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Abstract—Medical diagnosis and treatment currently follow
standardized processes. For instance, patients are assigned to
medical experts (clinicians) based on either their availability or
fixed assignment rules which solely consider the qualifications of
the clinician and the symptoms of the patient. Such assignments
can be highly inefficient in practice, since the expertise and
experience of healthcare providers varies significantly. Each
clinician’s level of expertise is unknown a priori and can only
be estimated based on the accuracy of his/her past diagnostic
decisions. Moreover, the level of expertise often depends on the
“context” of the patient (e.g. health condition, family history).
In this paper we propose an expert selection system that learns
online the best expert to assign to each patient depending on
the context of the patient. In general, the context can include
an enormous number and variety of information related to the
patient’s health condition, age, gender, previous drug doses, etc.,
but the most relevant information is embedded in only a few
contexts. If these most relevant contexts were known in advance,
learning would be relatively simple - but they are not. Moreover,
the relevant contexts may be different for different health
conditions. To address these challenges, we develop a new class
of algorithms aimed at discovering the most relevant contexts
and the best clinic and expert to use to make a diagnosis given a
patient’s contexts. We prove that as the number of patients grows,
the proposed context-adaptive algorithm will discover the optimal
expert to select for patients with a specific context. Moreover,
the algorithm also provides confidence bounds on the diagnostic
accuracy of the expert it selects, which can be taken into account
by the primary care physician before making the final decision.
While our algorithm is general and can be applied in numerous
medical scenarios, we illustrate its functionality and performance
by applying it to a real-world breast cancer diagnosis dataset.
Finally, while the application we consider in this paper is medical
diagnosis, our proposed algorithm can be applied in other
semantic computing systems, in which contexts are used to learn
and select experts including personalized education, personalized
recommendations, and business intelligence.

Index Terms—Semantic computing, context-adaptive learning,
clinical decision support systems, healthcare informatics, dis-
tributed multi-user learning, contextual bandits.

I. INTRODUCTION

One of the most important applications of semantic com-
puting [1] is healthcare informatics [2]. The development of
healthcare informatics tools and decision support systems is
vital, since recent studies show that standard clinical practice
often fails to fit the patient [3]. The main reasons for this are
the diverse types of patients and their health states, diverse
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level of expertise exhibited by healthcare professionals as well
as the diversity of the tests and equipment available at different
health clinics. For instance, for breast cancer diagnosis, it
is observed that younger and inexperienced radiologists have
higher false-positive rates than experienced radiologists when
detecting breast cancer from radiological images, and the
detection accuracy over different healthcare providers ranges
from 2.6% to 15.9% [4]. In order to compensate for these
differences and provide uniformly good healthcare, Clinical
Decision Support Systems (CDSSs) have been integrated as
part of numerous clinical decision making processes including
diagnostic decisions for lung cancer [5], breast cancer [6],
[7] and diabetes [8]. However, most existing CDSSs are
dedicated to specific deployments, specific health professionals
and specific areas of expertise. These systems are trained
using past clinical data, and then tested on small patient
populations. Although recent surveys show that CDSSs have
improved the accuracy of clinical decision making process for
some applications [9], their effectiveness cannot be validated
for other applications [10]. For instance, in [10] a detailed
empirical analysis of different CDSSs was carried out and the
analysis showed that the cost and health risks of deploying
CDSSs often outweighs the benefits. It is also shown that
the success of a CDSS or a human expert is based on many
factors, including the complexity of the diagnostic problem,
the training of the personnel using the CDSS, the ease of use
of the CDSS by healthcare professionals, etc. In conclusion,
one of the key challenges in health clinics is how to decide
when to rely on the decisions of a CDSS and which CDSS to
use, when to follow the advice of a human expert and which
expert to choose and possibly when to select another clinic to
make the diagnosis decision.

Unlike existing prior work in health informatics which
considers the problem of designing various CDSSs, in this
paper we study the broader problem of integrating CDSSs
and human experts over multiple clinics in an efficient way to
improve the diagnostic decision making process. We assume
that the diagnostic accuracy of an expert (either human or
CDSS) depends on the context of the patient for which the
decision is made. This context is all the information pertaining
to the patient under consideration that can be utilized in the
decision making process. For instance, in breast cancer diagno-
sis context includes patient profile, breast density, assessment
history, characteristics of the opposite breast, modalities, etc.,
or in general, electronic medical records can be used as
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the context [11]. Since the context of a patient has many
dimensions, learning the diagnostic accuracy of an expert
suffers from the curse of dimensionality. The methodology
we propose in this paper learns the most relevant context(s)
pertinent to the current health condition of the patient and use
it/them the estimate the level of expertise exhibited by the
expert. The level of expertise is defined based on the accuracy
of their diagnostic.

In addition to specific information about the patient, the
context vector can contain semantic information related to
type of diagnosis to be made, testing and imaging equipment,
etc. This information is exploited when learning the context-
specific diagnostic accuracy of the experts. For instance, while
the diagnostic accuracy of human experts is high for most
breast images, there exist a small number of breast images for
which it is particularly difficult to discern the abnormality [12].
For these cases, it may be better to use a CDSS. Moreover,
different clinics have healthcare professionals with different
expertise and some of these clinics may have access to CDSSs
from different manufacturers and of different types while
some others just rely on human experts. In our proposed
system, these clinics can cooperate with each other to improve
diagnostic accuracy by learning the contextual specializations
of the other clinics (see Fig. 1). For instance, a rural clinic may
have only a primary care physician (PCP), a registered nurse
and equipment, but no specialist or CDSSs and may be able
to request information from a more established hospital which
implements multiple CDSSs and has several experienced hu-
man experts. Moreover, privacy policies may not allow a
clinic to send the entire patient information to another clinic
[13] (only anonymized patient information can be transferred
among clinics). In addition, it will not be possible to know
the exact decision making mechanism used by the other clinic
(e.g., the rule that a CDSS uses to output the diagnosis
recommendation or the mechanism that a human expert uses
when making a diagnosis recommendation). Hence, based on
the context of the patient, each clinic learns (i) whether it
should rely on its own experts or request another clinic to
make diagnostic decisions, and (ii) if it relies on its own
experts, which expert it should assign the task of deciding the
diagnostic, such that the reward (gain) obtained by selecting
that particular expert is maximized. The reward for a particular
diagnostic decision can be defined as the diagnostic accuracy
minus the incurred cost (e.g. delay, money, etc.).

