number
of types of contexts associated with the data is large (i.e.,
dimension of the context vector is large), learning the best
classification action according to the entire set of contexts
suffers from the curse of dimensionality. In this paper we
propose a new approach in which the marginally best clas-
sification action at each time instance is learned based on
the best type of context in the current set of contexts. We
will show that this solution does not suffer from the curse
of dimensionality.

The remainder of the paper is organized as follows. In
Section II, we describe the related work. In Section III, we
formalize the problem and define the regret. We propose a
distributed online learning algorithm which learns to exploit
the marginally best classification action over time in Section
IV. Numerical results are given in Section V. Finally, the
concluding remarks are given in Section VI.

II. RELATED WORK

Most of the prior work in stream mining is focused on
learning from the unique data stream characteristics [10]–
[15]. In this paper, we take a different approach: instead of
focusing on the characteristics of a specific data stream, we
focus on the characteristics of data streams having the same
context information. Importantly, we focus on learning what
type of context information should be taken into account
when choosing a classifier to make a prediction. Some
context can reveal a lot of information about the best action to
take, while some other context may be irrelevant. We provide
a detailed comparison to our work in Table I.

Other than distributed data mining, our learning framework
can be applied to any problem that can be formulated as
a decentralized contextual bandit problem [16]. Contextual
bandits have been studied before in [8], [9], [17], [18] and
other works in a single agent setting. However our work
is very different from these because (i) we consider decen-
tralized agents who can learn to cooperate with each other,
(ii) the set of actions and realization of data and context
arrivals to the agents can be very different for each agent,
(iii) instead of learning to take the best action considering
the entire D-dimensional context vector, an agent learns to
take the marginally best action by independently considering
each D types of contexts.

Our prior work has shown that the performance of existing
learning algorithms usually depends on the dimension of

the context space [16]. When the dimension of the context
space is large, the convergence rate of these algorithms to
the optimal average reward becomes very slow. However,
the convergence speed of the algorithms we propose in this
paper is independent of this dimension.

III. PROBLEM FORMULATION

The system model is shown in Fig. 2 and Fig. 3. There
are M learners which are indexed by the set M :=
{1, 2, . . . ,M}. The set of classifiers learner i has is Fi. The
set of all classifiers is F = ∪i∈MFi. Let M−i :=M−{i}
be the set of learners learner i can choose from to send its
data for classification. The action (arm) set1 of learner i is
Ki := Fi ∪M−i. Throughout the paper we use index f to
denote an element of F , j to denote learners in M−i, and
k to denote an element of Ki.

These learners work in a discrete time setting t =
1, 2, . . . , T , where the following events happen sequentially,
in each time slot: (i) data si(t) ∈ S with a specific
D-dimensional context vector xi(t) = (x1i (t), . . . , x

D
i (t))

arrives to each learner i ∈ M, where S is the data set,
xdi (t) ∈ Xd for d ∈ D := {1, . . . , D} and Xd is the set
of type-d contexts, and X = X1 × . . . × XD is the context
space,2 (ii) each learner i chooses one of its own classifiers
or another learner to send its data and context, and produces
a label ŷi(t) ∈ Y based on the prediction of its own classifier
or the learner to which it sent its data and context, where Y is
the set of possible labels, (iii) the truth (true label) yi(t) ∈ Y
is revealed, perhaps by events or by a supervisor, only to the
learner i where the data arrived, (iv) the learner where the
data arrived passes the true label to the learner it had chosen
to classify its data, if there is such a learner.

A. Data, label, context and classifier accuracies

At each time slot si(t), yi(t) and xi(t) are drawn from an
(unknown) joint distribution J over S×Y×X independently
from other time slots for each learner i ∈ M. We do not
require this draw to be independent among the learners. Since
context vector xi(t) is revealed to learner i at the beginning
of time t, depending on J , there exists a conditional distri-
bution Gxi(t) over S × Y . Similarly, depending on J , there
is a marginal distribution H over X from which contexts are
drawn. Given context vector x, let

πf (x) := E[I(f(si(t)) = yi(t))]

=

∫
(s,y)∈S×Y

I(f(si(t)) = yi(t))dGx(s, y)

be the joint accuracy (or simply, accuracy) of classifier
f ∈ F , where f(si(t)) is the prediction of classifier f on
the data, I(·) is the indicator function which is equal to
1 if the statement inside is true and 0 otherwise, and the
expectation E[·] is taken with respect to distribution Gx. Let

1In sequential online learning literature [6], [7], an action is also called
an arm (or an alternative).

2In our analysis, we will assume that Xd = [0, 1] for all d ∈ D. However,
our algorithms will work and our results will hold even when the context
space is discrete given that it is bounded.

