
1

An Experts Learning Approach to Mobile Service
Offloading

Cem Tekin, Mihaela van der Schaar
Electrical Engineering Department, University of California, Los Angeles

Email: cmtkn@ucla.edu, mihaela@ee.ucla.edu

Abstract—Mobile devices are more and more often called on
to perform services which require too much computation power
and battery energy. If delay is an important consideration,
offloading to the cloud may be too slow and a better approach
is to offload to a resource-rich machine in the proximity of the
device. This paper develops a new approach to this problem in
which the machines are viewed as a collection of experts - but
experts that are coupled in space and in time: the current action
at a given machine affects the future state of the given machine
and of other machines to which the given machine is connected.
At any time, given the state and unknown dynamics of the
system, the experts available at that time should cooperatively
pick the best available actions. Within this framework, we
propose online learning algorithms that results in substantial
savings in energy consumption.

Index Terms—Online learning, coupled experts, exploration-
exploitation tradeoff, distributed learning.

I. INTRODUCTION

Mobile devices are more and more often called on to
perform services (or tasks) - video analysis, gaming, online
navigation - for which they are ill-suited, sometimes because
the service requires complex computations but more often
simply because the task demands too much energy from the
battery of the mobile device. One approach to such problems
is to offload the service to the cloud. However, if - as is often
the case – delay is an important consideration, offloading
to the cloud may be too slow and a better approach is to
offload to a resource-rich machine in the proximity of the
device. For example, the wireless LAN (802.11n) connection
to a resource-rich machine will have a 400 Mbps nominal
bandwidth, while the 3G connection to the cloud has a
nominal bandwidth of about 15Mbps [1]. Moreover, even
if the bandwidth is adequate, latency can be an issue when
directly connecting to the cloud [2].

Because many devices will compete for the services of
the same collection of machines (even if there are many
machines, the number of devices will typically be many
times the number of machines), a given machine will often
find it necessary to offload its service requests to yet another
machine. This creates an immensely complicated scheduling
problem - made even more complicated by the fact that
offloading needs will change over time because of changing
mobile user activity. Moreover, the distribution of the mobile
users’ service requests is unknown a priori to the machines.
They need to learn this online, based on the observed service
requests, while simultaneously learning how to make optimal

scheduling decisions to maximize the number of completed
requests. We would like to emphasize that formalizing the
considered mobile offloading problem as a multi-user op-
timization problem would require complete knowledge of
the mobile users’ service requests, as well as how these are
spatially and temporally correlated at every moment in time.
However, in practice, such information is not known a priori
and, moreover, it changes over time. Hence, novel approaches
are needed to effectively address the considered problem
which go beyond conventional optimization solutions such
as network utility maximization [3].

This paper develops a first approach to solve this chal-
lenging problem in which each machine is viewed as a
collection of experts - but experts that are coupled in space
and in time: For each machine, there is a set of experts,
such that there is an expert for each state of the machine.
At each time step, each expert chooses a set of actions
for its machine. The actions chosen at a given machine
(requests by mobile devices and by other machines) affects
the future state of the given machine and of other machines
to which the given machine is connected. This affects which
experts will be available in the future. Within this framework,
we propose two online learning algorithms and compare
their performance with respect to the optimal scheduling
policy computed based on the exact knowledge of the time-
varying mobile users’ service request distribution. We call
this performance gap the regret. We establish analytic regret
bounds for general time-varying Markovian mobile users’
service requests. However, the resulting algorithm achieving
this regret bound is centralized, requires global information
about the new service requests, and has exponential com-
plexity in the number of machines. These drawbacks make
the algorithm impractical for settings with large number of
machines - but it provides a benchmark for what is possible.
The second algorithm avoids these drawbacks by forming
clusters of cooperative machines that acts independently of
each other: it is distributed, requires only local information
about the new service requests, and its complexity only
depends on the number of machines located in each cluster.
We show that when the mobile user service request rate is
low, this algorithm performs almost as good as the centralized
one.

To the best of our knowledge, our paper is the first work
that considers mobile service offloading as a learning prob-

2

lem with multiple mobiles and multiple machines distributed
over a geographic region.

The remainder of this paper is as follows. The problem
formulation is given in Section II, along with the definition of
regret. In Section III, a centralized online learning algorithm
and its regret is given. In Section IV, a distributed online
learning algorithm is given. Numerical results are given
in Section V. Related work is given in Section VI, and
concluding remarks are made in Section VII.

II. PROBLEM FORMULATION

We consider a system given in Fig. 1 that consist of K
cooperative machines distributed over a bounded geographic
region R indexed by the set K = {1, 2, . . . ,K}. At each
discrete time step t = 1, 2, . . ., a random number of mobile
users from different locations in R request services from one
of these machines based on the proximity of the machine. In
doing so, the goal of a mobile user is to reduce its battery cost
of performing the service while incurring a small amount of
communication cost due to data transmission to and from the
machine. The region R is partitioned into K regions given
by RK = (R1, . . . , RK), where Ri is the service region of
machine i. Any mobile user in region Ri can only request
service from machine i. We assume that a machine processes
the tasks of mobile users connected to it in FIFO (first in first
out) way. For any delay constraint λ, each machine has a
computational capacity Lλ, which is the maximum number
of tasks in its queue that can be processed with at most
λ delay. At any instance of time, the machine will deny
the request of a user for which it cannot meet the delay
requirement. Then, that user will process its own data, which
eventually consumes more energy for the user. It is possible
that a user can send its task to be processed by a machine
and that machine can forward the task to one of the machines
that is k hops away. This can either be done by directly
communicating with the machine that is k hops away, or
by routing the request hop-by-hop to the machine that is
k hops away. Let δk,λ be the number of services that can
be completed in the time it takes for a machine to send its
mobile’s service request to a machine that is k hops away
and receive back the completed service. We assume that δk,λ
increases in k.