Our proposed system learns online, meaning that its expert
selection strategy is updated every time after the true health
state of a patient is revealed. (Note that at times the true health
state is not revealed immediately.) Based on this feedback, the
expertise, i.e., the diagnostic accuracy, of the chosen expert is
updated.

We model this problem as a distributed context-adaptive
online learning problem. Each clinic decides on what di-
agnostic action to take based on the history of its own
patient arrivals, patient arrivals to other clinics that requested
a diagnostic action from the current clinic, and the success
rate of each diagnostic action. In this way, each clinic is able
to identify which experts make accurate decisions for patients
with specific contexts. As a side result, clinics that use CDSSs

learn whether the deployed CDSSs are beneficial for patients
given their contexts. The main contributions of this paper are
summarized below:

• We propose a novel algorithm that learns the diagnosis
accuracy of different clinics, human experts and CDSSs.
The algorithm is distributed and uses the context of each
patient to learn the best expert, i.e. the expert who has the
highest reward, which trades off the diagnosis accuracy
and the costs of making the diagnose.

• Since the set of contexts is large, the proposed algorithm
discovers the most relevant context or set of contexts
that it should use for selecting an expert, i.e., experts are
selected based on the relevant characteristics (contexts) of
the patients. Hence, it learns fast, and the learning speed
is independent of the dimension of the context vector. As
a side benefit, the algorithm also learns what experts are
good at diagnosing patients exhibiting specific contexts
(e.g. specific age groups, genders, health states, etc.).

• The proposed algorithm promotes cooperation among
clinics. A clinic learns the expertise of its own human
experts and CDSSs not only from its own patients but also
from the patients of other clinics who request diagnosis
recommendation from that clinic. Moreover, each clinic
benefits from the expertise of other clinics by asking them
to make diagnosis recommendations for their patients.

• The proposed algorithm learns the optimal experts to use
very fast: we formally determine performance bounds for
the proposed algorithm which quantify how fast it can
learn the optimal expert given the number of patients that
have been treated so far.

• For each patient, the algorithm provides confidence
bounds on the accuracy of the selected diagnostic action,
and guarantees that the expert chosen for the diagnosis
is the best expert or a near-optimal expert with a high
probability.

• Patient safety is one of the most important aspects of
healthcare. Our proposed algorithm merely makes diag-
nosis recommendations to the PCP or the clinician in
charge for the care of the patient. The final decision
of following the diagnosis recommendation or assigning
another expert for another diagnosis recommendation is
up to the PCP/clinician. Such additional layers of safety
do not change the operation of our algorithm and allow
for personalization by the PCP/clinician.

The remainder of the paper is organized as follows. In Section
II, we describe the related work. In Section III, we formalize
the problem and we present the proposed distributed, context-
adaptive online algorithm which learns the best expert for
diagnosing a patient based on his/her contextual information
in Section IV. We illustrate the proposed system using a real-
world breast cancer diagnostic data in Section V. Finally, the
concluding remarks are given in Section VI.

II. RELATED WORK

We categorize the related work into three key areas: work
related to semantic computing, work related to CDSSs, and
work related to data mining and online learning.
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Fig. 1. Operation of the proposed system for clinic i. In this example, the diagnostic decision for the patient with context xi(n) is made by a human expert
from clinic j. Then, after some time the true health state yi(n) of the patient is revealed. Based on this clinic i updates the diagnostic accuracy of clinic j
for that context, while clinic j updates the diagnostic accuracy of its expert f .

A. Semantic computing

Semantic computing focuses on computing based on se-
mantics (“context”, “meaning”, “intention”) and it addresses
all types of resources including data, document, tool, device,
process and people [1]. Within the area of semantic comput-
ing, rule-based reasoning systems [14], [15] have emerged
which deploy a database of the facts that are known about
the problem currently being solved, and a decision engine
which combines rules with the data to produce predictions.
In these systems the decision rule is developed by a group
of human experts, and rules are updated over time based
on their effectiveness. Our proposed methodology fits within
the class of semantic-based reasoning systems. However, in
contrast to the existing work, we consider multiple experts,
each adopting its own decision rule. Moreover, how well a
specific decision rule (diagnostic) performs when applied to
a patient, characterized by a specific context, is not known a
priori. Hence, in this work we are interested in developing a
rigorous and efficient methodology for learning how to select
the expert adopting the best decision rule (diagnostic) can be
learned for each patient.

B. Clinical decision support systems

Although we propose a method to integrate CDSSs and hu-
man experts among multiple clinics and learn their expertise to
maximize the efficiency of the clinical diagnosis system, most
of the prior work focused on designing a specific CDSSs for
various diagnostic applications such as lung cancer [5], breast
cancer [6], [7] and diabetes [8]. Our expert selection method
supports and validates the efficiency of such CDSSs based
on the characteristics of the patient population. Specifically,
our method discovers the accuracy of a CDSS for groups of
patients based on their contexts, and this information can be
used by clinicians to improve the CDSS or discontinue its use.
Moreover, our system allows choosing between a CDSS or a
human expert. Hence based on the preferences of the PCP
additional features such as “Choose the expert only among
the CDSSs”, “Choose the expert only among human experts”

or “Choose the expert only from a specific clinic” can easily
be integrated to the system.

C. Data mining and learning

Since contexts of the patients are a form of data, and
since the patients are arriving sequentially over time, there
is a close relationship between our proposed methodology
and online stream mining. Most of the prior work in online
stream mining provides algorithms which are asymptotically
converging to an optimal or locally-optimal solution without
providing any rates of convergence. On the contrary, we do
not only prove convergence results, but we are also able to
explicitly characterize the performance loss incurred at each
time slot (for each patient) with respect to the optimal solution.