3

[12], [19]–[22] [15], [23] [13] [16] This work
Aggregation non-cooperative cooperative cooperative no no
Message exchange none data training residual data and label (adaptively) data and label (adaptively)
Learning approach offline/online offline offline Non-Bayesian online Non-Bayesian online
Learning from other’s contexts N/A no no yes yes
Using other’s classifiers no all all sometimes-adaptively sometimes-adaptively
Data partition horizontal horizontal vertical both both
Bound on regret no no no yes - context dependent yes - context independent
Context adaptive no no no no yes

TABLE I
COMPARISON WITH RELATED WORK IN DISTRIBUTED DATA MINING.

x−d := (x1, . . . , xd−1, xd+1, . . . , xD) and ((x′)−d, xd) =
(x′1, . . . , x′d−1, xd, x′d+1, . . . , x′D). Then, the marginal ac-
curacy of f based on type-d context is defined as

πdf (xd) :=

∫
(x′)−d

πf ((x′)−d, xd)dH((x′−d), xd).

We say that the problem has the similarity property when
each classifier has similar marginal accuracies for similar
contexts.

Definition 1: Similarity Property. If the joint distribution
J over S × Y × X is such that for each f ∈ F and d ∈ D,
there exists a minimum α > 0 and a minimum L > 0, such
that for all xd, (x′)d ∈ Xd, we have

|πdf (xd)− πdf ((x′)d)| ≤ L|xd − (x′)d|α,

then we call J a distribution with similarity.
Although, our model assumes a continuous context space,

our algorithms will also work when the context space is
discrete. Note that Definition 1 does not require the context
space to be continuous. We assume that α is known by the
learners, while L does not need to be known. However, our
algorithms can be combined with estimation methods for α.

B. Unknowns, actions and rewards

In our problem, the unknowns for learner i are (i) Fj ,
j ∈ M−i, (ii) J , H , Gx, x ∈ X , (iii) πf (x), f ∈ F ,
x ∈ X , (iv) πdf (xd), f ∈ F , xd ∈ Xd, d ∈ 1, . . . , D.

On the other hand, learner i knows (i) the functions in
Fi and costs of calling them,3 (ii) the set of other learners
M−i and costs of calling them, (iii) and an upper bound on
the number of classifiers that each learner has, i.e., Fmax ≥
|Fj |,4 for all j ∈M−i.

At each time slot t, learner i can either invoke one of its
classifiers or forward the data to another learner to have it
labeled. We assume that for learner i, calling each classifier
f ∈ Fi incurs a cost cif ≥ 0. A learner i can also send its
data to another learner in M−i in order to have it labeled.
Because of the communication cost and the delay caused
by processing at the recipient, we assume that whenever the
data is sent to another learner j ∈ M−i a cost of cij is

3Alternatively, we can assume that the costs are random variables with
bounded support whose distribution is unknown. In this case, the learners
will not learn the accuracy but they will learn accuracy minus cost.

4For a set A, let |A| denote the cardinality of that set.

Fig. 2. Operation of learner i during a time slot when it chooses one of
its own classifiers.

Fig. 3. Operation of learner i during a time slot when it chooses learner
j.

incurred by learner i.5 Since the costs are bounded, without
loss of generality we assume that costs are normalized, i.e.,
cik ∈ [0, 1] for all k ∈ Ki.6 The learners are cooperative
which implies that learner j ∈M−i will return a prediction
to i when called by i using its classifier with the highest
estimated accuracy for i’s context vector. Similarly, when
called by j ∈M−i, learner i will return a label to j. In our
theoretical analysis we do not consider the effect of this on
i’s learning rate; however, since our results hold for the case
when other learners are not helping i to learn about its own
classifiers, they will also hold when other learners help i to
learn about its own classifiers.

5The cost for learner i does not depend on the cost of the classifier chosen
by learner j. Since the learners are cooperative, j will obey the rules of the
proposed algorithm when choosing a classifier to label i’s data. We assume
that when called by i, j will select a classifier from Fj , but not forward i’s
data to another learner.

6If there is a classifier f such that it is both in Fi and Fj , we assume
that the cost of calling f ∈ Fi is smaller than the cost of calling learner j
for learner i.

4

We assume that each classifier produces a binary label,7

thus Y = {0, 1}. For a learner j ∈ M−i its accuracy for a
type-d context xd is equal to the accuracy of its best classifier,
i.e., πdj (xd) := maxf∈Fj π

d
f (xd). The goal of each learner i

is to maximize its total expected reward. This corresponds to
minimizing the regret with respect to the benchmark solution
which we will define in the next subsection.

