
1
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Abstract—Recommender systems, medical diagnosis, network
security, etc., require on-going learning and decision-making in
real time. These – and many others – represent perfect examples
of the opportunities and difficulties presented by Big Data: the
available information often arrives from a variety of sources and
has diverse features so that learning from all the sources may be
valuable but integrating what is learned is subject to the curse of
dimensionality. This paper develops and analyzes algorithms that
allow efficient learning and decision-making while avoiding the
curse of dimensionality. We formalize the information available
to the learner/decision-maker at a particular time as a context
vector which the learner should consider when taking actions.
In general the context vector is very high dimensional, but in
many settings, the most relevant information is embedded into
only a few relevant dimensions. If these relevant dimensions were
known in advance, the problem would be simple – but they
are not. Moreover, the relevant dimensions may be different for
different actions. Our algorithm learns the relevant dimensions
for each action, and makes decisions based in what it has learned.
Formally, we build on the structure of a contextual multi-armed
bandit by adding and exploiting a relevance relation. We prove a
general regret bound for our algorithm whose time order depends
only on the maximum number of relevant dimensions among
all the actions, which in the special case where the relevance
relation is single-valued (a function), reduces to Õ(T 2(

√
2−1)); in

the absence of a relevance relation, the best known contextual
bandit algorithms achieve regret Õ(T (D+1)/(D+2)), where D is
the full dimension of the context vector. Our algorithm alternates
between exploring and exploiting and does not require observing
outcomes during exploitation (so allows for active learning).
Moreover, during exploitation, suboptimal actions are chosen
with arbitrarily low probability. Our algorithm is tested on
datasets arising from network security and online news article
recommendations.

Index Terms—Contextual bandits, regret, dimensionality re-
duction, learning relevance, recommender systems, online learn-
ing, active learning.

I. INTRODUCTION

The world is increasingly information-driven. Vast amounts
of data are being produced by diverse sources and in diverse
formats including sensor readings, physiological measure-
ments, documents, emails, transactions, tweets, and audio or
video files and many businesses and government institutions
rely on these Big Data in their everyday operations. (Particular
applications that have been discussed in the literature include
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recommender systems [2], neuroscience [3], network monitor-
ing [4], surveillance [5], health monitoring [6], stock market
prediction, intelligent driver assistance [7], etc.) To make the
best use of these data, it is vital to learn from and respond
to the streams of data continuously and in real time. Because
data streams are heterogeneous and dynamically evolving over
time in unknown and unpredictable ways, making decisions
using these data streams online, at run-time, is known to be
a very challenging problem [8], [9]. In this paper, we tackle
these online Big Data challenges by exploiting a feature that
is common to many applications: the data may have many
dimensions, but the information that is most important for any
given action is embedded into only a few relevant dimensions.
In general, these relevant dimensions will be different for
different actions and are not known in advance – so must
be learned. We propose and analyze an algorithm that learns
the relevant dimensions for each action, and makes decisions
based in what it has learned.

Our structure builds on contextual multi-armed bandits.
We formalize the information obtained from the data streams
(perhaps after pre-processing) in terms of “context vectors”.
Context vectors characterize the information contained in the
data generated by the process the learner wishes to control/act
on such as the location, and/or data type information (e.g.,
features/characteristics/modality). The decision maker/learner
receives the context vector and takes an action that generates
a reward that depends (stochastically) on the context vector.
Contexts, actions and rewards are generic terms; the specific
meaning depends on the specific Big Data application. For
instance, in a network security application [4], contexts are
the features of the network packet, actions are the set of
predictions about the type of network attacks and the reward is
the accuracy of the prediction. In a recommender system [2],
contexts are the characteristics (age, gender, purchase history,
etc.) of the user, actions are items and the reward is the
indicator function of the event that the user buys the item.
The problem is to learn the rewards (or the distribution of
rewards) generated by each action in each context. The context
vector is typically high dimensional but in many applications
the reward for a particular action will depend only on a few
most relevant of these dimensions, embodied in a relevance
relation. For an action set A and a type (dimension) set D,
the relevance relation is given by R = {R(a)}a∈A, where
R(a) ⊂ D. However, whether this is the case and if so, which
dimensions are most relevant for a particular action, is not
known in advance but must be learned, and decision-making
must be adapted to this learning process.

Relevance relations arise naturally in many practical appli-
cations. For example, when treating patients with a particular
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disease, many contexts may be available – the patients’ age,
weight, blood tests, imaging, medical history etc. - but often
only a few of these contexts are relevant in choosing/not
choosing a particular treatment or medication. For instance,
surgery may be strongly contra-indicated in patients with
clotting problems; drug therapies that require close monitoring
may be strongly contra-indicated in patients who do not
have committed care-givers, etc. Similarly, in recommender
systems, a product recommendation may sometimes depend on
many characteristics of the user – gender, occupation, history
of past purchases etc. - but will often depend only (or most
strongly) on a few characteristics – such as location and home-
ownership.

Relevance allows us to avoid the curse of dimensionality:
we show that regret bounds depend only on the number of
relevant dimensions, i.e., Drel – which is typically much less
than the full number of dimensions. Our main contributions
can be summarized as follows:
• We propose the Relevance Learning with Feedback (RE-

LEAF) algorithm that alternates between exploration and
exploitation phases. For the general case when Drel <
D/2, RELEAF achieves a regret bound of Õ(T g(Drel)),1

where g(Drel) ≤ (2Drel + 3)/(2Drel + 4), which reduces
to a regret bound of Õ(T 2(

√
2−1)) when the relevance

relation is a function.
• We derive separate bounds on the regret incurred in

exploration and exploitation phases. RELEAF only needs
to observe the reward in exploration phases and hence,
when observing rewards is costly, active learning can
be performed by controlling reward feedback. RELEAF
achieves the same time order of regret even when observ-
ing rewards is costly.

• The operation of RELEAF involves a confidence pa-
rameter, chosen by the user, which can be arbitrarily
small. If confidence δ is chosen, then RELEAF will
never select suboptimal actions in exploitation steps with
probability at least 1 − δ. This provides performance
guarantees, which are important – perhaps vital – in many
applications, such as medical treatment.

The rest of the paper is organized as follows. Related work
is given in Section II. The problem is formalized in Section
III. An algorithm that learns the relevance relation between
actions and types of contexts is given in Section IV. Then, the
regret bounds are proved for this algorithm. Numerical results
on several real-world datasets are given in Section V. Finally,
conclusions are given in Section VI.

II. RELATED WORK

A. Multi-armed bandits

Our work is a new contextual bandit problem where rele-
vance relations exist. Contextual bandit problems are studied
by many others in the past [10]–[15]. The problem we consider
in this paper is a special case of the Lipschitz contextual bandit
problem [12], [13], where the only assumption is the existence
of a known similarity metric between the expected rewards

1O(·) is the Big O notation, Õ(·) is the same as O(·) except it hides terms
that have polylogarithmic growth.