Some of the existing solutions (including [16]–[20]) propose
ensemble learning techniques. In our work we only consider
choosing the best expert (initially unknown) for each context.
This is especially important in resource constrained scenarios
like healthcare informatics, where the human resources are
limited either in terms of the number of experts that are making
diagnostic decisions or the number of healthcare personnel
that acts as an interface between the patient and the CDSS.
We provide a detailed comparison to our work in Table
I. As seen from Table I, our proposed system is context-
adaptive, distributed, outputs confidence bounds, and provides
an explicit rate of convergence to the optimal expert selection
strategy as the number of patients grows.

In addition to the problems in data mining, our methods
can be applied to any problem that can be formulated as a
distributed contextual bandit problem. Contextual bandits have
been studied before in [21]–[24] and other works in a single
agent setting. However our work is very different from these
because (i) we consider decentralized agents (clinics) who can
learn to cooperate with each other, (ii) the set of available
(diagnostic) actions and the context arrivals to the agents can
be very different for each agent, (iii) instead of learning to take
the best action considering the entire D-dimensional context
vector, an agent learns to take the marginally best action by
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independently considering each D types of contexts, hence
learning is much faster. It is known that the performance of
existing learning algorithms depend on the dimension of the
context space [22]. Due to its context-adaptive property, the
convergence speed of the algorithm we propose in this paper
is independent of the dimension of the context space.

III. PROBLEM FORMULATION

The system model is shown in Fig. 2 and 3. There are
M clinics (learners) which are indexed by the set M :=
{1, 2, . . . ,M}. The set of experts clinic i has is Fi. As we
discussed an expert can either be a human expert or a CDSS.
The set of all experts is F = ∪i∈MFi. Let M−i :=M−{i}
be the set of clinics clinic i can choose from to send its
patient’s context for diagnosis. The diagnostic action set1 of
clinic i is Ki := Fi ∪ M−i. Throughout the paper we use
index f to denote an element of F , j to denote clinics in
M−i, and k to denote an element of Ki.

For each patient n = 1, 2, . . . , N , the following events
happen sequentially: (i) The nth patient with a D-dimensional
context vector xi(n) = (x1i (n), . . . , xDi (n)) arrives to clinic
i ∈ M, where xdi (n) ∈ Xd for d ∈ D := {1, . . . , D} and
Xd is the set of type-d contexts, and X = X1 × . . . × XD is
the context space,2 (ii) each clinic i assigns one of its own
experts or another clinic to recommend a diagnosis ŷi(n) ∈ Y
for the patient n, where Y is the set of possible diagnosis
recommendations (in the application of breast cancer, this set
includes breast tumor being malignant or benign), (iii) after
some delay, the true health state of patient yi(n) ∈ Y is
revealed only to the clinic i where the patient has arrived,3

(iv) if another clinic provided the diagnosis for that patient,
then the clinic where the patient arrived passes the true health
state of the patient to that clinic.

A. Context, Diagnosis, Diagnostic Action Accuricies

For each patient n, the context vector xi(n) and true health
state of the patient yi(n) are assumed to be drawn from an
(unknown) joint distribution J over X×Y independently from
the other patients. We do not require this draw to be indepen-
dent among the clinics/learners. Since the context vector of
the patient xi(n) is revealed to the clinic i, depending on J ,
there exists a conditional distribution Gxi(n) over Y . Similarly,
depending on J , there is a marginal distribution H over X
from which contexts are drawn. Given context vector x, let
πf (x) =

∫
y∈Y I(f(xi(n)) = yi(n))dGx(y) be the joint accu-

racy (or simply, accuracy) of expert f ∈ F , where f(xi(n)) is
the diagnosis recommendation of expert f for context vector

1In sequential online learning literature [29], [30], an action is also called
an arm (or an alternative).

2Each dimension represents a different type of context. For example, first
dimension may represent age, second dimension may represent weight, third
dimension may represent gender, etc. In our analysis, we will assume that
Xd = [0, 1] for all d ∈ D. However, our algorithms will work and our results
will hold even when the context space is discrete given that it is bounded. For
instance, Xd can represent the set of normalized ages (formed for instance,
by dividing the exact age of the patient with the maximum age 200). Then,
every patient’s normalized age will lie in Xd.

3Our algorithm will also work when the true health state of some patients
is never recovered by simply disregarding the history related to that patients.

xi(n).4 The diagnostic rule used by expert f , i.e., f(·) is
allowed to be deterministic or random. I(·) is the indicator
function which is equal to 1 if the statement inside is true and 0
otherwise, and the expectation E[·] is taken with respect to dis-
tribution Gx. Let x−d := (x1, . . . , xd−1, xd+1, . . . , xD) and
((x′)−d, xd) = (x′1, . . . , x′d−1, xd, x′d+1, . . . , x′D). Then, the
marginal accuracy of expert f based on type-d context is
defined as

πdf (xd) :=

∫
(x′)−d

πf ((x′)−d, xd)dH((x′−d), xd).

We say that the problem has the similarity property when each
expert has similar marginal accuracies for similar contexts.

Definition 1: Similarity Property. If the joint distribution
J over Y × X is such that for each f ∈ F and d ∈ D,
there exists a minimum α > 0 and a minimum L > 0, such
that for all xd, (x′)d ∈ Xd, we have |πdf (xd) − πdf ((x′)d)| ≤
L|xd − (x′)d|α, then we call J a distribution with similarity.

Although, our model assumes a continuous context space,
our algorithms will also work when the context space is
discrete. Note that Definition 1 does not require the context
space to be continuous. We assume that α is known by the
clinics, while L does not need to be known. However, our
algorithms can be combined with estimation methods for α. In
reality, the knowledge of α is not required for our algorithms
to run, however an estimate of α should be given as an input.
If the estimate α̂ is chosen conservatively such that α̂ < α,
the performance bounds we prove for our algorithm (Theorem
1 and Corollary 1) will hold with α replaced by α̂.

B. Unknowns, experts and diagnostic rewards

In our problem, the unknowns for clinic i are (i) Fj , j ∈
M−i, (ii) J , H , Gx, x ∈ X , (iii) πf (x), f ∈ Fi, x ∈ X , (iv)
πdf (xd), f ∈ Fi, xd ∈ Xd, d ∈ 1, . . . , D.

On the other hand, clinic i knows (i) the experts in Fi and
costs of calling them,5 (ii) the set of other clinics M−i and
costs of calling them, (iii) and an upper bound on the number
of experts that each clinic has, i.e., Fmax ≥ |Fj |,6 for all
j ∈M−i.