We assume that the number of mobile users that requests
service in the area covered by each machine evolves ac-
cording to an unknown, time varying Markov process. This
assumption covers both the temporal and spatial aspects of
the mobile user activity. A mobile user which is in the
coverage area of a machine may move into the coverage area
of another machine, or a mobile user may request a service
long after it has been in the coverage area of a machine i
(For example, a person comes to a cafe, eats her lunch, starts
mobile services, then walks to a nearby bookstore without
turning off the mobile services). A time varying Markovian
mobility model is proposed based on real measurements in
[4]. Similarly, a time varying community mobility model
which exhibits Markovian dynamics is proposed in [5].

Let Ni(t) be the random variable which denotes the
number of users that requests service from machine i at

Fig. 1. System model.

Fig. 2. Illustration of how i’s forwarding decision is affected by a neighbor
of j.

time slot t. Let nmax denote the maximum possible num-
ber of users in the coverage area of any machine at any
time slot t. The mobile user activity in the system can be
modeled as a discrete time Markov chain with state space
M = {n = (n1, . . . , nK) : 0 ≤ ni ≤ nmax, i ∈ K}, and
mobile state transition probabilities

ptn′,n := Pr (N1(t+ 1) = n1, . . . , NK(t+ 1) = nK |
N1(t) = n′1, . . . , NK(t) = n′K) , (1)

which are unknown. Let P t be the transition probability
matrix at time t, whose elements are given by (1). We
assume that P t is irreducible for any t, and the state space
M is known. For the simplicity of presentation we assume
that users are homogeneous which means that the delay
requirement of all users are fixed and the same, but our
results can easily be extended to the more general case.

Let xi(t) be the length of the processing queue of machine
i at the beginning of time slot t. We assume that machine
i has processing capacity ci = c tasks at each time slot.

3

Let Ni be the set of machines which are neighbors of
machine i including itself. Let N k

i be the set of machines
that are at most k hops away from i. The sets Ni and
N k
i are shown in Fig. 2. Let ali(t) be the number of new

mobile user requests in the region of machine l which are
admitted to the processing queue of machine i at time t.
Let ai(t) = (ali(t))l∈Nki , and a(t) = (a1(t), . . . ,aK(t)).
Using this information, we can calculate the length of the
processing queue for machine i at the beginning of slot
t as xi(t) = xi(t − 1) +

∑
l∈Nki

ali(t − 1) − c.1 Due to
the delay constraint, the task offloading actions at time t
should be such that xi(t) + aii(t) +

∑
l∈Nki −{i}

ali(t) ≤ Lλ,
xi(t) +

∑
l∈Nki −N

z−1
i

ali(t) ≤ Lλ − δz,λ, for all i ∈ K,
z = 2, . . . , k−1. Also, each service request offloaded from l
to i, which is z hops away, should be assigned to a slot in the
queue that is greater than δz,λ/2, since it will arrive to queue
of i only after δz,λ/2 services are completed by i. It is easy
to see that the machines are both spatially and temporally
coupled. For example, consider the configuration given in
Fig. 2. Depending on the service requests, in the upper figure,
machines i and k experience high number of new requests.
Since the neighbors j and l of i have no new requests, the
congestion on i and k is alleviated by forwarding services to
j and l. Here i’s forwarding actions affect both the actions
and the queue lengths of j and l. Differently, in the lower
figure j and l experience high number of service requests,
therefore, they forward the service requests to i. But if large
number of service requests arrive to i in the next time slot,
then i may not be able to serve all its service requests due
to serving j and l’s requests. Let ei(t) be the number of
new service requests in region Ri that are not served by any
machine. The total loss of the system by time T is given by∑T
t=1

∑K
i=1 ei(t). Our goal is to design an online learning

algorithm that minimizes E
[
(
∑T
t=1

∑K
i=1 ei(t))/T

]
. Let

S := {(x,n) : xi ≤ Lλ, ni ≤ nmax, i ∈ K} denote the
state space of the system. We call x the queue state, X the
queue space and n the new service requests state. Given the
state s, the set of available actions such that each machine
can offload to a machine within k hops away is

Ak(s) :=

a : xi +
∑
l∈Ni

ali ≤ Lλ, xi +
∑

l∈Nki −N
z−1
i

ali

≤ Lλ − δz,λ,∀z = 2, . . . , k − 1,
∑
l∈Nki

ail ≤ ni,∀i ∈ K

 .