C. Classification with Complete Information

Our benchmark when evaluating the performance of the
learning algorithms is the solution which selects the arm
in Ki with the highest marginal accuracy minus cost (i.e.,
reward) given the context vector xi(t) at time t. Specifically,
the solution we compare against is given by

k∗i (x) := arg max
k∈Ki

(
max
d∈D

πdk(xd)− cik
)
, ∀x ∈ X .

Since calculating k∗i (x) requires knowledge of marginal
classifier accuracies only, we call k∗i (x) the marginally best
classification action given context x. Knowing this means
that learner i knows the classifier in F that yields the highest
accuracy for each xd ∈ Xd, d ∈ D. In general we have
k∗i (x) 6= arg maxk∈Ki(πk(x) − cik). But for special cases,
such as when the distribution of data only depends on the
value of a single type of context (but this type is unknown),
the two are equivalent.

D. The Regret of Learning

Simply, the regret is the loss incurred due to the unknown
system dynamics. Regret of a learning algorithm which
selects an action ai(t) ∈ Ki at time t for learner i based on
its context vector xi(t) and the past observations is defined
as

Ri(T) :=

T∑
t=1

(
πk∗i (xi(t))(xi(t))− c

i
k∗i (xi(t))

)
− E

[
T∑
t=1

(I(ŷi(t) = yi(t))− ciai(t))

]
,

where ŷi(t) denotes the prediction of the action ai(t) selected
by learner i at time t, yi(t) denotes the true label of the
data stream that arrived to learner i in time slot t, and the
expectation is taken with respect to the randomness of the
prediction. Regret gives the convergence rate of the total
expected reward of the learning algorithm to the value of
the benchmark solution k∗i (x), x ∈ X . Any algorithm whose
regret is sublinear, i.e., Ri(T) = O(T γ) such that γ < 1, will
converge to the benchmark solution in terms of the average
reward.

IV. ADAPTIVELY LEARNING THE CONTEXTS TO EXPLOIT

In this section we propose an online learning algorithm
that achieves sublinear in time regret when the condition in

7In general we can assume that labels belong to R and define the
classification error as the mean squared error or some other metric. Our
results can be adapted to this case as well.

Definition 1 holds. We name our algorithm Adaptive Contexts
and Adaptive Partitions (ACAP).

A. The ACAP algorithm

The basic idea behind ACAP is to adaptively divide the
context space into finer and finer regions over time such that
regions of the context space with a large number of arrivals
are trained and explored more accurately than regions of
the context space with small number of arrivals, and then
only use the observations in those sets when estimating the
rewards of arms in Ki for contexts that lie in those sets. At
each time slot, ACAP chooses an arm adaptively based on the
estimated marginal accuracies of the arms given the context
vector. At time t, we call the type-d context for which the
selected arm’s marginal accuracy is maximized as the main
context of that time.

For each type-d context, ACAP starts with a single hyper-
cube which is the entire context space Xd, then divides the
space into finer regions and explores them as more contexts
arrive. In this way, the algorithm focuses on parts of the
space in which there is large number of context arrivals,
and does this independently for each type of context. The
learning algorithm for learner i should zoom into the regions
of space with large number of context arrivals, but it should
also persuade other learners to zoom to the regions of the
space where learner i has a large number of context arrivals.
Here zooming means using past observations from a smaller
region of context space to estimate the rewards of actions
for a context. The pseudocode of ACAP is given in Fig. 4,
and the initialization, training, exploration and exploitation
modules are given in Fig. 5 and Fig. 6.

For each type-d context, we call an interval (a2−l, (a +
1)2−l] ⊂ [0, 1] a level l hypercube for a = 1, . . . , 2l − 1,8

where l is an integer. Let Pdl be the partition of type-d
context space [0, 1] generated by level l hypercubes. Clearly,
|Pdl | = 2l. Let Pd := ∪∞l=0Pdl denote the set of all
possible hypercubes. Note that Pd0 contains only a single
hypercube which is Xd itself. At each time slot, ACAP
keeps for learner i a set of mutually exclusive hypercubes
that cover the context space of each type d ∈ D context.
We call these hypercubes active hypercubes, and denote the
set of active hypercubes for type-d context at time t by
Adi (t). Let Ai(t) := (A1

i (t), . . . ,ADi (t)). Clearly, we have
∪C∈Adi (t)C = Xd. Denote the active hypercube that contains
xdi (t) by Cdi (t). Let Ci(t) := (C1

i (t), . . . , CDi (t)) be the set
of active hypercubes that contains xi(t). The arm chosen
by learner i at time t only depends on the actions taken
on previous context observations which are in Cdi (t) for
some d ∈ D. The number of such actions and observations
can be much larger than the number of previous actions
and observations in Ci(t). This is because in order for an
observation to be in Ci(t), it should be in all Cdi (t), d ∈ D.
Let N i,d

C (t) be the number of times type-d contexts have
arrived to hypercube C of learner i from the activation of C
till time t. Once activated, a level l hypercube C will stay

8The first level l hypercube is defined as [0, 2−l].