For each patient n, clinic i can either assign one of its
experts or forward the patient’s context to another clinic to
have him/her diagnosed. We assume that for clinic i, assigning
each expert f ∈ Fi incurs a cost cif ≥ 0. We assume
that whenever the patient’s context is sent to another clinic
j ∈M−i a cost of cij is incurred by clinic i.7 This cost can be
the delay and/or monetary costs associated with the forwarding
action. When the diagnostic action k ∈ Ki is chosen for the

4Although for simplicity of exposition we assumed that the decision only
depends on the context vector, the radiological image can also be a part of
the information sent to the expert which is denoted by si(n). Then assuming
that this data is i.i.d. given a context vector, the decision rule can be extended
as f(xi(n), si(b)), and the expert accuracy can be defined analogously.

5Cost can be monetary cost, delay, etc.
6For a set A, let |A| denote the cardinality of that set.
7The cost for clinic i does not depend on the cost of the expert chosen

by clinic j. Since the clinics are cooperative, j will obey the rules of the
proposed algorithm when assigning an expert to diagnose clinic i’s patient.
We assume that when called by clinic i, clinic j will select an expert from
Fj , but not forward i’s patient’s context to another clinic.
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[18]–[20], [25] [26], [27] [28] [22], [23] This work
Message exchange none context training residual none context (adaptively)
Learning approach offline/online offline offline Non-Bayesian online Non-Bayesian online
Learning from other’s contexts N/A no no no yes
Using other’s experts no all all no sometimes-adaptively
Rate of convergence no no no yes - dimension dependent yes - dimension independent
Context adaptive no no no no yes
Confidence bounds no no no yes yes

TABLE I
COMPARISON WITH RELATED WORK IN DATA MINING AND LEARNING.

Fig. 2. Operation of clinic i for its nth patient when it chooses one of its
own experts.

Fig. 3. Operation of clinic i for its nth patient when it chooses clinic j.
nth patient of clinic i, and the diagnosis recommendation ŷi(n)
is made, the reward is equal to ri(n) := I(ŷi(n) = yi(n))−cik.
This reward is observed only after the true health state yi(n)
is revealed. Since the costs are bounded, without loss of
generality we assume that costs are normalized, i.e., cik ∈ [0, 1]
for all k ∈ Ki. The clinics are cooperative which implies
that clinic j ∈M−i will return a diagnostic recommendation
to i when called by i using its expert with the highest
estimated diagnostic accuracy for i’s context vector. Similarly,
when called by j ∈ M−i, clinic i will return a diagnostic
recommendation to j. In our theoretical analysis we do not
consider the effect of this on i’s learning rate; however,
since our results hold for the case when other clinics are
not forwarding their patient’s context to i, they will also hold
when other clinics forward the patient’s context to i. Indeed,
learning is faster for clinic i when other clinics ask clinic i
for a diagnostic recommendation for their patients.

We assume that each expert produces a binary diagnostic
recommendation,8 thus Y = {0, 1}. For a clinic j ∈ M−i its

8In general we can assume that diagnostic recommendations belong to R
and define diagnostic error as some other metric. Our results can be adapted
to this case as well.

accuracy for a type-d context xd is equal to the accuracy of
its best expert, i.e.,

πdj (xd) := max
f∈Fj

πdf (xd).

The goal of each learner i is to maximize its total expected
reward. This corresponds to minimizing the regret with respect
to the benchmark solution which we will define in the next
subsection.

C. Diagnosis with Complete Information

Our benchmark when evaluating the performance of the
learning algorithms is the solution which selects the diagnostic
action in Ki with the highest marginal accuracy minus cost
(i.e., reward) given the context vector xi(n) for patient n.
Specifically, the solution we compare against is given by

k∗i (x) := arg max
k∈Ki

(
max
xd∈x

πdk(xd)− cik
)
, ∀x ∈ X .

Since calculating k∗i (x) requires knowledge of marginal expert
accuracies only, we call k∗i (x) the marginally best diagnostic
action given patient’s context x. Knowing this means that
clinic i knows the expert in F that yields the highest diagnostic
reward for each xd ∈ Xd, d ∈ D. We call a policy that always
acts according to this action an optimal policy.

D. The Regret of Learning

Simply, the regret is the loss incurred due to the unknown
expertise. Regret of a learning algorithm which assigns an
expert ai(n) ∈ Ki for patient n in the clinic i based on its
context vector xi(n) and the past observations is defined as

Ri(N) :=

N∑
n=1

(
πk∗i (xi(n))(xi(n))− cik∗i (xi(n))

)
− E

[
N∑
n=1

(I(ŷi(n) = yi(n))− ciai(n))

]
,

where ŷi(n) denotes the diagnostic recommendation of the
expert or other clinic ai(n) assigned by clinic i to the patient
n, yi(n) denotes the true health state of the patient n that
arrived to clinic i. Regret gives the convergence rate of the
total expected reward of the learning algorithm to the value of
the benchmark solution k∗i (x), x ∈ X . Any algorithm whose
regret is sublinear, i.e., Ri(N) = O(Nγ) such that γ < 1, will
converge to the benchmark solution in terms of the average
reward.

IV. ADAPTIVELY LEARNING THE RELEVANT CONTEXTS

In this section we propose an online learning algorithm that
achieves regret that is sublinear in the number of patients. We
name our algorithm Learn the EXpert (LEX).
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A. The LEX algorithm

The basic idea behind LEX is to learn the accuracies of
different clinics and different experts by requesting diagnosis
recommendations from them in a cost efficient way. There
are three operation phases of LEX: exploitation, safe training
and safe exploration. For any clinic and any patient LEX is
only in one of these phases. In an exploitation phase, LEX
is very confident about its expert selection decision. As we
will show in Corollary 1, it is able provide confidence bounds
on the probability that it selects the best expert among all
possible experts and on the accuracy of the prediction made
by the chosen expert. In the safe training phase, clinic i is
not confident about how well some other clinic j knows its
best expert for clinic i’s patient. Hence, clinic i requests a
diagnosis recommendation from clinic j which helps clinic j
learn the accuracy of its own experts. In the safe exploration
phase, clinic i is not confident about the accuracy of its
diagnostic actions. It will choose a diagnostic action and
receive a diagnosis recommendation to update the accuracy
of the chosen diagnostic action (which is done after the true
health state is revealed). Trainings and explorations are safe,
which means that LEX alerts the clinician that is in charge
of the patient that the diagnosis recommendation comes from
an expert which may not be very reliable. Knowing this, the
clinician may assign another expert or may choose to follow
the recommendation based on his/her own expertise. This way
the system learns, while the patient safety is not compromised.
Whenever we refer to training and exploration, we mean safe
training and safe exploration.