Our work [12], [13] [2], [14] [11], [15]
Relevance relation yes no no no

Context arrivals arbitrary arbitrary arbitrary i.i.d.
Reward-context Lipschitz Lipschitz linear joint i.i.d.

relation process
Time order of depends depends independent independent

the regret on Drel on D of D of D

TABLE I
COMPARISON OF OUR WORK WITH OTHER WORK CONTEXTUAL BANDITS.

of actions for different contexts. The strengh of this model
comes from the fact that there are no stochastic assumptions
made on the context arrival process, and the benchmark which
the regret is defined against selects the best action for each
context. It is known that the lower bound on regret for this
problem is O(T (D+1)/(D+2)) [12], and there exists algorithms
that achieve Õ(T (D+1)/(D+2)) regret [12], [13].2 Compared
to these works, RELEAF only needs to observe rewards in
explorations and has a regret whose time order is independent
of D. Hence it can still learn the optimal actions fast enough
in settings where observations are costly and the context
vector is high dimensional. For instance, in Section IV-D we
show that the regret of RELEAF is better than the bound of
Õ(T (D+1)/(D+2)) in [12], [13] for Drel ≤ D/2− 1.

Another class of contextual bandit problems consider reward
functions that are linear in the contexts [2], [14]. Due to
this linearity assumption learning reduces to estimating the
parameter vector corresponding to each arm, hence the regret
bounds do not depend on the dimension of the context space.
Several papers [11], [15] impose stochastic assumptions on
the process that generates the contexts and the arm rewards.
For instance assuming that the contexts and arm rewards are
generated by an unknown i.i.d. process, regret independent of
the dimension of the context space can be achieved.

The differences between our work and these prior works are
summarized in Table I.

B. Dimensionality reduction
Dimensionality reduction methods are often used to find

low dimensional representations of high dimensional context
vectors (feature vectors) such that the information contained in
the low dimensional representation is approximately equal to
the information contained in the original context vector [16].
For instance, reduced-rank adaptive filtering [17]–[19] first
projects feature vectors onto a lower dimensional subspace,
and then adaptively adjusts the filter coefficients over time. In
these works a low dimensional representation of the feature
vector is learned based on the available data. Compared to
this, in our work the relevant dimensions for each action
can be different, hence a low dimensional representation that
contains information about the rewards of all actions may not
exist. An example is a relevance relation R for which each
action only has few relevant dimensions, i.e., Drel << D, but⋃
a∈AR(a) = D.

C. Learning with limited number of observations
Examples of related works that consider limited obser-

vations while learning are KWIK learning [20], [21] and

2The bounds in [12], [13] are given in terms of covering and zooming di-
mensions of the problem instance, but they reduce to the Euclidian dimension
for the set of assumptions we have in this paper.
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label efficient learning [22]–[24]. For example, [21] considers
a bandit model where the reward function comes from a
parameterized family of functions and gives a bound on the
average regret. An online prediction problem is considered in
[22]–[24], where the predictor (action) lies in a class of linear
predictors. The benchmark of the context is the best linear
predictor. This restriction plays a crucial role in deriving regret
bounds whose time order does not depend on D. Similar to
these works, RELEAF can guarantee with a high probability
that actions with suboptimality greater than a desired ε > 0
will never be selected in exploitation steps. However, we do
not have any assumptions on the form of the expected reward
function other than the Lipschitz continuity.

For the special case when actions correspond to making
predictions about the context vector (which is equal to the data
stream for this special case), our problem is closely related to
the problem of active learning. In this problem, obtaining the
labels is costly, but the performance of the learning algorithm,
i.e., rewards, can only be assessed through the labels, hence
actively learning when to ask for the label becomes an
important challenge. In stream-based active learning [25]–[28],
the learner is provided with a stream of unlabeled instances.
When an instance arrives, the learner decides to obtain the
label or not. To the best of our knowledge there is no prior
work in stream-based active learning that deals with learning
relevance relations with sublinear bounds on the regret.

D. Ensemble learning

Numerous ensemble learning methods exists in the literature
[4], [29]–[31]. These methods take predictions (actions) from
a set of experts (e.g., base classifiers), and combine them with
a specific rule to produce a final prediction (action). After the
reward of all the actions are observed, the rule to combine
the predictions of the experts is updated based on how good
each individual expert had performed. The goal is to learn
a combination rule such that even if the predictions’ of the
individual experts are not very accurate, the final prediction
is accurate because it takes into account the “opinions” of all
experts.

To evaluate the performance of ensemble learning methods
analytically, the benchmark is usually taken to be the expert
that achieves the highest total reward. Hence the “quality” of
the regret bounds depends on the “quality” of the experts.
In contrast, our regret bounds are with respect to the best
benchmark (that only depends on context arrivals and reward
distributions), and can be applied to settings without experts.
Moreover, our algorithms work for the bandit setting, in which
after an action is chosen, only its reward is revealed to the
algorithm.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. Notation

For a vector x, xi denotes its ith component. Given a
vector v, xv := {xi}i∈v denotes the components of x whose
positions are in v. The time index is t = 1, 2, . . .. When
referring to a time dependent variable we use subscript t as the
rightmost subscript corresponding to that variable. For instance

xt denotes a vector at time t, xi,t denotes its ith component
at time t, and xv,t denotes the vector of its components that
are in v at time t.

B. Problem formulation

A is the set of actions, D is the dimension of the con-
text vector, D := {1, 2, . . . , D} is the set of types, and
R = {R(a)}a∈A : A → 2D is the (unknown) relevance
relation, which maps every a ∈ A to a subset of D. We
call Drel = maxa∈A |R(a)|, the relevance dimension. When
Drel = 1, we say that R is a relevance function. Elements of
D are denoted by index i. Let VK , 1 ≤ K ≤ D be the set of
K element subsets of D. We call v ∈ VK , a K-tuple of types.

At each time step t = 1, 2, . . ., a context vector xt arrives
to the learner. After observing xt the learner selects an action
a ∈ A, which results in a random reward rt(a,xt). The learner
may choose to observe this reward by paying cost cO ≥ 0. The
goal of the learner is to maximize the sum of the generated
rewards minus costs of observations for any time horizon T .

Each xt consists of D types of contexts, and can be written
as xt = (x1,t, x2,t, . . . , xD,t) where xi,t is called the type i
context. Xi denotes the space of type i contexts and X :=
X1 ×X2 × . . .×XD denotes the space of context vectors. At
any t, we have xi,t ∈ Xi for all i ∈ D. All of our results hold
for the case when Xi is a bounded subset of the real line. The
number of elements in Xi can be finite or infinite. For the
sake of notational simplicity we take Xi = [0, 1] for all i ∈ D,
since the values of context can be rescaled to lie in this range.
Then, for the case when the actual context space is finite, [0, 1]
will be a superset of the context space. For a context vector x,
xR(a) denotes the vector of values of x corresponding to types
R(a). The reward of action a for x = (x1, x2, . . . , xD) ∈ X ,
i.e., rt(a,x), is generated according to an i.i.d. process with
distribution F (a,xR(a)) with support in [0, 1] and expected
value µ(a,xR(a)). The learner does not know F (a,xR(a))
and µ(a,xR(a)) for a ∈ A, x ∈ X a priori.

The following assumption gives a similarity structure be-
tween the expected reward of an action and the contexts of
the type that is relevant to that action.

Assumption. (The Similarity Assumption) For all a ∈ A,
x,x′ ∈ X , we have |µ(a,xR(a))−µ(a,x′R(a))| ≤ L||xR(a)−
x′R(a)||, where L > 0 is the Lipschitz constant and || · || is the
Euclidian norm.