Our goal is to learn the best action given state s. For each
state s, we can define an expert that recommends an action
ai for machine i. The goal of each expert is to learn the
best action a∗i given s (or a subset of s as we will show in
Section IV) for machine i such that the joint action profile
a is optimal. Let Ak = ∪s∈SAk(s), be the union of the set
of possible actions over all queue states. The queue length is

1When a new request is accepted, its position in the queue is reserved.
Hence, even if the service offloaded to j has not arrived to i, i reserves a
slot in its queue for that service.

a deterministic function of the actions and the new service
requests are independent of the actions taken. Therefore, state
transition probability from s to s′ given action a is taken at
time t is given by

Qt(s,a, s′)

:= ptn,n′Π
K
i=1I

xi(t+ 1) = xi(t) +
∑
l∈Nki

ali(t)− c

 ,

(2)

where I(.) is the indicator function. Note that Qt(s,a, s′) is
either zero or is equal to ptn,n′ for some n,n′ ∈M.

The problem we consider is much harder than the opti-
mization version of the same problem. In the optimization
version P t is known for all t up to T . Then, the problem
can be formulated as a Markov decision process (MDP) and
solved by dynamic programming.

A. Assumptions on State Transition Probabilities

As we mentioned before, transition probabilities are
learned online. If they change too fast, then no algorithm can
learn them accurately. Therefore, we assume that the mobile
user activity transition probabilities are slowly changing
which is given in the following assumption.

Assumption 1: ||P t′−P t||∞ ≤ L|t′−t|α, for some known
L > 0 and α > 0, where ||.||∞ is the maximum absolute row
sum norm.

We also have the following ergodicity assumption on the
transition probabilities.

Assumption 2: For every t, P t is ergodic with expected
mixing time at most τ and expected cover time at most τcov.

This assumption says that every state is reachable from
every other state. Indeed, the transition probability matrix in
[4] derived from real-world data is ergodic. The following
assumption is used to analyze the dependence of the regret
on the variability of the transition probabilities.

Assumption 3: Let Zt := [I −P t−P t∞]−1, where P t∞ =
liml→∞

1
l

∑l
k=1(P t)k. Zt is called the fundamental matrix

associated with P t. Assume there exists z < ∞ such that
||Zt||∞ ≤ z for all t.

These assumptions together imply that, after enough ob-
servations, all the states are reached so that the estimates of
transition probabilities can be formed, while these estimates
will not be very different from the true values at the current
time.

B. Definition of Regret

In this subsection we define the benchmark policy that
we compare against. Let Πd be the set of deterministic,
stationary policies such that for any π ∈ Πd, π(s) ∈ Ak(s).
Let Πm

d be the set of deterministic policies that can change
at times t = ζm + 1, ζ = 0, 1, 2, These policies are
not stationary, but they are stationary for m time slots,
thus we call them m-stationary policies. The family of
policies {Πm

d }m=1,2,... includes Πd. Then, the total expected
loss of the best m-stationary policy by time T is given
by JmT = (1/T) minπ∈Πmd

E[
∑T
t=1 e(n(t), π(s(t)))], where

4

e(n, π(s)) is the number of service requests that are denied
at state s by policy π. The regret of a learning algorithm α
up to time T , whose action at time t is a(t), is given by

RmT = E

[
T∑
t=1

e(n(t),a(t))

]
/T − JmT . (3)

Our goal is to design an online learning algorithm whose
regret is small.

III. ONLINE LEARNING OF THE OPTIMAL OFFLOADING
POLICY

If the state transition probabilities were known, then the
optimal offloading policy can be computed by dynamic
programming. However since the mobile user activity is
unknown and varying in time, it is not possible to know
the transition probabilities beforehand. In this section we
assume that there is a controller which learns about the
mobile user activity over time, and makes service offloading
decisions based on the state of the system. We propose an
online learning algorithm for this controller called centralized
service offloading (CSO).

Centralized Service Offloading (CSO):
1: Input: T , mT

2: Initialize: t = 1, m = 1, (x(0),n(0)) = (0,0)
3: while t ≥ 1 do
4: Observe (x(t),n(t)).
5: if m = 1 then
6: Select an action myopically (machine i’s goal is to

serve the direct service requests to itself only) based
on (x(t),n(t)).

7: else
8: Select an action based on the policy computed

according to (5).
9: end if

10: if t = mT/mT + 1 then
11: m = m+ 1
12: Compute the state transition probabilities

p̂m−1(n,n
′) (hence Qm−1(s,a, s

′)) according to
(4).

13: Compute the optimal policy for round m according
to (5).

14: end if
15: t = t+ 1.
16: end while

Fig. 3. Pseudocode for the CSO algorithm.

The pseudocode of CSO is given in Fig. 3. It is similar
to the ORDP algorithm given in [6], which uses robust
dynamic programming [7] to find the optimal policy given an
uncertainty region for the transition dynamics. The difference
is that CSO does not need to randomize and follow the
perturbed leader as in ORDP since the reward is a fixed
deterministic function of the action, and CSO needs to use
only a window of transition probability estimates, rather than
exploiting the full sequence of estimates, since the difference
between transition probabilities at two time slots t and t′

that are far from each other can be large. Given the final
time T , CSO partitions {1, 2, . . . , T} to mT rounds. We let
TR := T/mT to be the length of a single round, and assume
that it is an integer. Therefore, the first round will contain
times {1, . . . , T/mT }, the second round will contain times
{T/mT + 1, . . . , 2T/mT }, and so on. Let p̂m(n,n′) be the

transition probability estimate from state n to n′ calculated
in the mth round. We have

p̂m(n,n′) =

1 +
mT/mT−1∑

t=(m−1)T/mT+1

I(n(t+ 1) = n′, n(t) = n)

|M|+
mT/mT−1∑

t=(m−1)T/mT+1

I(n(t) = n)

.