LEX adaptively divides the context space into finer and
finer regions as more patients arrive such that the regions of
the context space with large number of arrivals are trained
and explored more accurately than regions of the context
space with small number of arrivals, and then only uses the
observations in those sets when estimating the rewards of
diagnostic actions in Ki for contexts that lie in those sets.
For each patient, LEX chooses a diagnostic action adaptively
based on the estimated marginal accuracy of the diagnostic
action given the context vector. For the nth patient of clinic
i, we call the type-d context for which the selected diagnostic
action’s marginal accuracy is maximized as the main context
of that patient.

For each type-d context, LEX starts with a single hypercube
which is the entire context space Xd, then divides the space
into finer regions and explores them as more patients with
those contexts arrive. In this way, LEX focuses on parts of
the context space in which there are large number of patient
arrivals, and does this independently for each type of context
of the patients.

The learning algorithm for clinic i should zoom into the
regions of space with large number of context arrivals, but it
should also persuade other clinics to zoom to the regions of
the space where clinic i has a large number of context arrivals.
Here, zooming means using past observations from a smaller
region of context space to estimate the rewards of actions for
a context. The pseudocode of LEX is given in Fig. 4, and the
initialization, safe training, safe exploration and exploitation

modules are given in Fig. 5 and Fig. 6.

Learn the Expert Algorithm (for clinic i):
1: Input: D1(n), D2(n), D3(n), p, A
2: Initialization: Ad

i = {[0, 1]}, d ∈ D. Ai = A1
i × . . .×AD

i .
Run Initialize(Ai)

3: Notation: r̄i
k = (r̄i,d

k,Cd(n)
)d∈D ,

r̄i = (r̄i
k)k∈Ki ,

lC : level of hypercube C,
T i

k = (T i,d

k,Cd(n)
)d∈D , k ∈ Ki,

T i = (T i
k)k∈Ki .

4: while n ≥ 1 do
5: if ∃d ∈ D and ∃k ∈ Fi such that T i,d

k,Cd(n)
≤ D1(n)

then
6: Run SafeExplore(n, k, d, T i,d

k,Cd(n)
, r̄i,d

k,Cd(n)
)

7: else if ∃d ∈ D and ∃k ∈M−i such that
T i,d

1,k,Cd(n)
≤ D2(n) then

8: Run SafeTrain(n, k, d, T i,d

1,k,Cd(n)
)

9: else if ∃d ∈ D and ∃k ∈M−i such that
T i,d

k,Cd(n)
≤ D3(n) then

10: Run SafeExplore(n, k, d, T i,d

k,Cd(n)
, r̄i,d

k,Cd(n)
)

11: else
12: Run Exploit(n, T i, r̄i, Ki)
13: end if
14: T i,d

Cd(n)
= T i,d

Cd(n)
+ 1

15: for d ∈ D do
16: if T i,d

Cd(n)
≥ A2

pl
Cd(n) then

17: Create 2 level lCd(n) + 1 child hypercubes denoted
by ACd(n)

18: Run Initialize(ACd(n))
19: Ai = Ai ∪ ACd(n) − Cd(n)
20: end if
21: end for
22: n = n+ 1
23: end while

Fig. 4. Pseudocode of the LEX algorithm.

Initialize(A):
1: for C ∈ A do
2: Set T i,d

C = 0, T i,d
k,C = 0, r̄i,dk,C = 0 for k ∈ Ki, T i,d

1,k,C = 0
for k ∈M−i.

3: end for

Fig. 5. Pseudocode of the initialization module.

For each type-d context, we call an interval (a2−l, (a +
1)2−l] ⊂ [0, 1] a level l hypercube for a = 1, . . . , 2l − 1,9

where l is an integer. Let Pdl be the partition of type-d
context space [0, 1] generated by level l hypercubes. Clearly,
|Pdl | = 2l. Let Pd := ∪∞l=0Pdl denote the set of all possible
hypercubes. Note that Pd0 contains only a single hypercube
which is Xd itself. For each patient, LEX keeps for the clinic
i a set of mutually exclusive hypercubes that cover the context
space of each type-d ∈ D context. We call these hypercubes
active hypercubes, and denote the set of active hypercubes
for type-d context for patient n by Adi (n). Let Ai(n) :=
(A1

i (n), . . . ,ADi (n)). Clearly, we have ∪C∈Adi (n)C = Xd.
Denote the active hypercube that contains xdi (n) by Cdi (n). Let
Ci(n) := (C1

i (n), . . . , CDi (n)) be the set of active hypercubes
that contains xi(n). The diagnostic action chosen by clinic i
for patient n only depends on the diagnostic actions taken
on previous context observations which are in Cdi (n) for
some d ∈ D. The number of such actions and observations

9The first level l hypercube is defined as [0, 2−l].
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SafeTrain(n, k, d, N i,d
1,k):

1: Select diagnostic action k.
2: Send type-d context xdi (n) to clinic k.
3: Receive diagnosis recommendation ŷi(n) = fk,n(xdi (n) from

clinic k, where fk,n is the expert that clinic k assigned to have
the patient n diagnosed which is selected using xdi (n).

4: A human expert (such as a PCP) evaluates ŷi(n), and gives
a final decision or asks other experts for opinion.

5: Receive true health state yi(n) (send this also to clinic k).
6: Compute reward rk(n) = I(ŷi(n) = yi(n))− cik.
7: T i,d

1,k,Cd(n)
+ +.