We assume that the learner knows the L given in the
Similarity Assumption. While we need this assumption in
order to derive our analytic bounds on the performance
of the algorithm, as it is common in all contextual bandit
algorithms [12], [13], our numerical results in Section V
show that the proposed algorithm works well on real-world
data sets for which this assumption may not hold. Given a
context vector x = (x1, x2, . . . , xD), the optimal action is
a∗(x) := arg maxa∈A µ(a,xR(a)). In order to assess the
learner’s loss due to unknowns, we compare its performance
with the performance of an oracle benchmark which knows
a∗(x) for all x ∈ X . Let µt(a) := µ(a,xR(a),t). The action
chosen by the learner at time t is denoted by αt. The learner
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also decides whether to observe the reward or not, and this
decision of the learner at time t is denoted by βt ∈ {0, 1}.
If βt = 1, then the learner chooses to observe the reward,
else if βt = 0, then the learner does not observe the reward.
The learner’s performance loss with respect to the oracle
benchmark is defined as the regret, whose value at time T
is given by

R(T ) :=

T∑
t=1

µt(a
∗(xt))−

T∑
t=1

(µt(αt)− cOβt). (1)

Different from the definitions of regret in related works [12]–
[14], there is an additional cost cO, which is called the active
learning/exploration cost. Hence the goal of the learner is to
maximize its total reward while balancing the active learning
costs incurred when observing the rewards. The algorithm
we propose in this paper is able to achieve a given tradeoff
between the two by actively controlling when to observe the
rewards.

A regret that grows sublinearly in T , i.e., O(T γ), γ < 1,
guarantees convergence in terms of the average reward, i.e.,
R(T )/T → 0. We are interested in achieving sublinear growth
with a rate only depending on Drel independent of D.

IV. ONLINE LEARNING OF RELEVANCE RELATIONS

A. Relevance Learning with Feedback

In this section we propose the algorithm Relevance LEArn-
ing with Feedback (RELEAF), which learns the best action for
each context vector by simultaneously learning the relevance
relation, and then estimating the expected reward of each
action based on the values of the contexts of the relevant types.
The feedback, i.e., reward observations, is controlled based on
the past context vector arrivals, in a way that the reward ob-
servations are only made for actions for which the uncertainty
in the reward estimates are high for the current context vector.
The controlled feedback feature allows RELEAF to operate
as an active learning algorithm. RELEAF has a relevance
parameter γrel which is the number of relevant types it will
learn for each action. In order to have analytic bounds on the
regret, it is required that γrel ≥ Drel. However, the numerical
results in Section V show that even with γrel = 1, RELEAF
performs very well on several real-world datasets. We assume
that RELEAF knows Drel but not R. Hence, in this paper we
assume that RELEAF is run with γrel = Drel. In theory, it is
enough for RELEAF to know an upper bound D̄rel on Drel.
Then, the regret of RELEAF will depend on D̄rel. Operation
of RELEAF can be summarized as follows:
• Adaptively form partitions (composed of intervals) of the

context space of each type in D and use them to learn the
action rewards of similar context vectors together from
the history of observations.

• For an action, form reward estimates for 2γrel-tuple of
intervals corresponding to 2γrel-tuple of types. Based on
the accuracy of these estimates, either choose to explore
and observe the reward (by paying cost cO for active
learning) or choose to exploit the best estimated action
(but do not observe the reward) for the current context
vector.

• In order to estimate the expected rewards of the actions
accurately, find the set of γrel-tuple of types relevant to
each action a. For instance, a γrel-tuple of types v ∈ Vγrel

is relevant to action a if R(a) ⊂ v. Conclude that v is
relevant to a if the variation of the reward estimates does
not greatly exceed the natural variation of the expected
reward of action a over the hypercube corresponding to
v formed by intervals of type i ∈ v (calculated using
Similarity Assumption).

Relevance Learning with Feedback (RELEAF):

1: Input: L, ρ, δ, γrel.
2: Initialization: Pi,1 = {[0, 1]}, i ∈ D. Run Initialize(i, Pi,1,

1), i ∈ D.
3: while t ≥ 1 do
4: Observe xt, find pt that xt belongs to.
5: Set Ut :=

⋃
i∈D Ui,t, where Ui,t (given in (5)), is the set

of under explored actions for type i.
6: if Ut 6= ∅ then
7: (Explore) βt = 1, select αt randomly from Ut,

observe rt(αt,xt).
8: Update sample mean reward of αt corresponding to

2γrel-tuples of intervals: for all q ∈ Qt, given in (2).
r̄v(q)(q, αt) = (Sv(q)(q, αt)r̄

v(q)(q, αt) +
rt(αt,xt))/(S

v(q)(q, αt) + 1).
9: Update counters: for all q ∈ Qt, Sv(q)(q, αt) + +.

10: else
11: (Exploit) βt = 0, for each a ∈ A calculate the set of

candidate relevant contexts Relt(a) given in (6).
12: for a ∈ A do
13: if Relt(a) = ∅ then
14: Randomly select ĉt(a) from Vγrel .
15: else
16: For each i ∈ Relt(a), calculate Vart(v, a) given

in (7).
17: Set ĉt(a) = arg minv∈Relt(a) Vart(v, a).
18: end if
19: Calculate r̄ĉt(a)(pĉt(a),ta) as given in (8).
20: end for
21: Select αt = arg maxa∈A r̄

ĉt(a)(pĉt(a),ta).
22: end if
23: for i ∈ D do
24: N i(pi,t) + +.
25: if N i(pi,t) ≥ 2ρl(pi,t) then
26: Create two new level l(pi,t) + 1 intervals p, p′

whose union gives pi,t.
27: Pi,t+1 = Pi,t ∪ {p, p′} − {pi,t}.
28: Run Initialize(i, {p, p′}, t).
29: else
30: Pi,t+1 = Pi,t.
31: end if
32: end for
33: t = t+ 1
34: end while
Initialize(i, B, t):

1: for p ∈ B do
2: Set N i(p) = 0, r̄(v(q),i)((q, p), a) = 0,

S(v(q),i)((q, p), a) = 0 for all 2γrel-tuple of types
(v(q), i) that contain type i, for all a ∈ A such that
(q, p) ∈ P(v(q),i),t.

3: end for
Fig. 1. Pseudocode for RELEAF.

In order to learn fast, RELEAF exploits the similarities
between the context vectors of the relevant types3 given in the
Similarity Assumption to estimate the rewards of the actions.

3RELEAF only needs to know L but not R. Even if L is not known, it can
use a slowly increasing function L̂(t) as an estimate for L so that a sublinear
regret bound will hold for a time horizon T such that L̂(T ) ≥ L.
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The key to success of our algorithm is that this estimation is
good enough if relevant tuples of types for each action are
correctly identified. Since in Big Data applications D can be
very large, learning the Drel-tuple of types that is relevant to
each action greatly increases the learning speed.

RELEAF adaptively forms the partition of the space for
each type in D, where the partition for the context space of
type i at time t is denoted by Pi,t. All the elements of Pi,t
are disjoint intervals of Xi whose lengths are elements of the
set {1, 2−1, 2−2, . . .}.4 An interval with length 2−l, l ≥ 0 is
called a level l interval, and for an interval p, l(p) denotes
its level, s(p) denotes its length. By convention, intervals are
of the form (a, b], with the only exception being the interval
containing 0, which is of the form [0, b].5 Let pi,t ∈ Pi,t be
the interval that xi,t belongs to, pt := (p1,t, . . . , pD,t) and
Pt := (P1,t, . . . ,PD,t). For v ∈ VK , 1 ≤ K ≤ D, let pv,t

denote the elements of pt corresponding to types in v, and let
Pv,t = ×i∈vPi,t.