(4)

In the first round the algorithm acts myopically since the
transition probability estimates to solve the robust dynamic
program is not obtained yet. If possible, it assigns each
service arriving to each machine to the machine itself. If
not, it denies the mobile’s service request. This way it is
guaranteed that the number of service denials in the first
round is at most K(nmax − c)T/mT . Since this bound is
trivial, we neglect the regret in the first round and focus
on the regret incurred in rounds after the first round. At the
beginning of the mth round, CSO solves the following robust
dynamic program using the estimated transition probabilities
in round m− 1.

Vm(s) = arg max
a∈Ak(s)

(−e(n,a)

+ inf
Q∈Dm(τ,τcov)

(∑
s′

Vm(s′)Q(s,a, s′)

)
− Vm(s∗)

)
, (5)

where s∗ is a fixed state, Vm(s∗) is the normalization term
and Dm(τ, τcov) is the uncertainty set, i.e., the set that is
believed to have the actual state transition probabilities for
round m with a high probability. The solution of (5) produces
an estimated optimal policy for each expert. Specifically, the
action that the expert of machine i recommends in state s
is denoted by γm,i(s). Let γm = (γm,1, . . . , γm,K). Then,
based on the state at time t in round m, action γm(s(t))
is taken by the controller. In order to bound the regret of
the online learning algorithm, we will first bound the regret
of any transition probability matrix lying in the uncertainty
set Dm(τ, τcov). Then, we will bound the probability that
the true transition probabilities lies in this uncertainty set.
Specifically, we let the uncertainty set for mobile state
transition probabilities to be

(Cm)n,n′ :=
[
(p̂m−1(n,n′)− 2L (TR)

α
)
+
,

min {p̂m−1(n,n′) + 2L (TR)
α
, 1}] ,

for all n,n ∈ M, where (x)+ = max{0, x}. This directly
defines an uncertainty set Dm, for which we have (Dm)s,a,s′

is equal to zero or (Cm)n,n′ for some n,n ∈ M. Note
that Dm can contain transition probability matrices that
are periodic or that have mixing and cover time greater
than τ and τcov. The regret for these transition probability
matrices can be large. By Assumption 2, it is known that the
actual transition probability matrices are aperiodic and their
mixing and cover times are at most τ and τcov. Therefore
we let Dm(τ, τcov) ⊂ Dm be the set of transition probability
matrices whose mixing and cover times are at most τ and
τcov. We have the following lemma.

5

Lemma 1: Consider any ε > 0. If CSO is run with mT =

T/TR, where TR =

⌈(
(0.5n2K

maxτcov log(2nKmax|Ak|/ε)
L2ε

) 1
2α+1

⌉
,2

we have for every round m with probability

P (Dm) ≥ (1− ε)2,

the true set of transition probabilities in round m will lie in
Dm.

Proof:
Let X1 be the covering time of the Markov chain P t,

t = (m− 1)T/mT + 1, . . . ,mT/mT , i.e., the time all states
are visited starting from the beginning of round m − 1.
Similarly let Xi be the ith covering time, that is the time
it takes to visit all states after visiting all states for the
i − 1th time. Consider any a > 0. Let Y be the time
when all the states of the Markov chain is observed at least
D := (log(a)m2α

T (nmax)2K)/(L2T 2α) times. For simplicity,
we assume that this number is an integer. If this is not an
integer, then it can be rounded up to the smallest integer that
is greater than it. Then we have Y ≤ X1 + . . .+XD. Using
Markov inequality, we get P (Y > T/mT) ≤ P (X1 + . . .+
XD > T/mT) ≤ (DτcovmT)/T . Therefore, the probability
that all the states are observed at least D times in a round is
greater than or equal to 1−DτcovmT /T . Using a Chernoff
bound, it can be shown that given all states are observed
at least D times, the probability that the true transition
probability matrix will lie in Dm is (1−2(nmax)K |Ak|/a2).
Combining these we have

P (Dm) :=

(
1− (mT)2α+1(nmax)2Kτcov log a

L2T 2α+1

)
×
(

1− 2(nmax)K |Ak|
a2

)
.

We get the final result by setting a =

√
2nKmax|Ak|

ε , and TR
to the specified value.

Even when the true transition probabilities lies in Dm,
the solution of the robust dynamic program is suboptimal.
In the next theorem we bound the regret by bounding the
suboptimality due to uncertainty and the suboptimality due to
the correct transition probabilities not being in the uncertainty
region Dm.

Theorem 1: Consider any δ > 0.
Let mT = T/TR, where TR =⌈(

(2K(nmax−c)n2K
maxτcov log(8K(nmax−c)nKmax|Ak|/δ)

L2δ

) 1
2α+1

⌉
.