SafeExplore(n, k, d, N i,d

k,Cd(n)
, r̄i,d

k,Cd(n)
):

1: Select diagnostic action k.
2: Receive diagnostic recommendation ŷi(n).
3: A human expert (such as a PCP) evaluates ŷi(n), and gives

a final decision or asks other experts for opinion.
4: Receive true health state yi(n) (if k ∈M−i, send this also

to clinic k).
5: Compute diagnostic reward rk(n) = I(ŷi(n) = yi(n))− cik.

6: r̄i,d
k,Cd(n)

=
T
i,d

k,Cd(n)
r̄
i,d

k,Cd(n)
+rk(n)

T
i,d

k,Cd(n)
+1

.

7: T i,d

k,Cd(n)
+ +.

Exploit(n, N i, r̂i, Ki):
1: Select diagnostic action
ai(n) ∈ arg maxj∈Ki

(
maxd∈D r̄

i,d

j,Cd(n)

)
.

2: Receive diagnostic recommendation ŷi(n).
3: Receive true health state yi(n) (if ai(n) ∈M−i, send this

also to clinic k).
4: Compute reward rai(n)(n) = I(ŷi(n) = yi(n))− ciai(n).

Fig. 6. Pseudocode of the safe training, safe exploration and exploitation
modules.

can be much larger than the number of previous actions
and observations in Ci(n). This is because in order for an
observation to be in Ci(n), it should be in all Cdi (n), d ∈ D.
Let T i,dC (n) be the number of times type-d contexts have
arrived to hypercube C of clinic i from the activation of C
until patient n. Once activated, a level l hypercube C will stay
active until the arrival of patient n such that T i,dC (n) ≥ A2pl,
where p > 0 and A > 0 are parameters of LEX. After that,
LEX will divide C into 2 level l + 1 hypercubes.

For each expert in Fi, LEX have a single (deterministic)
control function D1(n) which controls when to do safe explo-
ration or exploitation, while for each clinic inM−i, LEX have
two (deterministic) control functions D2(n) and D3(n), where
D2(n) controls when to do safe training, D3(n) controls when
to do safe exploration or exploitation when there are enough
trainings.

Marginal sample mean diagnostic action rewards, i.e.,
r̄i,dk,C(n), k ∈ Ki, C ∈ Adi (n), are calculated only based on the
rewards ri(n′) collected through previous patients n′ when k
is selected due to a type-d context in C being under-explored
(i.e., for patients n′ such that T i,d

k,Cd(n′)
≤ D1(n′) for k ∈ Fi

or T i,d
k,Cd(n′)

≤ D3(n′) for k ∈ M−i, and Cd(n′) = C,
n′ < n in the adaptive partition). This way, as the number of
true health state observations increases, it is guaranteed that
r̄i,dk,C(n) converges to a number very close to the true marginal
expected reward action k for contexts in C. This, together with
the adaptive partitioning guarantees that the regret remains
sublinear in the number of patients.

In addition to the safe exploration phase, which allows

clinics to build accurate estimates of the marginal expected
diagnostic rewards of their experts for their own contexts,
the safe training phase required for the diagnostic actions
k ∈ M−i serves the purpose of helping the clinics to build
accurate estimates of the marginal expected diagnostic rewards
for each other’s patients. If clinic i forwards the patient’s
context to another clinic k, it cannot assign the expert that
is selected by that clinic to have the patient diagnosed. If
the estimated marginal accuracies of experts of clinic k are
inaccurate, clinic i’s estimate of clinic k’s accuracy will be
very different from the accuracy of clinic k’s marginally
optimal expert for clinic i’s patient’s context vector. Therefore,
clinic i uses the rewards from clinic k ∈M−i to estimate the
expected diagnostic reward of clinic k only if it believes that
clinic k estimated the accuracies of its own experts accurately.

In order for clinic k to estimate the accuracies of its own
experts accurately, if the number of patient arrivals to clinic
k with contexts in set Cdi (n) is small, clinic i trains clinic k
by sending its patient’s type-d context to k, receiving back
the diagnostic recommendation of the expert chosen by k
and sending the true health state for that patient to k so that
k can update the estimated accuracy of the expert (in Fk)
it had chosen for i. In order to do this, clinic i keeps two
counters T i,d1,k,C(n) and T i,dk,C(n) for each C ∈ Aid(t), which
are initially set to 0. If T i,d1,k,C(n) ≤ D2(n), then clinic i trains
clinic k by sending its patient’s context xdi (n), receiving a
diagnostic recommendation from clinic k, and then sending
the true health state yi(n) to clinic k so that clinic k can
update the estimated marginal accuracy of the expert in Fk it
had chosen to make a diagnostic recommendation for clinic
i for type-d contexts. If T i,d1,k,C(n) > D2(n), for all d ∈ D,
this means that clinic k is trained enough for all types of
contexts so it will almost always select the expert with the
highest marginal accuracy, i.e., maxd∈D π

d
f (xdi (n)), f ∈ Fk

when called by i.
To have sufficient observations from k before exploitation,

i explores k when T i,d1,k,C(n) > D2(n) and T i,dk,C(n) ≤ D3(n),
and updates T i,dk,C(n) and the sample mean marginal accuracy
of clinic k, which is the ratio of the total number of correct
diagnostic recommendations to the total number of diagnostic
recommendations k has made for i for contexts in hypercube
C. Let

Si,d
Cdi (n)

(n) :=
{
f ∈ Fi : T i,d

f,Cdi (n)
(n) ≤ D1(n) or j ∈M−i :

T i,d
1,j,Cdi (n)

(n) ≤ D2(n) or T i,d
j,Cdi (n)

(n) ≤ D3(n)
}
,

and SiCi(n)
(n) :=

⋃
d∈D S

i,d

Cdi (n)
(n). If SiCi(n)

(n) 6= ∅ then
LEX randomly selects an diagnostic action in SiCi(n)

(n) to
train or explore, while if SiCi(n)

(n) = ∅, LEX selects an

diagnostic action in arg maxk∈Ki

(
maxd∈D r̄

i,d

k,Cdi (n)
(n)
)

to
exploit.