The pseudocode of RELEAF is given in Fig. 1. RELEAF
starts with Pi,1 = {Xi} = {[0, 1]} for each i ∈ D. As time
goes on and more contexts arrive for each type i, it divides
Xi into smaller and smaller intervals. Then, these intervals
are used to create 2γrel-dimensional hypercubes corresponding
to 2γrel-tuples of types, and past observations corresponding
to context vectors lying in these hypercubes are used to
form sample mean reward estimates of the expected action
rewards. The intervals are created in a way to balance the
variation of the sample mean rewards due to the number
of past observations that are used to calculate them and the
variation of the expected rewards in each hypercube formed
by the intervals. For each interval p ∈ Pi,t, RELEAF keeps a
counter for the number of type i context arrivals to p. When the
value of this counter exceeds 2ρl(p), where ρ > 0 is an input
of RELEAF called the duration parameter, p is destroyed
and two level l(p) + 1 intervals, whose union gives p are
created. For example, when pi,t = (k2−l, (k+1)2−l] for some
0 < k ≤ 2l − 1 if N i

t (pi,t) ≥ 2ρl, RELEAF sets

Pi,t+1 = Pi,t − {pi,t}
∪ {(k2−l, (k + 1/2)2−l], ((k + 1/2)2−l, (k + 1)2−l]}.

Otherwise Pi,t+1 remains the same as Pi,t. It is easy to see
that the lifetime of an interval increases exponentially in its
duration parameter.

We next describe the control numbers RELEAF keeps for
each type i, the counters and sample mean rewards RELEAF
keeps for 2γrel-tuples of intervals (2γrel-dimensional hyper-
cubes) corresponding to a 2γrel-tuple of types to determine
whether to explore or exploit and how to exploit. Let VK(i)
be the set of K-tuples of types that contains type i. For each
v ∈ VK(i), we have i ∈ v.

Let D−v := D − {v}. For type i, let Qi,t := {pv,t : v ∈
V2γrel(i)} be the set of 2γrel-tuples of intervals that includes

4Setting interval lengths to powers of 2 is for presentational simplicity. In
general, interval lengths can be set to powers of any integer greater than 1.

5Endpoints of intervals will not matter in our analysis, so our results will
hold even when the intervals have common endpoints.

an interval belonging to type i at time t, and let

Qt :=
⋃
i∈D

Qi,t. (2)

To denote an element of Qi,t or Qt we use index q.
For any q ∈ Qt, the tuple of types corresponding to the
tuple intervals in q is denoted by v(q). For instance if
q = (qi1 , qi2 , . . . , qi2γrel), then v(q) = (i1, i2, . . . , i2γrel). The
decision to explore or exploit at time t is solely based on pt.
For events A1, . . . , AK , let I(A1, . . . , Ak) denote the indicator
function of event

⋂
k=1:K Ak. Let

S
v(q)
t (q, a) :=

t∑
t′=1

I
(
αt′ = a, βt′ = 1,pv(q),t′ = q

)
,

be the number of times a is selected and the reward is observed
when the context values corresponding to types v(q) are in q
and q ∈ Pv(q),t. Also let

r̄
v(q)
t (q, a)

:=

∑t
t′=1 rt′(a,xt′)I

(
αt′ = a, β′t = 1,pv(q),t′ = q

)
S
v(q)
t (q, a)

,

be the sample mean reward of action a for 2γrel-tuple of
intervals q.

At time t, RELEAF assigns a control number to each i ∈ D
denoted by

Di,t :=
2 log(tD∗|A|/δ)

(Ls(pi,t))2
, (3)

where

D∗ =

(
D − 1

2γrel − 1

)
. (4)

This number depends on the cardinality of A, the length of
the active interval that type i context is in at time t and a
confidence parameter δ > 0, which controls the accuracy of
sample mean reward estimates. Di,t is a sufficient number of
reward observations from an action, which guarantees that the
estimated reward for that action will be sufficiently close to
the expected reward for the context at time t. By sufficiently
close we mean that when i is the relevant type of context for
the action, the difference between the true expected reward of
that action and the estimated expected reward will be less than
a constant factor of the length of the interval that contains
the type i context due to the Similarity Assumption. The
control function ensures that within each hypercube, the rate
of exploration only increases logarithmically in time. It also
guarantees that each action is explored at least ∼ 1/s(pi,t)

2

times, which guarantees that the regret due to exploitations in
each hypercube is small enough to achieve a sublinear regret
bound (see Theorem 1).

Then, it computes the set of under-explored actions for type
i as

Ui,t :=
{
a ∈ A : S

v(q)
t (q, a) < Di,t

for some q ∈ Qi(t)} , (5)
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and then, the set of under-explored actions as Ut :=
⋃
i∈D Ui,t.

The decision to explore or exploit is based on whether or not
Ut is empty, as follows:

(i) If Ut 6= ∅, RELEAF randomly selects an action αt ∈ Ut
to explore, and observes its reward rt(αt,xt). Reward ob-
servation costs cO, which is the active learning cost. Then, it
updates the sample mean rewards and counters for all q ∈ Qt,

r̄
v(q)
t+1 (q, αt) =

S
v(q)
t (q, αt)r̄

v(q)
t+1 (q, αt) + rt(αt,xt)

S
v(q)
t (q, αt) + 1

,

S
v(q)
t+1 (q, αt) = S

v(q)
t (q, αt) + 1.

(ii) If Ut = ∅, RELEAF exploits by estimating the relevant
γrel-tuple of types ĉt(a) for each a ∈ A and forming sample
mean reward estimates for action a based on ĉt(a). It first
computes the set of candidate relevant tuples of types for each
a ∈ A. For each v ∈ Vγrel , let V2γrel(v) be the set of 2γrel-
tuples of types such that v ∩w = v for w ∈ V2γrel(v).

Relt(a) :=
{
v ∈ Vγrel : |r̄wt (pw,t, a)− r̄w

′

t (pw′,t, a)|

≤ 3L
√
γrel max

i∈v
s(pi,t),∀w,w′ ∈ V2γrel(v)

}
. (6)

The intuition is that if the tuple of types v contains the tuple
of types R(a) that is relevant to a, then independent of the
values of the contexts of the other types, the variation of the
pairwise sample mean reward of a over pw,t must be very
close to the variation of the expected reward of a in pv,t for
w ∈ V2Drel(v) in exploitation steps.

If Relt(a) is empty, this implies that RELEAF failed to
identify the relevant tuple of types, hence ĉt(a) is randomly
selected from Vγrel . If Relt(a) is nonempty, RELEAF computes
the maximum variation

Vart(v, a) := max
w,w′∈V2γrel (v)

|r̄wt (pw,t, a)− r̄w
′

t (pw′,ta)|, (7)

for each v ∈ Relt(a). Then it sets ĉt(a) =
minv∈Relt(a) Vart(v, a). This way, whenever R(a) ⊂ v
for some v ∈ Relt(a), even if v is not selected as the
estimated relevant tuple of types, the sample mean reward of
a calculated based on the estimated relevant tuple of types
will be very close to the sample mean of its reward calculated
according to R(a). After finding the estimated relevant tuple
of types ĉt(a) for a ∈ A, the sample mean rewards of the
actions are computed as

r̄
ĉt(a)
t (pĉt(a),t, a)

:=

∑
w∈V2γrel (ĉt(a))

r̄wt (pw,t, a)Sw
t (pw,t, a)∑

w∈V2γrel (ĉt(a))

Sw
t (pw,t, a)

. (8)

Then, RELEAF selects

αt = arg max
a∈A

r̄
ĉt(a)
t (pĉt(a),t, a).