Under Assumptions 1, 2 and 3, if (TR)
1+α ≥ (4eτ)/(L2α)

and L ≤ 2δ3α+1/(4K(nmax−c))3α+1

(2n2K
maxτcov log(8K(nmax−c)nKmax|Ak|/δ))α(z+1)2α+1 , the

regret of CSO (given in (3)) with respect to the optimal TR
stationary policy is upper bounded by RTRT ≤ δ, where z is
the number given in Assumption 3.

Proof: The proof is similar to the proof of Theorem
IV.1 in [6]. The difference is that we use mT to control
the variation in uncertainty in a round. When we have more

2dre is the smallest integer that is larger than or equal to r.

rounds, this means that the variation in the transition proba-
bilities will be small. However, the shorter each round, less
explorations will be performed, so the sample mean transition
probability estimates may not be accurate. We can balance
this tradeoff by a careful choice of mT . Whenever the
true transition probabilities lies in the region of uncertainty
Dm(τ, τcov), using a similar analysis to [6], we can bound
the regret by K(nmax−c) ((z + 1)L (2TR)

α
). Whenever the

true transition probabilities are not in Dm(τ, τcov), since in
the worst case each machine can process c tasks at each time
slot, the regret is bounded by K(nmax−c). Combining these
two we get

RmT ≤P (Dm)K(nmax − c) ((z + 1)L (2TR)
α

)

+ (1− P (Dm))K(nmax − c),

The result follows form substituting the values for TR and L
given in the statement of the theorem, and calculating P (Dm)
according to Lemma 1.

The robust dynamic program can be solved via linear
programming. However the state space is exponential in
the number of machines which makes it computationally
prohibitive for large number of machines. Estimating the
state transition probabilities is same as estimating the mobile
transition probabilities because of the relation given in (2).
Note that this bound holds given that L is sufficiently small
as given in Theorem 1. Indeed, we require L = o(δ3α+1) to
achieve δ regret.

Since centralized learning is computationally expensive
and also requires mobile user activity information from all
machines, in the next section we will propose a decentralized
offloading algorithm in which every machine decides which
mobile users to offload based on the mobile user activity in
its neighborhood.

IV. ONLINE DECENTRALIZED SERVICE OFFLOADING

In this section, we propose an online decentralized service
offloading algorithm where machines form clusters. Each
cluster has a cluster head machine which tells the other
machines how to jointly offload the mobile user service
requests arriving to that cluster. The clusters are formed in
the initialization phase. A k-partition is a partition of the
machines such that for each cluster in the partition, each
machine is no more than 2k hops away from another machine
in that cluster. We call a k-partition with minimal number of
sets the minimal k-partition. Let Pk denote the set of cluster
head machines in the minimal k-partition. In our analysis
we neglect all machines with no other neighbors than itself,
since their best decision is to always use their processing
capacity for the new service requests in their own regions.
We assume that the minimum degree of the graph is v > 0,
i.e., each machines has at least v neighbors.

For simplicity of analysis, in this section we consider
a binary, independent mobile users’ service request model,
where there are nmax new requests to the region of each
machine i with probability pi(t) and 0 new requests with

6

probability 1−pi(t) at time t. Then, Assumption 1 becomes

|pi(t)− pi(t′)| ≤ L|t− t′|α, (6)

for all i ∈ K, for some L > 0 and α > 0. We also assume
that pi(t) ≤ p∗ for all t and i ∈ K for some known p∗ < 1.
We will show that when p∗ is small enough, the offloading
policy computed only using the state information of each
cluster independently from the other clusters will be close to
optimal.

Let N k
i be the set of machines in a k-cluster where i is the

cluster head machine. Recall that in the previous section we
assumed that N k

i is the set of neighbors of i that are at most
k hops away from i. In this section, we slightly generalize
N k
i so i does not have to be the center machine that is at

most k hops away from any other machine, but it can be any
machine in the cluster that is at most 2k hops away from any
other machine in the cluster. The per time step processing
capacity of the machines in N k

i is equal to |N k
i |c, while per

time step expected number of new service requests to N k
i is

upper bounded by p∗|N k
i |nmax.

First, we will compute the performance of a myopic cluster
policy which only requires knowledge about p∗ and the new
service requests to N k

i for each i ∈ Pk. According to the
myopic cluster policy, at every time slot t, every machine
j ∈ N k

i reports nj(t) to the head machine i. Then i makes
the following scheduling. All the new requests to N k

i is
arbitrarily distributed to the machines in N k

i , with each
machine being assigned at most c tasks. This way, at each
time at most |N k

i |c tasks will be processed by cluster i, while
all the excess tasks will be denied by the machines. With this
scheduling scheme, the queue length at any machine at any
time slot will be at most c. We assume that k is such that
Lλ − δk,λ ≥ c, so that the delay requirement is satisfied.
This policy does not take into account the estimation of time
varying mobile users’ service request probabilities. Nor does
it exploit the queue capacities of each machine efficiently.
Due to these reasons, performance of the myopic cluster
policy forms a lower bound for the performance of our
distributed online learning algorithm that we will describe
in the following section.