5

Adaptive Contexts and Adaptive Partitions Algorithm (for
learner i):

1: Input: D1(t), D2(t), D3(t), p, A
2: Initialization: Ad

i = {[0, 1]}, d ∈ D.
Ai = A1

i × . . .×AD
i . Run Initialize(Ai)

3: Notation: r̄i
k = (r̄i,d

k,Cd(t)
)d∈D ,

r̄i = (r̄i
k)k∈Ki ,

lC : level of hypercube C,
N i

k = (N i,d

k,Cd(t)
)d∈D , k ∈ Ki,

N i = (N i
k)k∈Ki .

4: while t ≥ 1 do
5: if ∃d ∈ D and ∃k ∈ Fi such that N i,d

k,Cd(t)
≤ D1(t)

then
6: Run Explore(t, k, d, N i,d

k,Cd(t)
, r̄i,d

k,Cd(t)
)

7: else if ∃d ∈ D and ∃k ∈M−i such that
N i,d

1,k,Cd(t)
≤ D2(t) then

8: Run Train(t, k, d, N i,d

1,k,Cd(t)
)

9: else if ∃d ∈ D and ∃k ∈M−i such that
N i,d

k,Cd(t)
≤ D3(t) then

10: Run Explore(t, k, d, N i,d

k,Cd(t)
, r̄i,d

k,Cd(t)
)

11: else
12: Run Exploit(t, N i, r̄i, Ki)
13: end if
14: N i,d

Cd(t)
= N i,d

Cd(t)
+ 1

15: for d ∈ D do
16: if N i,d

Cd(t)
≥ A2

pl
Cd(t) then

17: Create 2 level lCd(t) + 1 child hypercubes denoted
by ACd(t)

18: Run Initialize(ACd(t))
19: Ai = Ai ∪ ACd(t) − Cd(t)
20: end if
21: end for
22: t = t + 1
23: end while

Fig. 4. Pseudocode of the ACAP algorithm.

Initialize(A):
1: for C ∈ A do
2: Set N i,d

C = 0, N i,d
k,C = 0, r̄i,dk,C = 0 for k ∈ Ki,

N i,d
1,k,C = 0 for k ∈M−i.

3: end for

Fig. 5. Pseudocode of the initialization module.

active until the first time t such that N i,d
C (t) ≥ A2pl, where

p > 0 and A > 0 are parameters of ACAP. After that, ACAP
will divide C into 2 level l + 1 hypercubes.

For each action (classifier) in Fi, ACAP have a single
(deterministic) control function D1(t) which controls when
to explore or exploit, while for each action (other learner)
in M−i, ACAP have two (deterministic) control functions
D2(t) and D3(t), where D2(t) controls when to train, D3(t)
controls when to explore or exploit when there are enough
trainings.

Marginal sample mean arm rewards, i.e., r̄i,dk,C(t), k ∈
Ki, C ∈ Adi (t), are calculated only based on the rewards
collected at time steps when k is selected due to a type-
d context in C being under-explored (i.e., at times when
N i,d
k,Cd(t′)

≤ D1(t′) for k ∈ Fi or N i,d
k,Cd(t′)

≤ D3(t′) for
k ∈M−i, and Cd(t′) = C, t′ < t in the adaptive partition).
This way as the number of observations goes to infinity, it
is guaranteed that r̄i,dk,C(t) converges to a number very close

Train(t, k, d, N i,d
1,k):

1: Select arm k.
2: Send current data si(t) and type-d context xd

i (t) to learner
k.

3: Receive prediction ŷi(t) = fk,t(si(t)) from learner k,
where fk,t is the classifier that k chooses to make the
prediction which is selected using xd

i (t).
4: Receive true label yi(t) (send this also to learner k).
5: Compute reward rk(t) = I(ŷi(t) = yi(t))− cik.
6: N i,d

1,k,Cd(t)
+ +.

Explore(t, k, d, N i,d

k,Cd(t)
, r̄i,d

k,Cd(t)
):

1: Select arm k.
2: Receive prediction ŷi(t) = fk,t(si(t)).
3: Receive true label yi(t) (if k ∈M−i, send this also to

learner k).
4: Compute reward rk(t) = I(ŷi(t) = yi(t))− cik.

5: r̄i,d
k,Cd(t)

=
N
i,d

k,Cd(t)
r̄
i,d

k,Cd(t)
+rk(t)

N
i,d

k,Cd(t)
+1

.