Different from explorations, since the reward is not observed
in exploitations, sample mean rewards and counters are not
updated.

B. Why sample mean reward estimates for 2γrel-tuple of
intervals are required?

Assume that RELEAF knows Drel, hence γrel = Drel. Then,
RELEAF computes sample mean reward estimates for 2Drel-
tuples of intervals corresponding to different types and uses
them to learn the action with the highest reward by learning the
relevant Drel-tuples of types. However, is it possible to learn
the action with the highest reward by only forming sample
mean estimates for Drel-tuples of intervals? For instance con-
sider the case when Drel = 1 and the following greedy learning
algorithm called Greedy-RELEAF, outlined as follows:

(i) Form sample mean reward estimates of each action a for
each type i ∈ D, i.e., r̄it(p, a), p ∈ Pi,t based only on the con-
text arrivals corresponding to type i; (ii) In exploitation steps
choose the action with the highest sample mean reward over all
sets of intervals in pt, i.e., arg maxa∈Amaxi∈D r̄

i
t(pi(t), a).

The following lemma shows that there exists a context arrival
process for which the regret of Greedy-RELEAF will be linear
in time.

Lemma 1. Let A = {a, b}, D = {i, j}, R(a) = i, R(b) = j.
xi(t) = x for all t and xj(t) = 1 with probability 0.8 and
xj(t) = 0 with probability 0.2 for all t independently. Assume
that µ(a, x) = 0.5 and µ(b, xj(t)) = xj(t). Then, we have
R(T ) = O(T ).

Proof: Given that Greedy-RELEAF explores sufficiently
many times, at an exploitation step t when the context vector
is (x, 0), we have

P
(
|r̄it(pi(t), a)− 0.5| < 0.1, |r̄it(pi(t), b)− 0.8| < 0.1,

|r̄jt (pj(t), a)− 0.5| < 0.1
)
≥ 0.5

for any pi(t) containing x and pj(t) containing 0. At such a t
Greedy-RELEAF will select action b with probability at least
0.5, resulting in an expected regret of at least 0.52. Assume
that the context vector arrivals are such that (x, 0) appears in
more than 50% of the time for all T large enough. Then, the
regret of Greedy-RELEAF will be linear in T .

For the problem instance given in Lemma 1, RE-
LEAF will calculate and compare sample mean rewards
r̄i,jt ((pi(t), pj(t)), a) for pairs of intervals corresponding to
different types instead of directly forming sample mean re-
wards for intervals of each type; hence in exploitations it can
identify that the type relevant to action a is i and action b
is j with a very high probability. We will prove this in the
following subsection by deriving a sublinear in time regret
bound for RELEAF for the case when Drel = 1. A general
regret bound for 1 ≤ Drel < D/2 is proven in our online
technical report [32].

C. Regret analysis of RELEAF for Drel = 1

In this section we derive analytical regret bounds for RE-
LEAF. For simplicity of exposition, we prove our bounds for
the special case when Drel = 1, i.e., when the relevance
relation is a function, and RELEAF is run with γrel = Drel.
Although Drel = 1 is the simplest special case, our numer-
ical results on real-world datasets in Section V shows that
RELEAF performs very well with γrel = 1.
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Let τ(T ) ⊂ {1, 2, . . . , T} be the set of time steps in which
RELEAF exploits by time T . τ(T ) is a random set which
depends on context arrivals and the randomness of the action
selection of RELEAF. The regret R(T ) defined in (1) can
be written as a sum of the regret incurred during explo-
rations (denoted by RO(T )) and the regret incurred during
exploitations (denoted by RI(T )). Computing the two regrets
separately gives more flexibility when choosing the parameter
of RELEAF according to the objective of the learner. Although
the definition of the regret in (1), allows us to write regret
as RO(T ) + RI(T ), the learner can set the parameters of
RELEAF according to other objectives such as minimizing
RI(T ) subject to RO(T ) ≤ K for a fixed T and K > 0, or
minimizing the time order of the regret when it is a more
general function of regret in explorations and exploitations,
i.e., f(RO(T ), RI(T )). For instance, in an online prediction
problem, if the cost of accessing the true label (exploration)
is small, but the cost of making a prediction error in an
exploitation step is very large, the learner can trade off to
have higher rate of explorations.

The following theorem gives a bound on the regret of
RELEAF in exploitation steps.

Theorem 1. Let RELEAF run with relevance parameter γrel =
1, duration parameter ρ > 0, confidence parameter δ > 0 and
control numbers

Di,t :=
2 log(t|A|D/δ)

(Ls(pi,t))2
,

for i ∈ D. Let Rinst(t) be the instantaneous regret at time t,
which is the loss in expected reward at time t due to not
selecting a∗(xt). When the relevance relation is such that
Drel = 1, then, with probability at least 1− δ, we have

Rinst(t) ≤ 8L(s(pR(αt),t) + s(pR(a∗(xt)),t)),

for all t ∈ τ(T ), and the total regret in exploitation steps is
bounded above by

RI(T ) ≤ 8L
∑
t∈τ(T )

(s(pR(αt),t + s(pR(a∗(xt)),t))

≤ 16LD22ρT ρ/(1+ρ),

for arbitrary context vectors x1,x2, . . . ,xT . Hence
RI(T )/T = O(T−1/(1+ρ)), and limT→∞RI(T ) = 0.

Proof: The proof is given in Appendix A.
Theorem 1 provides both context arrival process dependent

and worst case bounds on the exploitation regret of RELEAF.
By choosing ρ arbitrarily close to zero, RI(T ) can be made
O(T γ) for any γ > 0. While this is true, the reduction in
regret for smaller ρ not only comes from increased accuracy,
but it is also due to the reduction in the number of time steps
in which RELEAF exploits, i.e., |τ(T )|. By definition, time t
is an exploitation step if

S
(i,j)
t (pi,t, pj,t, a) ≥ 2 log(t|A|D/δ)

L2 min{s(pi,t)2, s(pj,t)2}

=
22max{l(pi,t),l(pj,t)}+1 log(t|A|D/δ)

L2
,

for all q = (pi,t, pj,t) ∈ Qt, i, j ∈ D. This implies that for any
q ∈ Qi,t which has the interval with maximum level equal to
l, Õ(22l) explorations are required before any exploitation can
take place. Since the time a level l interval can stay active is
2ρl, it is required that ρ ≥ 2 so that τ(T ) is nonempty.

The next theorem gives a bound on the regret of RELEAF
in exploration steps.

Theorem 2. Let RELEAF run with γrel, ρ, δ and Di,t, i ∈ D
values as stated in Theorem 1. When the relevance relation is
such that Drel = 1, we have

RO(T ) ≤ 960D2(cO + 1) log(T |A|D/δ)
7L2

T 4/ρ

+
64D2(cO + 1)

3
T 2/ρ,

with probability 1, for arbitrary context vectors
x1,x2, . . . ,xT . Hence RO(T )/T = O(T (4−ρ)/ρ), and
limT→∞RO(T ) = 0 for ρ > 4.