The following theorem provides a bound on the expected
average loss of the myopic cluster policy based on the value
of p∗ and k. Unlike the previous section for which the regret
is defined with respect to the best m-stationary policy, here
the regret RT := maxm=1,2,...R

m
T is defined with respect to

the optimal policy in {Πm
d }m=1,2,....

Theorem 2: Given p∗nmax < c, the regret RT of the
myopic cluster policy γMC given in (3) is upper bounded
by (nmax − c)

∑
i∈Pk e

−2|Nki |(c/nmax−p∗)2 |N k
i |.

Proof: Let Xj denote the number of new service re-
quests to machine j. The event Ei =

{∑
j∈Nki

Xj ≤ c|N k
i |
}

implies that all the tasks will be processed in N k
i , and

the queue states will be xj = 0 for j ∈ N k
i after the

tasks are processed. Since there is no increase in queue
states and since all the packets are served, under the event
Ei the myopic policy is optimal for N k

i . Myopic policy

is only suboptimal for N k
i on event Eci . But whenever

Eci happens the contribution to the regret can be at most
(nmax − c)|N k

i |. Since the new requests to each machine
is independent of each other, by using a Chernoff bound
we get P (Eci) ≤ e−2|Nki |(c/nmax−p∗)2 . It can be shown that
RT ≤ E[

∑
i∈Pk |N

k
i |(nmax − c)I(Eci)], which gives the

main regret bound.
The condition p∗nmax < c implies that expected number

of new service requests to each machine is less than its
processing capacity. Although nmax new requests can happen
at each machine, the probability of having such requests is
small, which implies that with a high probability not all
the machines are congested at the same time. Although this
regret bound depends on parameters like |N k

i | and Pk, whose
exact values depend on the structure of the network graph, we
can get bounds on these values for special types of graphs.
The following corollary gives the regret bounds when k = 1,
and the graph is such that every head machine in the partition
P1 has at least v neighbors are connected to it.

Corollary 1: Consider the case when k = 1, i.e., each
cluster consists of a center node i and its neighbors. Then,
for p∗nmax < c, the regret of the myopic cluster policy is
upper bounded by Ke−2(v+1)(c/nmax−p∗)2(nmax − c).

Proof: Since each i ∈ P1 has at least v neighbors, we
have P1 ≤ K/(v + 1). The result follows from Theorem 2.

A. The Distributed Service Offloading Algorithm (DSO)

In this subsection, we propose the distributed service
offloading algorithm (DSO), whose pseudocode is given in
Fig. 4. DSO is similar to CSO, but the difference is that there
is no central controller. Instead, given the parameter k > 0,
at the initialization phase the machines form the minimal
k-cluster, Pk by exchange of their location and neighbor
information. The head machine of each cluster acts as a
controller.

Distributed Service Offloading (DSO):
1: Input: T , mT , k, p∗
2: Initialize: t = 1, m = 1, (x(0),n(0)) = (0,0)
3: Cluster formation: form Pk, each machine knows to which

cluster it belongs.
4: while t ≥ 1 do
5: for i ∈ Pk do
6: Observe (xi(t),ni(t)).
7: if m = 1 then
8: Select an action according to the myopic cluster

policy.
9: else

10: Select an action based on the policy computed
according to (8).

11: end if
12: if t = mT/mT + 1 then
13: m = m+ 1
14: Compute the state transition probabilities

p̂m−1,i(ni,n
′
i) (hence Q̂m−1,i(si,ai, s

′
i))

according to (7).
15: Compute the optimal policy for round m

according to (8).
16: end if
17: end for
18: t = t+ 1.
19: end while

Fig. 4. Pseudocode for the DSO algorithm.

Given the final time T , DSO partitions {1, 2, . . . , T} to

7

mT rounds. For simplicity we assume that RT = T/mT

is an integer, which is the length of each round in time
slots. Since each cluster head acts based on the observations
and actions within the cluster, we use subscript i to denote
parts of the state, queue state, mobile service requests and
transition probability estimates restricted to the machines in
N k
i . Similar to CSO, each i ∈ Pk forms transition probability

estimates p̂m,i(ni,n′i) based on its observations from N k
i in

the mth round, where ni = (nj)j∈Nki . Due to the binary,
independent new mobile users’ service request assumption
that we have for this section, the mobile state transition
probabilities can be written as

p̂m,i(ni,n
′
i) = Πj∈Nki p̂m(j, n′j), (7)

where3 p̂m(j, n′j) = (mT /T)
∑mT/mT−1
t=(m−1)T/mT+1 I(nj(t) =

n′j).
This follows from the fact that the present state does

not depend on the past state and it is the product of the
probabilities of new service requests to each machine in
set N k

i . In the first round the algorithm runs the myopic
cluster policy since nothing is known about the actual service
request probabilities. At the beginning of the mth round,
i ∈ Pk solves the following robust dynamic program using
the estimated transition probabilities in round m− 1.