6: N i,d

k,Cd(t)
+ +.

Exploit(t, N i, r̂i, Ki):

1: Select arm k ∈ arg maxj∈Ki

(
maxd∈D r̄i,d

j,Cd(t)

)
.

2: Receive prediction ŷi(t) = fk,t(si(t)).
3: Receive true label yi(t) (if k ∈M−i, send this also to

learner k).
4: Compute reward rk(t) = I(ŷi(t) = yi(t))− cik.

Fig. 6. Pseudocode of the training, exploration and exploitation modules.

to the true marginal expected reward action k for contexts in
C. This, together with the adaptive partitioning guarantees
that the regret remains sublinear in time.

In addition to the exploration phase, which allows learners
to build accurate estimates of the marginal expected rewards
of their actions for their own contexts, the training phase
required for actions k ∈M−i serves the purpose of helping
the learners build accurate estimates of the marginal expected
rewards for each other’s contexts. If learner i selects another
learner k, it cannot choose the classifier that is selected
by that learner to produce the prediction. If the estimated
marginal accuracies of classifiers of learner k are inaccurate,
i’s estimate of k’s accuracy will be very different from the
accuracy of k’s marginally optimal classifier for i’s context
vector. Therefore, learner i uses the rewards from learner
k ∈M−i to estimate the expected reward of learner k only
if it believes that learner k estimated the accuracies of its
own classifiers accurately.

In order for learner k to estimate the accuracies of its
own classifiers accurately, if the number of context arrivals
to learner k in set Cdi (t) is small, learner i trains learner k by
sending its type-d context to k, receiving back the prediction
of the classifier chosen by k and sending the true label at
the end of that time slot to k so that k can compute the
estimated accuracy of the classifier (in Fk) it had chosen for
i. In order to do this, learner i keeps two counters N i,d

1,k,C(t)

and N i,d
k,C(t) for each C ∈ Aid(t), which are initially set to

0.
If N i,d

1,k,C(t) ≤ D2(t), then learner i trains learner k

by sending its data si(t), and context xdi (t), receiving a
prediction from learner k, and then sending the true label
yi(t) to learner k so that learner k can update the estimated

6

marginal accuracy of the classifier in Fk it had chosen
to make a prediction for learner i for type-d context. If
N i,d

1,k,C(t) > D2(t), for all d ∈ D, this means that learner
k is trained enough for all types of contexts so it will
almost always select the classifier with the highest marginal
accuracy, i.e., maxf∈Fk,d∈D π

d
f (xdi (t)), when called by i.

To have sufficient observations from k before exploitation,
i explores k when N i,d

1,k,C(t) > D2(t) and N i,d
k,C(t) ≤ D3(t),

and updates N i,d
k,C(t) and the sample mean marginal accuracy

of learner k, which is the ratio of the total number of correct
predictions to the total number of predictions k has made for
i for contexts in hypercube C. Let

Si,d
Cdi (t)

(t) :=
{
f ∈ Fi : N i,d

f,Cdi (t)
(t) ≤ D1(t) or j ∈M−i :

N i,d

1,j,Cdi (t)
(t) ≤ D2(t) or N i,d

j,Cdi (t)
(t) ≤ D3(t)

}
, (1)

and

SiCi(t)
(t) :=

⋃
d∈D

Si,d
Cdi (t)

(t).

If SiCi(t)
(t) 6= ∅ then ACAP randomly selects an arm in

SiCi(t)
(t) to train or explore, while if SiCi(t)

(t) = ∅, ACAP
selects an arm in

arg max
k∈Ki

(
max
d∈D

r̄i,d
k,Cdi (t)

(t)

)
to exploit.

B. Analysis of the regret of ACAP

In this subsection we analyze the regret of ACAP and
derive a sublinear upper bound on the regret, whose time
order does not depend on D. We divide the regret Ri(T) into
three different terms. Rei (T) is the regret due to trainings
and exploitations by time T , Rsi (T) is the regret due to
selecting suboptimal actions at exploitation steps by time
T , and Rni (T) is the regret due to selecting near-optimal
actions in exploitation steps by time T . Using the fact
that trainings, explorations and exploitations are separated
over time, and linearity of expectation operator, we get
Ri(t) = Rei (T)+Rsi (T)+Rni (T). In the following analysis,
we will bound each part of the regret separately. Due to the
limited space, proofs of the lemmas are given in our online
appendix [24].

Lemma 1: Regret of trainings and explorations in a
hypercube. Let D1(t) = D3(t) = tz log t and D2(t) =
Fmaxt

z log t. Then, for any level l hypercube for type-d
context the regret due to trainings and explorations by time
t is bounded by

O(tz log t).