Proof: The proof is given in Appendix B.
Based on the choice of the duration parameter ρ, which

determines how long an interval will stay active, it is possible
to get different regret bounds for explorations and exploita-
tions. Any ρ > 4 will give a sublinear regret bound for
both explorations and exploitations. The regret in exploitations
increases in ρ while the regret in explorations decreases in ρ.

Theorem 3. Let RELEAF run with γrel, δ and Di,t, i ∈ D
values as stated in Theorem 1 and ρ = 2+2

√
2. Then, the time

order of exploration and exploitation regrets are balanced up
to logarithmic orders. With probability at least 1− δ we have
both RI(T ) = Õ(T 2/(1+

√
2)) and RO(T ) = Õ(T 2/(1+

√
2)) .

Proof: The time order of the exploitation regret is increas-
ing in ρ from the result of Theorem 1, and the time order of
the exploration regret is decreasing in ρ from the result of
Theorem 2. The time orders of both regrets are be balanced
when ρ/(1 + ρ) = 4/ρ, which gives the result.

Another interesting case is when actions with suboptimality
greater than ε > 0 must never be chosen in any exploitation
step by time T . When such a condition is imposed, RELEAF
can start with partitions Pi,1 that have intervals with high
levels such that it explores more at the beginning to have
more accurate reward estimates before any exploitation. The
following theorem gives the regret bound of RELEAF for this
case.

Theorem 4. Let RELEAF run with relevance parameter γrel =
1, duration parameter ρ > 0, confidence parameter δ > 0,
control numbers

Di,t :=
2 log(t|A|D/δ)

(Ls(pi,t))2
,

and with initial partitions Pi,1, i ∈ D consisting of intervals
with levels lmin = dlog2(3L/(2ε))e. When the relevance
relation is such that Drel = 1, then, with probability 1− δ, we
have

Rinst(t) ≤ ε,
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for all t ∈ τ(T ),

RI(T ) ≤ 16L22ρT ρ/(1+ρ),

and

RO(T ) ≤ 81L4

ε4

(
960D2(cO + 1) log(T |A|D/δ)

7L2
T 4/ρ

+
64D2(cO + 1)

3
T 2/ρ

)
,

for arbitrary context vectors x1,x2, . . . ,xT . Bounds on RI(T )
and RO(T ) are balanced for ρ = 2 + 2

√
2.

Proof: The proof is given in Appendix C.

D. Regret bound for RELEAF for Drel < D/2

Similar to the analysis in the previous subsection, RELEAF
achieves sublinear in Drel regret for any Drel < D/2.

Theorem 5. Let RELEAF run with relevance parameter γrel =
Drel, duration parameter ρ > 0, confidence parameter δ > 0
and control numbers

Di,t :=
2 log(t|A|D∗/δ)

(Ls(pi,t))2
,

for i ∈ D, where D∗ is given in (4). Then, with probability
at least 1 − δ we have RI(T ) = Õ(T g(Drel)) and RO(T ) =
Õ(T g(Drel)), where

g(Drel) :=
2 + 2Drel +

√
4D2

rel + 16Drel + 12

4 + 2Drel +
√

4D2
rel + 16Drel + 12

.

Proof: The proof is given in our online technical report
[32].

The bound on the regret given in Theorem 5 matches the
bound in Theorem 3 for Drel = 1.

Remark 1. The regret bound in Theorem 5 is better than the
generic regret bound Õ(T (D+1)/(D+2)) for contextual bandit
algorithms [12], [13] that does not exploit the existence of
relevance relations when Drel ≤ D/2− 1.

V. NUMERICAL RESULTS

In this section, we numerically compare the performance
of our learning algorithm with state–of–the–art learning tech-
niques, including ensemble learning methods and other multi-
armed bandit algorithms for two real-world datasets: (i) net-
work intrusion detection, (ii) webpage recommendation. The
purpose of simulations for the first dataset is to show that RE-
LEAF can learn to make accurate prediction without the need
of base classifiers, which are required by ensemble learners.
The purpose of simulations for the second dataset is to show
that RELEAF can learn to make accurate recommendations
based on the context vectors of the users, by only observing the
click information for the recommended webpage. An extended
numerical results section, which includes additional informa-
tion about the datasets and additional simulation results can
be found in our online technical report [32].

A. Datasets

Network Intrusion (NI) [33]: The network intrusion dataset
from UCI archive [33] consists of a series of TCP connection
records, labeled either as normal connections or as attacks.
The data consists of 42 features, and we take 15 of them as
types of contexts. Taken features are normalized to lie in [0, 1].
The prediction action belongs to the set {attack, noattack}.
Reward is 1 when the prediction is correct and 0 otherwise.
Webpage Recommendation (WR) [2]: This dataset contains
webpage recommendations of Yahoo! Front Page which is an
Internet news website. Each instance of this dataset consists
of (i) IDs of the recommended items and their features, (ii)
context vector of the user, and (iii) user click information. For
a recommended webpage (item), reward is 1 if the user clicks
on the item and 0 otherwise. The context vector for each user
is generated by mapping a higher dimensional set of features
of the user including features such as gender, age, purchase
history, etc. to [0, 1]5. The details of this mapping is given in
[2]. We select 5 items and consider T = 10000 user arrivals.

B. Learning algorithms

Next we briefly summarize the algorithms considered in our
evaluation:

RELEAF: Our algorithm given in Fig. 1 with control
numbers Di,t divided by 5000 to reduce the number of
explorations.6

RELEAF-ALL: Same as RELEAF except that reward of
the selected action is observed in every time step. This version
is useful when the reward of the selected action can be
observed with no cost.

RELEAF-FO: Same as RELEAF except that it observes
the rewards of all actions instead of the reward of the selected
action. We refer to this version of our algorithm as RELEAF
with full observation (RELEAF-FO).

Contextual zooming (CZ) [13]: This algorithm adaptively
creates balls over the joint action and context space, calculates
an index for each ball based on the history of selections of
that ball, and at each time step selects an action according to
the ball with the highest index that contains the action-context
pair.

Hybrid-ε [34]: This algorithm is the contextual version of ε-
greedy, which forms context-dependent sample mean rewards
for the actions by considering the history of observations and
decisions for groups of contexts that are similar to each other.

LinUCB [2]: This algorithm computes an index for each
action by assuming that the expected reward of an action is a
linear combination of different types of contexts. The action
with the highest index is selected at each time step.

Ensemble Learning Methods Average Majority (AM) [4],
Adaboost [29], Online Adaboost [30] and Blum’s Variant of
Weighted Majority (Blum) [31]: The goal of ensemble learning
is to create a strong (high accuracy) classifier by combining
predictions of base classifiers. Hence all these methods require

6The theoretical bounds are proven to hold for worst-case context vector
arrivals and reward distributions. In practice, the relevance relation and the
order of action rewards are identified correctly with much less explorations.
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base classifiers (trained a priori) that produce predictions (or
actions) based on the context vector.

AM simply follows the prediction of the majority of the
classifiers and does not perform active learning. Adaboost is
trained a priori with 1500 instances, whose labels are used to
compute the weight vector. Its weight vector is fixed during the
test phase (it is not learning online); hence no active learning is
performed during the test phase. In contrast, Online Adaboost
always receives the true label at the end of each time slot. It
uses a time window of 1000 past observations to retrain its
weight vector. Similar to Online Adaboost, Blum also learns
its weight vector online. The key differences between our
algorithm and the methods that we compare against are given
in Table II.