Vm,i(si) = arg max
ai∈Ai(si)

(−ei(ni,ai)

+ inf
Q∈Dm,i

∑
s′i

Vm,i(s
′
i)Q(si,ai, s

′
i)

− Vm,i(s∗i)
 ,

(8)

where s∗i is a fixed state, Vm,i(s∗i) is the normalization term,
Ai(si) is the set of actions for the cluster of machine i given
the state is si, and Dm,i is the uncertainty set whose elements
are given as

(Dm,i)j,0 =

[
max

{
1− p∗,

(
p̂m−1(j, 0)− 2L

(
T

mT

)α)+
}
,

min

{
1, p̂m−1(j, 0) + 2L

(
T

mT

)α}]
,

and

(Dm,i)j,nmax =

[(
p̂m−1(j, 0)− 2L

(
T

mT

)α)+

,

max

{
p̂m−1(j, nmax) + 2L

(
T

mT

)α
, p∗
}]

,

for j ∈ N k
i . Let γm,i denote the stationary deterministic

policy for i ∈ Pk given by the solution of the above. Then,
based on the state at time t in round m, action γm,i(si(t)) is
taken by machine i and announced to the machines in N k

i .
The following theorem gives an upper bound on the regret
of DSO.

Theorem 3: For p∗nmax < c, the regret of DSO is upper
bounded by (nmax − c)

∑
i∈Pk e

−2|Nki |(c/nmax−p∗)|N k
i | .

3If
∑

n′i
p̂m,i(ni,n

′
i) 6= 1, then normalization is done by dividing right

hand side of (7) by this sum.

policy DSO myopic myopic cluster
average number of denials 0.328 0.449 0.602

TABLE I
AVERAGE NUMBER OF SERVICE DENIALS FOR DSO, MYOPIC AND

MYOPIC CLUSTER POLICIES
Proof: The robust dynamic program in (8) is solved

using the uncertainty sets (Dm,i)j,0 ⊂ [1 − p∗, 1] and
(Dm,i)j,nmax

⊂ [0, p∗]. The myopic cluster policy is in the
set of admissible policies for each i ∈ Pk. Therefore if it is
optimal, it would be chosen given the uncertainty sets. If it
is not optimal then a better policy will be chosen by robust
dynamic programming. Therefore the regret of the learning
algorithm is never worse than the regret of the myopic cluster
policy.

Although we bound the performance of DSO using the
myopic cluster policy, in general DSO’s performance can
be much better. That is because of the fact that the myopic
cluster policy only lets the queue length to reach c, while the
queue length of any machine can reach Lλ in the policy cal-
culated by DSO. Intuitively the excess buffer capacity Lλ−c
can be used to queue up services when large number of new
service requests happen, since the probability of large number
of requests happening is small because p∗ is small. The
state space of each cluster i increases exponentially in |N k

i |,
compared to CSO whose state space increases exponentially
in K. When the cluster sizes are small, DSO’s computational
complexity is significantly smaller than CSO’s.

V. NUMERICAL RESULTS

In this section we compare the performance of DSO with
two different myopic policies that do not learn the transition
probabilities in an online way: myopic policy and myopic
cluster policy. In the myopic policy, every machine serves
the requests in its own region, while in the myopic cluster
policy, each cluster serves c times cluster size number of
service requests at each time slot, without queueing them.

A. Simulation of Average Number of Service Denials

We run our simulation with final time T = 5000, and
round length TR = 1000. There are three machines such that
only machines 1 and 2, and 2 and 3 are one hop neighbors.
Each machine either has 0 or nmax arrivals at each time step,
and the (unknown) new service request probabilities pi(t) =
Pr(ni(t) = nmax), i = 1, 2, 3 are such that when p1(t) is
increasing p3(t) is decreasing. In this section, instead of solv-
ing the robust dynamic program given in (8), DSO solves the
dynamic program Vm,i(si) = maxai∈Ai(si)(−ei(ni,ai) +∑

s′i
Vm,i(s

′
i)Q̂m−1,i(si,ai, s

′
i) − Vm,i(s

∗
i)), for i = 2, at

the beginning of each round m, based on its estimated
transition probabilities in the previous round. Since DSO uses
the myopic cluster policy in its first round, we neglect the
service denials of all policies in the first round, i.e., first 1000
slots, and take the average of the denials for the remaining
slots. In Table I, we give the average number of service
denials of myopic policies and DSO. In this setting, DSO
provides about 27% and 45% improvement over the myopic
and myopic cluster policies, respectively. The reason that
myopic cluster policy is worse than the myopic policy is
that it does not exploit the queueing ability of the machines.

8

VI. RELATED WORK

Prior work on mobile service offloading usually considers
it as an optimization problem rather than a learning problem.
Moreover, the focus is usually on the optimal scheduling of
a single machine with heterogeneous service requests instead
of a network of machines. In [8], a protocol to decide which
mobile services to offload based on the mobile’s throughput-
delay tradeoffs is proposed as the solution of a single-user
static optimization problem. In contrast, we consider offload-
ing to a locally available virtual machine network and assume
that the statistics are unknown and time-varying, and provide
theoretical and numerical results for both our centralized
and distributed algorithms. In [9], a computation offloading
algorithm that minimizes mobile energy consumption given
a delay constraint is proposed. This is done by dividing the
task to be offloaded into several components and deciding
which components should be offloaded. In contrast, we look
into the problem from a more general perspective, where
each task is offloaded or not as a whole, but the question is
how the offloading decision affects the future decisions of
the neighboring machines. An experimental setup to study
the feasibility of computation offloading and data backups
in the cloud is given in [10]. In [11], the authors formulate
an optimization problem for joint virtual machine placing
and routing.