B. Analysis of the regret of LEX

In this subsection we analyze the regret of LEX and derive
a sublinear upper bound on the regret, whose growth rate with
the number of patients does not depend on D. We divide the
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regret Ri(N) into three different terms. Rei (N) is the regret
due to trainings and exploitations by patients N , Rsi (N) is
the regret due to selecting suboptimal diagnostic actions at ex-
ploitation steps by patients N , and Rnei (N) is the regret due to
selecting near-optimal actions in exploitation steps by patients
N . Using the fact that trainings, explorations and exploitations
are separated over time, and linearity of expectation operator,
we get Ri(n) = Rei (n) + Rsi (n) + Rnei (n). In the following
analysis, we will bound each part of the regret separately.

Lemma 1: Regret of safe trainings and safe explorations
in a hypercube. Let D1(n) = D3(n) = nz log n and D2(n) =
Fmaxn

z log n. For clinic i consider any level l hypercube for
type-d contexts. The total regret in such a hypercube due to
safe trainings and safe explorations up to the nth patient of
clinic i is bounded by O(MFmaxn

z log n).
Proof: See Appendix A-B.

For clinic i let µdk(x) := πdk(x)−cik, be the expected reward
of diagnostic action k ∈ Ki for a patient with type-d context
xd ∈ Xd. For each set of hypercubes C = (C1, . . . , CD),
let k∗(C) ∈ Ki be the diagnostic action which is optimal
for the center context of the type-d hypercube which has
the highest expected diagnostic reward among all types of
contexts for C, and let d∗(C) be the type of the context for
which diagnostic action k∗(C) has the highest expected re-
ward. Let µdk,Cd := supx∈Cd µ

d
k(x), µd

k,Cd
:= infx∈Cd µ

d
k(x)

µk,C := maxd∈D µ
d
k,Cd , and µ

k,C
:= maxd∈D µ

d
k,Cd

, for
k ∈ Ki. When the set of active hypercubes of clinic i is
C, the set of suboptimal diagnostic actions is given by

LiC,B :=
{
k ∈ Ki : µ

k∗(C),C
− µk,C > BL2−lmax(C)α

}
,

where B > 0 is a constant and lmax(C) is the level of the
highest level hypercube in C. When the context vector of the
patient is in C, any diagnostic action that is not in LiC,B is a
near-optimal diagnostic action.

Lemma 2: Regret due to suboptimal diagnostic action
selections. Let LiC,B , B = 12/(L2−α) + 2 denote the set
of suboptimal diagnostic actions for set of hypercubes C.
When LEX is run with parameters p > 0, 2α/p ≤ z < 1,
D1(n) = D3(n) = nz log n and D2(t) = Fmaxn

z log n, the
regret of clinic i due to choosing suboptimal diagnostic actions
in LiCi(n),B

for patients 1 ≤ n ≤ N in exploitation steps, i.e.,
Rsi (N), is bounded by O(MFmaxN

z/2).
Proof: See Appendix A-C.

Lemma 3: Regret due to near-optimal clinics choosing
suboptimal experts. Let LiC,B , B = 12/(L2−α) + 2 denote
the set of suboptimal actions for set of hypercubes C. When
LEX is run with parameters p > 0, 2α/p ≤ z < 1,
D1(n) = D3(n) = nz log n and D2(n) = Fmaxn

z log n, for
any set of hypercubes C that has been active and contained
xi(n

′) for some patients n′ ∈ {1, . . . , N} of clinic i, the
regret due to a near optimal clinic choosing a suboptimal
expert for these patients when called by clinic i is bounded
by 4(M − 1)Fmaxβ2, where β2 =

∑∞
t=1 1/n2.

Proof: See Appendix A-D.
The next lemma bounds the regret due to clinic i choosing

near optimal diagnostic actions for its patients up to the N th
patient.

Lemma 4: Regret due to near-optimal experts. Let LiC,B ,
B = 12/(L2−α) + 2 denote the set of suboptimal actions for
set of hypercubes C. When LEX is run with parameters p > 0,
2α/p ≤ z < 1, D1(n) = D3(n) = nz log n and D2(n) =
Fmaxn

z log n, the regret due to near optimal diagnostic action
selections in LiCi(n),B

for patients 1 ≤ n ≤ N of clinic i in

exploitation phases is bounded above by O
(
N

1+p−α
1+p

)
.

Proof: See Appendix A-E.
Next, we combine the results from Lemmas 1, 2, 3 and 4

to obtain the regret bound for LEX.
Theorem 1: Convergence rate to the optimal expert. Let

LiC,B , B = 12/(L2−α) + 2 denote the set of suboptimal
actions for set of hypercubes C. When LEX is run with
parameters p = 3α+

√
9α2+8α
2 , z = 2α/p < 1, D1(n) =

D3(n) = nz log n and D2(n) = Fmaxn
z log n, the regret

of clinic i for its patients up to the N th patient is upper
bounded by O

(
FmaxMNf1(α) logN

)
, where f1(α) = (2 +

α+
√

9α2 + 8α)/(2 + 3α+
√

9α2 + 8α). Hence the average
learning loss, i.e., Ri(N)/N goes to zero.

Proof: For clinic i, for each hypercube of each type-d
context, the regret due to trainings and explorations is bounded
by Lemma 1. It can be shown that for each type-d context there
can be at most 4N1/(1+p) hypercubes that are activated up to
the N th patient. Using this we get a O(Nz+1/(1+p) logN)
upper bound on the regret due to explorations and trainings
for a type-d context. Then we sum over all types of contexts
d ∈ D. We show in Lemma 4 that the regret due to near
optimal action selections in exploitation phases is O(N

1+p−α
1+p ).

In order to balance the order of regret (in the number of
patients) due to explorations, trainings and near optimal action
selections in exploitations, while at the same time minimizing
the number of explorations and trainings, we set z = 2α/p,
and p = 3α+

√
9α2+8α
2 . Notice that we do not need to balance

the order of regret due to suboptimal action selections since
its order is always less than the order of trainings and explo-
rations. We get the final result by summing these two terms
together with the regret due to suboptimal action selections in
exploitation phases which is given in Lemma 2.

From the result of Theorem 1, it is observed that the regret
increases linearly with the number of clinics in the system
and their number of experts (which Fmax is an upper bound
on). We note that the regret is the gap between the total
expected reward of the optimal distributed policy that can
be computed by a genie which knows the accuracy of every
expert, and the total expected diagnostic reward of LEX. Since
the performance of optimal distributed policy never gets worse
as more clinics are added to the system or as more experts are
introduced, the benchmark we compare our algorithm against
with may improve. Therefore, the total reward of LEX may
improve even if the regret increases with M , |Fi| and Fmax.