C. Network intrusion simulations

In this section we compare the performance of RELEAF,
RELEAF-ALL and RELEAF-FO with other learning methods
described in Section V-B. For the ensemble learning methods,
the base classifiers are logistic regression classifiers, each
trained with 5000 different instances from the NI. Comparison
of performances in terms of the error rate is given in Table III.
We see that RELEAF-FO has the lowest error rate at 0.68%,
more than two times better than any of the ensemble learning
methods. All the ensemble learning methods we compare
against use classifiers to make predictions, and these classifiers
require a priori training. In contrast, RELEAF and RELEAF-
FO do not require any a priori training, learn online and
require only a small number of label observations (i.e. they
can perform active learning).

CZ performs very poorly in this simulation because its
learning rate is sensitive to Lipschitz constant that is given as
an input to the algorithm which we set equal to 0.5. Numerical
results related to the performance of CZ and RELEAF for
different L values can be found in our online technical report
[32]. LinUCB performs the best in terms of the overall rate
of error, but if we consider the error rate of RELEAF in
exploitations it is better than LinUCB. This highlights the
finding of Theorem 1 regarding RELEAF, which states that
highly suboptimal actions are not chosen in exploitations with
a high probability.

Algorithm error % exploitation number of
error % label observations

AM 3.07 N/A 0
Adaboost 3.1 N/A 1500

Online 2.25 N/A all
Adaboost

Blum 1.64 N/A all
CZ 53 N/A all

Hybrid-ε 8.8 N/A all
LinUCB 0.27 N/A all
RELEAF 1.19 0.24 398

RELEAF-ALL 1.07 0.22 all
RELEAF-FO 0.68 0.24 229

TABLE III
COMPARISON OF THE ERROR RATES OF RELEAF-FO WITH ENSEMBLE

LEARNING METHODS FOR NETWORK INTRUSION DATASET.

Abbreviation CTR
CZ 3.79

Hybrid-ε 6.41
LinUCB 6.06

RELEAF-ALL 6.62

TABLE IV
COMPARISON OF THE CLICK THROUGH RATES (CTRS) OF RELEAF, CZ,

HYBRID-ε AND LINUCB FOR WEBPAGE RECOMMENDATION DATASET.

D. Webpage recommendation simulations

In this dataset only the click behavior of the user for the
recommended item is observed. Moreover, it is reasonable to
assume that the click behavior feedback is always available (no
costly observations). The ensemble learning methods require
availability of experts recommending actions and full reward
feedback including the rewards of the actions that are not
selected, to update the weights of the experts, hence they are
not suitable for this dataset. In contrast, multi-armed bandit
methods are more suitable since only the feedback about
the reward of the chosen action is required. Hence we only
compare RELEAF-ALL, CZ, LinUCB and Hybrid-ε for this
dataset. We compare the click through rates (CTRs), i.e.,
average number of times the recommended item is clicked,
of all algorithms in Table IV. We observe that RELEAF-ALL
has the highest CTR.

VI. CONCLUSION

In this paper we formalized the problem of learning the best
action (prediction, recommendation etc.) to be taken based
on the current streaming Big Data by online learning the
relevance relation between types of contexts and actions. We
proposed an algorithm that (i) has sublinear regret with time
order independent of D, (ii) only requires reward observations
in explorations, (iii) for any ε > 0, does not select any ε
suboptimal actions in exploitations with a high probability.
We illustrated the properties of the proposed algorithm via
extensive numerical simulations on real-data, showed that it
achieves high average reward and identifies the set of relevant
types. The proposed algorithm can be used in a variety of
application (including applications requiring active learning)
such as medical diagnosis, recommender systems and stream
mining problems. An interesting future research direction is
learning both relevant types of contexts and relevant type of ac-
tions for multi-armed bandit problems with high dimensional
action and context spaces.
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APPENDIX A
PROOF OF THEOREM 1

Let A := |A|. We first define a sequence of events which
will be used in the analysis of the regret of RELEAF. For
p ∈ PR(a),t, Let π(a, p) = µ(a, x∗R(a)(p)), where x∗R(a)(p) is
the context at the geometric center of p. For j ∈ D−R(a), let

INACCt(a, j) :=
{
|r̄(R(a),j)
t ((pR(a),t, pj,t), a)− π(a, pR(a),t)|

>
3

2
Ls(pR(a),t)

}
,

be the event that the pairwise sample mean corresponding
to pair (R(a), j) of types is inaccurate for action a. Let
ACCt(a) :=

⋂
j∈D−R(a)

INACCt(a, j)C , be the event that all
pairwise sample means corresponding to pairs (R(a), j), j ∈
D−R(a) are accurate. Consider t ∈ τ(T ). Let WNGt(a) :=
{R(a) /∈ Relt(a)}, be the event that the type relevant to
action a is not in the set of candidate relevant types, and
WNGt :=

⋃
a∈AWNGt(a), be the event that the type relevant

to some action a is not in the set of candidate relevant types
of that action. Finally, let CORRT :=

⋂
t∈τ(T ) WNGCt , be the

event that the relevant types for all actions are in the set of
candidate relevant types at all exploitation steps.

We first prove several lemmas related to Theorem 1. The
next lemma gives a lower bound on the probability of CORRT .

Lemma 2. For RELEAF, for all a ∈ A, t ∈ τ(T ), we
have P(INACCt(a, j)) ≤ 2δ

ADt4 . for all j ∈ D−R(a), and
P(CORRT ) ≥ 1− δ for any T .

Proof: For t ∈ τ(T ), we have Ut = ∅, hence

S
v(q)
t (q, a) ≥ 2 log(tAD/δ)

(Ls(pR(a),t))2
,

for all a ∈ A, q ∈ Qi(t) and i ∈ D. Due to the Similarity
Assumption, since rewards in r̄

(R(a),j)
t ((pR(a),t, pj,t), a) are

sampled from distributions with mean between [π(a, pR(a),t)−
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L
2 s(pR(a),t), π(a, pR(a),t) + L

2 s(pR(a),t)], using a Chernoff
bound we get

P(INACCt(a, j)) ≤ 2 exp

(
−2(Ls(pR(a),t))

2 2 log(tAD/δ)

(Ls(pR(a),t))2

)
≤ 2δ/(ADt4).

We have WNGt(a) ⊂
⋃
j∈D−R(a)

INACCt(a, j). Thus

P(WNGt(a)) ≤ 2δ/(At4), and P(WNGt) ≤ 2δ/t4.

This implies that

P(CORRCT ) ≤
∑
t∈τ(T )

P(WNGt)

≤
∑
t∈τ(T )

2δ

t4
≤
∞∑
t=3

2δ

t4
≤ δ.

Lemma 3. When CORRT happens we have for all t ∈ τ(T )

|r̄ĉt(a)t (pĉt(a),t, a)− µ(a, xR(a),t)| ≤ 8Ls(pR(a),t).