Our problem formulation is related to the multi-armed ban-
dits, learning with expert advice and reinforcement learning
in unknown Markov decision processes (MDPs). The goal
in these problems is to choose the best possible action given
incomplete or noisy information about the state transition
dynamics of the system. In [12] and [13], optimal learning
policies are derived for an unknown MDP with stochastic
but fixed rewards and fixed transition probabilities. It is
shown that the average reward of these policies converges
to the average reward of the best deterministic policy. An
experts learning approach is taken in [14], in which there
is an expert associated with each state, and the experts’
goal is to choose the best action given the state. In [15]
a contextual bandit problem is considered, where the goal is
to choose the best arm given the context information. In [6],
the authors consider online learning in an unknown MDP
in which the rewards and state transition probabilities can
change arbitrarily. Convergence to the optimal policy in terms
of the average reward is not possible in this case because the
uncertainty about the state transition probabilities does not
vanish. However, given some restrictions on how the rewards
and transition probabilities can change, the authors are able
to analytically bound the loss in performance in terms of the
average reward. A fast online learning algorithm that exploits
a special structure in an unknown MDP is proposed in [16],
and a bound on its performance in the limit T →∞ is given.

Table II provides a comparison of our work with related
work in online learning.

VII. CONCLUSION

In this paper we developed an experts learning framework
for mobile service offloading. We proposed both centralized

y= yes, n=no [6] [12], [13], [15] our work
[16]

time-inhomogeneous y n y y
Markovian (M)/ iid (i) M M i M
distributed n n n y

TABLE II
COMPARISON WITH RELATED WORK IN ONLINE LEARNING

and decentralized online learning algorithms and gave ana-
lytic regret bounds for both. Importantly, the coupled experts
approach we developed in this paper can also be applied to
many other deployment scenarios and applications: online
routing problems where the link delays change over time,
online channel selection algorithms for cognitive radios, etc.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput-
ing, vol. 8, no. 4, pp. 14–23, 2009.

[2] H. A. Lagar-Cavilla, N. Tolia, E. De Lara, M. Satyanarayanan, and
D. OHallaron, “Interactive resource-intensive applications made easy,”
in Middleware 2007. Springer, 2007, pp. 143–163.

[3] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 24, no. 8, pp. 1439–1451, 2006.

[4] W. Hsu, K. Merchant, H. Shu, C. Hsu, and A. Helmy, “Weighted
waypoint mobility model and its impact on ad hoc networks,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 9,
no. 1, pp. 59–63, 2005.

[5] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling time-
variant user mobility in wireless mobile networks,” in Proc. of the
26th IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2007, pp. 758–766.

[6] J. Y. Yu and S. Mannor, “Online learning in Markov decision processes
with arbitrarily changing rewards and transitions,” in Proc. of the In-
ternational Conference on Game Theory for Networks (GAMENETS),
2009, pp. 314–322.

[7] A. Nilim and L. El Ghaoui, “Robust control of Markov decision
processes with uncertain transition matrices,” Operations Research,
vol. 53, no. 5, pp. 780–798, 2005.

[8] Y. Im, C. Joe-Wong, S. Ha, S. Sen, T. Kwon, and M. Chi-
ang, “AMUSE: Empowering users for cost-aware offloading with
throughput-delay tradeoffs,” in Proc. of the 32nd IEEE International
Conference on Computer Communications (INFOCOM), 2013.

[9] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Computation offload-
ing for mobile cloud computing based on wide cross-layer optimiza-
tion,” in Future Network and Mobile Summit, 2013.

[10] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? The bandwidth and energy costs of mobile cloud computing,”
in Proc. of the 32nd IEEE International Conference on Computer
Communications (INFOCOM), 2013.

[11] W. Jiang, M. Chen, S. Ha, T. Lan, and M. Chiang, “Joint VM
placement and routing for data center traffic engineering,” in Proc. of
the 31st IEEE International Conference on Computer Communications
(INFOCOM), March 2012, pp. 758–766.

[12] P. Ortner, “Logarithmic online regret bounds for undiscounted rein-
forcement learning,” in Proc. of the Conference on Advances in Neural
Information Processing Systems (NIPS 2006), vol. 19. The MIT Press,
2007, p. 49.

[13] A. Tewari and P. Bartlett, “Optimistic linear programming gives loga-
rithmic regret for irreducible MDPs,” Advances in Neural Information
Processing Systems, vol. 20, pp. 1505–1512, 2008.

[14] E. Even-Dar, S. M. Kakade, and Y. Mansour, “Experts in a Markov de-
cision process,” Advances in Neural Information Processing Systems,
vol. 17, pp. 401–408, 2005.

[15] A. Slivkins, “Contextual bandits with similarity information,” JMLR:
Workshop and Conference Proceedings, vol. 19, pp. 679–701.

[16] F. Fu and M. van der Schaar, “Structure-aware stochastic control for
transmission scheduling,” IEEE Transactions on Vehicular Technology,
vol. 61.