For learner i let µdk(x) := πdk(x) − cik, be the expected
reward of arm k ∈ Ki for type-d context xd ∈ Xd. For each
set of hypercubes C = (C1, . . . , CD), let k∗(C) ∈ Ki be
the arm which is optimal for the center context of the type-d
hypercube which has the highest expected reward among all
types of contexts for C, and let d∗(C) be the type of the

context for which arm k∗(C) has the highest expected re-
ward. Let µdk,Cd := supx∈Cd µ

d
k(x), µd

k,Cd
:= infx∈Cd µ

d
k(x)

µk,C := maxd∈D µ
d
k,Cd , and µ

k,C
:= maxd∈D µ

d
k,Cd

, for
k ∈ Ki. When the set of active hypercubes of learner i is
C, the set of suboptimal arms is given by

LiC,B :=
{
k ∈ Ki : µ

k∗(C),C
− µk,C > BL2−lmax(C)α

}
,

where B > 0 is a constant and lmax(C) is the level of the
highest level hypercube in C. When the context vector is in
C, any arm that is not in LiC,B is a near-optimal arm.

Lemma 2: Regret due to suboptimal arm selections. Let
LiC,B , B = 12/(L2−α)+2 denote the set of suboptimal arms
for set of hypercubes C. When ACAP is run with parameters
p > 0, 2α/p ≤ z < 1, D1(t) = D3(t) = tz log t and
D2(t) = Fmaxt

z log t, the regret of learner i due to choosing
suboptimal arms in LiCi(t),B

at time slots 1 ≤ t ≤ T in
exploitation steps, i.e., Rsi (T), is bounded by

O(T z/2).

Lemma 3: Regret due to near-optimal learners choos-
ing suboptimal classifiers. Let LiC,B , B = 12/(L2−α) + 2
denote the set of suboptimal actions for set of hypercubes C.
When ACAP is run with parameters p > 0, 2α/p ≤ z < 1,
D1(t) = D3(t) = tz log t and D2(t) = Fmaxt

z log t, for
any set of hypercubes C that has been active and contained
xi(t

′) for some exploitation time slots t′ ∈ {1, . . . , T}, the
regret due to a near optimal learner choosing a suboptimal
classifier when called by learner i is bounded by

4(M − 1)DFmaxβ2.

The next lemma bounds the regret due to learner i choos-
ing near optimal arms by time T .

Lemma 4: Regret due to near-optimal arms. Let LiC,B ,
B = 12/(L2−α)+2 denote the set of suboptimal actions for
set of hypercubes C. When ACAP is run with parameters
p > 0, 2α/p ≤ z < 1, D1(t) = D3(t) = tz log t and
D2(t) = Fmaxt

z log t, the regret due to near optimal arm
selections in LiCi(t),B

at time slots 1 ≤ t ≤ T in exploitation
steps is bounded above by

O
(
T

1+p−α
1+p

)
.

From Lemma 4, we see that the regret due to choosing near
optimal arms increases with the parameter p that determines
how much each hypercube will remain active, and decreases
with α, which determines how similar is the expected accu-
racy of a classifier for similar contexts. Next, we combine
the results from Lemmas 1, 2, 3 and 4 to obtain the regret
bound for ACAP.

Theorem 1: Let LiC,B , B = 12/(L2−α)+2 denote the set
of suboptimal actions for set of hypercubes C. When ACAP
is run with parameters p = 3α+

√
9α2+8α
2 , z = 2α/p < 1,

D1(t) = D3(t) = tz log t and D2(t) = Fmaxt
z log t, the

regret of learner i by time T is upper bounded by

O
(
T f1(α) log T

)
,

7

where f1(α) = (2+α+
√

9α2 + 8α)/(2+3α+
√

9α2 + 8α).
From the result of Theorem 1, we see that the regret has

an order that is independent of dimension D. Hence, being
context-adaptive and learning only the marginal classifier
accuracies, ACAP outperforms contextual bandit algorithms
that learn the classifier accuracies for the entire context vector
in terms of the learning speed. For instance, our prior work
[16] shows that algorithms which do not adaptively choose
the type of the context to exploit have regret bounds whose
time order approaches to linear as D increases.

V. NUMERICAL RESULTS

In this section, we numerically compare the performance
ACAP with state–of–the–art online learning techniques in
real-world datasets.