Proof: From Lemma 2, CORRT happens when

|r̄(R(a),j)
t ((pR(a),t, pj,t), a)− π(a, pR(a),t)| ≤

3L

2
s(pR(a),t),

for all a ∈ A, j ∈ D−R(a), t ∈ τ(T ). Since |µ(a, xR(a),t) −
π(a, pR(a),t)| ≤ Ls(pR(a),t)/2, we have

|r̄(R(a),j)
t ((pR(a),t, pj,t), a)− µ(a, xR(a),t)| ≤ 2Ls(pR(a),t),

(A.1)

for all a ∈ A, j ∈ D−R(a), t ∈ τ(T ). Consider ĉt(a). Since it
is chosen from Relt(a) as the type with the minimum variation,
we have on the event CORRT

|r̄(ĉt(a),k)t ((pĉt(a),t, pk,t), a)− r̄(ĉt(a),j)t ((pĉt(a),t, pj,t), a)|
≤ 3Ls(pR(a),t),

for all j, k ∈ D−ĉt(a). Hence we have

|r̄R(a)
t (pR(a),t, a)− r̄ĉt(a)t (pĉt(a),t, a)|

≤ max
k,j

{
|r̄(R(a),k)
t ((pR(a),t, pk,t), a)

−r̄(ĉt(a),j)t ((pĉt(a),t, pj,t), a)|
}

≤ max
k,j

{
|r̄(R(a),k)
t ((pR(a),t, pk,t), a)

−r̄(R(a),ĉt(a))
t ((pR(a),t, pĉt(a),t), a)|

+|r̄(ĉt(a),R(a))
t ((pĉt(a),t, pR(a),t), a)

−r̄(ĉt(a),j)t ((pĉt(a),t, pj,t), a)|
}

≤ 6Ls(pR(a),t). (A.2)

Combining (A.1) and (A.2), we get

|r̄ĉt(a)t (pĉt(a),t, a)− µ(a, xR(a),t)| ≤ 8Ls(pR(a),t).

Since for t ∈ τ(T ), αt = arg maxa∈A r̄
ĉt(a)
t (pĉt(a),t, a),

using the result of Lemma 3, we conclude that

µt(αt)

≥ µt(a∗(xt))− 8L(s(pR(αt),t) + s(pR(a∗(xt)),t)),

Thus, the regret in exploitation steps is

8L
∑
t∈τ(T )

(
s(pR(αt),t) + s(pR(a∗(xt)),t)

)
≤ 16L

∑
t∈τ(T )

max
a∈A

s(pR(a),t) ≤ 16L
∑
t∈τ(T )

∑
i∈D

s(pi,t)

≤ 16LDmax
i∈D

 ∑
t∈τ(T )

s(pi,t)

 .

We know that as time goes on RELEAF uses partitions with
smaller and smaller intervals, which reduces the regret in
exploitations. In order to bound the regret in exploitations
for any sequence of context arrivals, we assume a worst case
scenario, where context vectors arrive such that at each t,
the active interval that contains the context of each type has
the maximum possible length. This happens when for each
type i contexts arrive in a way that all level l intervals are
split to level l+ 1 intervals, before any arrivals to these level
l + 1 intervals happen, for all l = 0, 1, 2, . . .. This way it
is guaranteed that the length of the interval that contains the
context for each t ∈ τ(T ) is maximized. Let lmax be the level
of the maximum level interval in Pi(T ). For the worst case
context arrivals we must have

lmax−1∑
l=0

2l2ρl < T ⇒ lmax < 1 + log2 T/(1 + ρ),

since otherwise maximum level hypercube will have level
larger than lmax. Hence we have

16LDmax
i∈D

 ∑
t∈τ(T )

s(pi,t)

 ≤ 16LD

1+log2 T/(1+ρ)∑
l=0

2l2ρl2−l

= 16LD

1+log2 T/(1+ρ)∑
l=0

2ρl ≤ 16LD22ρT ρ/(1+ρ).

APPENDIX B
PROOF OF THEOREM 2

Recall that time t is an exploitation step only if Ut = ∅.
In order for this to happen we need S

v(q)
t (q, a) ≥ Di,t for

all q ∈ Qi(t). There are D(D − 1) type pairs. Whenever
action a is explored, all the counters for these D(D− 1) type
pairs are updated for the pairs of intervals that contain types
of contexts present at time t, i.e. q ∈ Qt. Now consider a
hypothetical scenario in which instead of updating the counters
of all q ∈ Qt, the counter of only one of the randomly selected
interval pair is updated. Clearly, the exploration regret of this
hypothetical scenario upper bounds the exploration regret of
the original scenario. In this scenario for any pi ∈ Pi,t, pj ∈
Pj,t, we have

S
(i,j)
t ((pi, pj), a) ≤ 2 log(tAD/δ)

L2 min(s(pi), s(pj))2
+ 1.

We can go one step further and consider a second hypo-
thetical scenario where there is only two types i and j, for
which the actual regret at every exploration step is magnified
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(multiplied) by D(D−1). The maximum possible exploration
regret of the second scenario (for the worst case of type i
and j context arrivals) upper bounds the exploration regret
of the first scenario. Hence, we bound the regret of the
second scenario. Let lmax be the maximum possible level
for an active interval for type i by time T . We must have∑lmax−1
l=0 2ρl < T , which implies that lmax < 1 + log2 T/ρ.

Next, we consider all pairs of intervals for which the minimum
interval has level l. For each type j interval pj that has level
l, there exists no more than

∑lmax

k=l 2k type i intervals that
have lengths greater than or equal to l. Consider a level k
type i interval pi such that l ≤ k < 1 + log2 T/ρ. Then for
the pair of intervals (pi, pj) the exploration regret is bounded
by (cO + 1)

(
2 log(tAD/δ)/(2−2kL2) + 1

)
. Hence, the worst

case exploration regret is bounded by

RO(T ) ≤ (cO + 1)D2

2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k
(

2 log(tAD/δ)

2−2kL2
+ 1

))

= (cO + 1)D2

4 log(tAD/δ)

L2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

23k

+2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k


≤ 4D2(cO + 1) log(tAD/δ)

L2
× 240

7
T 4/ρ

+
64D2(cO + 1)

3
T 2/ρ.

APPENDIX C
PROOF OF THEOREM 4

To achieve ε-optimality in every exploitation step it is
sufficient to have

INACCt(a, j)C =
{
|r̄(R(a),j)
t ((pR(a),t, pj,t), a)− π(a, pR(a),t)|

<
3

2
Ls(pR(a),t)

}
,

⊂
{
|r̄(R(a),j)
t ((pR(a),t, pj,t), a)− π(a, pR(a),t)| < ε

}
,

for t ∈ τ(T ). This is satisfied when lmin ≥ log2(3L/(2ε)).
Starting with level lmin intervals instead of level 0 intervals
decreases the exploitation regret of ORL-CF. Hence the regret
bound in Theorem 1 is an upper bound on the exploitation
regret.

For any sequence of context arrivals, we have the following
bound on the level of the interval with the maximum level,

lmax < 1 + lmin + log2 T/ρ.

Continuing similarly with the proof of Theorem 2, we have

RO(T ) ≤ (cO + 1)D2

2

1+log2 T/ρ∑
l=0

2lmin2l
1+log2 T/ρ∑

k=l

2lmin2k

(
24lmin

2 log(tAD/δ)

2−2lmin2−2kL2
+ 1

))

= (cO + 1)D2

4 log(tAD/δ)

L2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

23k

+22lmin2

1+log2 T/ρ∑
l=0

2l
1+log2 T/ρ∑

k=l

2k


≤ 24lmin

(
4D2(cO + 1) log(tAD/δ)

L2
× 240

7
T 4/ρ

+
64D2(cO + 1)

3
T 2/ρ

)
.
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