A. Data Sets

We consider four data sets, described below.
R1: Network Intrusion [25]–[28]. The network intrusion
data set from UCI archive [25] consists of a series of TCP
connection records, labeled either as normal connections or
as attacks.
R2: Electricity Pricing [28]–[30]. The electricity pricing
data set holds information for the Australian New South
Wales electricity market. The binary label (up or down)
identifies the change of the price relative to a moving average
of the last 24 hours.
R3: Forest Cover Type [27], [30], [31]. The forest cover
type data set from UCI archive [25] contains cartographic
variables of four wilderness areas of the Roosevelt National
Forest in northern Colorado. Each instance is classified with
one of seven possible classes of forest cover type. Our task
is to predict if an instance belong to the first class or to the
other classes.
R4: Credit Card Risk Assessment [28], [32]. In the credit
card risk assessment data set, used for the PAKDD 2009 Data
Mining Competition [32], each instance contains information
about a client that accesses to credit for purchasing on a
specific retail chain. The client is labeled as good if he was
able to return the credit in time, as bad otherwise.

B. Comparison with ensemble schemes

In this subsection we compare the performance of ACAP
with state–of–the–art online ensemble learning techniques,
listed in Table II. Different from ACAP which makes a
prediction based on a single classifier at each time step,
these techniques combine the predictions of all classifiers
to make the final prediction. For a detailed description of the
considered online ensemble learning techniques, we refer the
reader to the cited references.

For each data set we consider a set of 8 logistic regression
classifiers [39]. Each local classifier is pre–trained using an
individual training data set and kept fixed for the whole
simulation (except for OnAda, Wang, and DDD, in which
the classifiers are retrained online). For ACAP we consider
4 learners, each of them possessing 2 of the 8 classifiers. For

a fair comparison among ACAP and the considered ensemble
schemes that do not deal with classification costs, we set cik
to 0 for all k ∈ Ki. In all the simulations we consider a 3–
dimensional context space. For the data sets R1–R4 the first
two context dimensions are the first two features whereas the
last context dimension is the preceding label.

Table II lists the considered algorithms, the corresponding
references, and their percentages of mis–classifications in
the considered data sets. Importantly, in all the data sets
ACAP is among the best schemes. This is not valid for the
ensemble learning techniques. For example, WM is slightly
more accurate than ACAP in R1 and R3, it is slightly less
accurate than ACAP in R2, but performs poorly in R4.

VI. CONCLUSION

In this paper we considered the problem of adaptively
learning how to exploit a high dimensional context vector
in Big Data stream mining. We proposed a novel learning
framework which achieves sublinear regret with time order
independent of the dimension of the context vector. Hence it
can converge very fast to the marginally optimal benchmark,
by learning the marginal accuracies of classifiers for each
type of context. Our numerical results show that the proposed
framework significantly improves the performance of Big
Data systems.

REFERENCES

[1] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data
streams: Analysis and practice,” in Proc. of the 7th IEEE International
Conference on Data Mining (ICDM), 2007, pp. 143–152.

[2] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity
using real-time tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 747–757, 2000.

[3] V. S. Tseng, C.-H. Lee, and J. Chia-Yu Chen, “An integrated data min-
ing system for patient monitoring with applications on asthma care,” in
Proc. of the 21st IEEE International Symposium on Computer-Based
Medical Systems (CBMS), 2008, pp. 290–292.

[4] R. Ducasse, D. S. Turaga, and M. van der Schaar, “Adaptive topologic
optimization for large-scale stream mining,” IEEE Journal of Selected
Topics in Signal Processing, vol. 4, no. 3, pp. 620–636, 2010.

[5] “IBM Smarter Planet Project,” http://www-
03.ibm.com/software/products/en/infosphere-streams.

[6] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, p. 235256,
2002.

[8] A. Slivkins, “Contextual bandits with similarity information,” in Proc.
of the 24th Annual Conference on Learning Theory (COLT), 2011.

[9] J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual
multi-armed bandits,” Advances in Neural Information Processing
Systems, vol. 20, pp. 1096–1103, 2007.

[10] J. B. Predd, S. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23,
no. 4, pp. 56–69, 2006.

[11] F. Pérez-Cruz and S. R. Kulkarni, “Robust and low complexity
distributed kernel least squares learning in sensor networks,” IEEE
Signal Processing Letters, vol. 17, no. 4, pp. 355–358, 2010.

[12] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[13] H. Zheng, S. R. Kulkarni, and V. Poor, “Attribute-distributed learning:
models, limits, and algorithms,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 1, pp. 386–398, 2011.

[14] Y. Zhang, D. Sow, D. Turaga, and M. van der Schaar, “A fast online
learning algorithm for distributed mining of bigdata,” in the Big Data
Analytics workshop at SIGMETRICS 2013, 2013.

8

Abbreviation Name of the Scheme Reference Performance
R1 R2 R3 R4

AM Average Majority [26] 3.07 41.8 29.5 34.1
Ada Adaboost [33] 3.07 41.8 29.5 34.1

OnAda Fan’s Online Adaboost [34] 2.25 41.9 39.3 19.8
Wang Wang’s Online Adaboost [35] 1.73 40.5 32.7 19.8
DDD Diversity for Dealing with Drifts [28] 1.15 44.0 23.9 19.9
WM Weighted Majority algorithm [36] 0.29 22.9 14.1 67.4
Blum Blum’s variant of WM [37] 1.64 40.3 22.6 68.1

TrackExp Herbster’s variant of WM [38] 0.52 23.0 14.8 22.0
ACAP Adaptive Contexts with Adaptive Partition our work 0.71 5.8 19.2 19.9

TABLE II
COMPARISON AMONG ACAP AND ENSEMBLE SCHEMES: PERCENTAGES OF MIS–CLASSIFICATIONS IN THE DATA SETS R1–R4.

[15] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, 2010.

[16] C. Tekin and M. van der Schaar, “Distributed online big data classifi-
cation using context information,” in Proc. of the 51st Annual Allerton
Conference, 2013.

[17] T. Lu, D. Pál, and M. Pál, “Contextual multi-armed bandits,” in Proc.
of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010, pp. 485–492.

[18] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits
with linear payoff functions,” in Proc. of the International Conference
on Artificial Intelligence and Statistics (AISTATS), 2011.

[19] P. Bühlmann and B. Yu, “Boosting with the L2 loss: regression and
classification,” Journal of the American Statistical Association, vol. 98,
no. 462, pp. 324–339, 2003.

[20] A. Lazarevic and Z. Obradovic, “The distributed boosting algorithm,”
in Proc. of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2001, pp. 311–316.

[21] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware
decision fusion in wireless sensor networks,” IEEE Transactions on
Signal Processing, vol. 52, no. 12, pp. 3454–3458, 2004.

[22] C. Perlich and G. Świrszcz, “On cross-validation and stacking: Build-
ing seemingly predictive models on random data,” ACM SIGKDD
Explorations Newsletter, vol. 12, no. 2, pp. 11–15, 2011.

[23] H. Kargupta, B. Park, D. Hershberger, and E. Johnson, “Collective data
mining: A new perspective toward distributed data mining,” Advances
in Distributed and Parallel Knowledge Discovery, no. part II, pp. 131–
174, 1999.

[24] C. Tekin, L. Canzian, and M. van der Schaar, “Context-
adaptive big data stream mining - online appendix,”
http://medianetlab.ee.ucla.edu/papers/Allerton14Appendix.pdf, 2013.

[25] K. Bache and M. Lichman, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, University of California, Irvine, School
of Information and Computer Sciences, 2013.

[26] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine
data streams: Analysis and practice,” in Proc. IEEE ICDM, 2007, pp.
143–152.

[27] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham,
“Integrating novel class detection with classification for concept-
drifting data streams,” in Proc. ECML PKDD, 2009, pp. 79–94.

[28] L. L. Minku and Y. Xin, “DDD: A new ensemble approach for dealing
with concept drift,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 4, pp.
619–633, 2012.

[29] M. Harries, “SPLICE–2 comparative evaluation: Electricity pricing,”
University of New South Wales, School of Computer Science and
Engineering, Tech. Rep., 1999.

[30] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank, “Fast perceptron
decision tree learning from evolving data streams,” in Proc. PAKDD,
2010, pp. 299–310.

[31] J. A. Blackard, “Comparison of neural networks and discriminant
analysis in predicting forest cover types,” Ph.D. dissertation, Colorado
State University, 1998.

[32] “PAKDD data mining competition 2009, credit risk
assessment on a private label credit card application,”
http://sede.neurotech.com.br/PAKDD2009.

[33] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, Aug. 1997.

[34] W. Fan, S. J. Stolfo, and J. Zhang, “The application of AdaBoost for
distributed, scalable and on-line learning,” in Proc. ACM SIGKDD,
1999, pp. 362–366.

[35] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. ACM SIGKDD, 2003, pp.
226–235.

[36] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Inf. Comput., vol. 108, no. 2, pp. 212–261, Feb. 1994.

[37] A. Blum, “Empirical support for winnow and weighted-majority
algorithms: Results on a calendar scheduling domain,” Mach. Learn.,
vol. 26, no. 1, pp. 5–23, Jan. 1997.

[38] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Mach.
Learn., vol. 32, no. 2, pp. 151–178, Aug. 1998.

[39] D. S. Rosario, “Highly effective logistic regression model for signal
(anomaly) detection,” in Proc. IEEE ICASSP, vol. 5, 2004, pp. 817–
820.