Theorem 1 gives a bound on the long-term performance
of LEX. In a clinical setting, for interpreting the diagnosis
recommendation provided by LEX, clinicians may want to
know the confidence about the proposed diagnosis recommen-
dation for the patient under consideration. LEX can provide the
clinicians sharp confidence bounds on the diagnostic accuracy
of the expert it selects. These bounds reveal the context-
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specific expertise level of the human experts or CDSSs.
Corollary 1: Confidence bounds on the diagnosis rec-

ommendation. When LEX is run with parameters p =
3α+
√
9α2+8α
2 , z = 2α/p < 1, D1(n) = D3(n) = nz log n

and D2(n) = Fmaxn
z log n, we have the following confidence

bounds on the diagnostic recommendation ŷi(n): (i) If the pre-
diction is made in an exploitation phase, then with probability

min

{
0, 1− (|Fi|+ (M − 1))(1 +D)

n2

−2(M − 1)Fmaxβ2n
z/2−1

}
,

the recommendation is made by a near optimal expert in set
Ki−LiC,B , where B = 12/(L2−α)+2 and β2 =

∑∞
n=1 1/n2.

(ii) with the same probability as in (1), we have

πdai(n)(x
d) ≥ r̄i,d

ai(n),Cd
(n) + ciai(n)− 3n−z/2− L2lmax(C)α,

for all d ∈ D, where ai(n) is the diagnostic action taken by
clinic i for its nth patient and C = Ci(n).

Proof: The proof is contained within the proof of Lemma
2.

Corollary 1 implies that when LEX exploits for a patient n,
it can tell the clinician the probability that the chosen expert is
one of the best (near-optimal) experts for the context of patient
n using (1). Moreover, it can also tell the clinician a bound on
the accuracy of the current diagnostic recommendation. This
bound is given in (1), which says that for the patient population
with type-d context xd, the true accuracy of the best expert
corresponding to the diagnostic action ai(n) will almost be
as high as its estimated accuracy, i.e., r̄i,d

ai(n),Cd
(n) + ciai(n).

Using this information, the clinician can arrive at a decision:
it can follow the recommendation of LEX, or it can find and
assign another expert to the patient.

Remark 1: From Corollary 1 when α = 1, the probability
that a suboptimal expert is chosen for the nth patient when
LEX exploits for the nth patient is O(n−0.72). Although this
goes to zero very quickly, the recommendation for the initial
set of patients may not be very accurate. This is not a problem
since prior knowledge can be incorporated to LEX. Assume
that LEX is a priori trained with N0 patients for each clinic.
All the recommendations in this training set is done for the
purpose of training LEX and does not affect a clinician’s final
decision on the patient. Then, for the nth patient that arrives
to clinic i after the initial training, the probability that LEX
chooses a suboptimal expert will be O((n+N0)−0.72), which
can be made arbitrarily small by adjusting the initial training
population.

V. ILLUSTRATIVE RESULTS

In this section, we illustrate the functioning and performance
of our algorithm by comparing it against several state-of-
art online ensemble learning algorithms and other multi-
armed bandit algorithms. While many of these algorithms are
centralized and they cannot easily or at all be deployed in
the envisioned distributed clinic setting, we compare against
these various methods to highlight the merits of our proposed
scheme, including the importance of using contextual (seman-
tic) information in making decisions.

We consider a breast cancer data set provided by UCLA
radiology department. The data set includes 45450 patients.
A radiologist interprets the breast image of the patients and
assigns a BI-RADS score. Score ‘1’ is negative, ‘2’ and ‘3’ are
associated with benign, ‘4’ is suspicious, ‘5’ is highly probable
malignancy, and ‘6’ is known malignant. The score ‘4’ is
further divided into three subcategories with 4A indicating low
suspicion of malignancy, 4B indicating intermediate suspicion
and 4C indicating moderate concern. We focus only on the
BI-RADS 4, 4A, 4B and 4C patients who need to be further
monitored and/or screened to decide their cancer status (i.e.
benign or malignant tumor). These patients are assigned to
an expert, which decides whether or not to undergo a biopsy
based on the patients’ context, which includes their age,
imaging modality, and breast density. Note that some instances
of the context vector are missing for some patients. For
instance, the breast density information is available for only
45% of the patients.

Unless stated otherwise, we assume that there are M = 4
clinics and Fi = 2 experts for each clinic i ∈ M. A clinic
can select one of its own experts without incurring any cost,
while the cost of selecting another clinic is set to 0.01.

A. Algorithms that we compare against

-LinUCB [31] is a contextual bandit based algorithm which
assumes that the expected reward of a diagnostic action is a
linear combination of the components of the context vector.
However, the coefficients in the linear combination is different
for each diagnostic action and is unknown.

-Hybrid-ε (Hybrid) [32] combines the context (side) infor-
mation with an ε-greedy algorithm, by extracting the history
of context arrivals within a small region of the context space
and running an ε-greedy algorithm within that space.

- Weighted Majority (WM) [33] is an offline algorithm
that assigns and updates weights for the experts based on
training data, and produces a final diagnosis recommendation
by weighting the diagnosis recommendations of all the experts.

- Sliding Window Adaboost (AdaSliding) [34] is an online
version of Adaboost [35], which aims to find the optimal
weighting among the experts by an exponential weight update
mechanism, where the weights are updated using a window of
recent past observations and decisions.

All the algorithms above are centralized, i.e., they require
a central clinic which has direct access to all the experts of
all clinics. From the above algorithms, we modified LinUCB
and Hybrid-ε such that they can run on the distributed setting
we consider. For Weighted Majority and Sliding Window
Adaboost we assume that there is a central clinic which has
direct access to all the experts of all clinics.

B. Performance of LEX

While LinUCB and Hybrid-ε are bandit algorithms (i.e.,
they require a diagnosis only from the expert they select),
AdaSliding and AdaWeighted require the diagnostic recom-
mendations of all the experts in the system for each patient.
Hence, these algorithms are run on a centralized system in
which the clinic has access to all experts.
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Results on the diagnostic accuracy: The Comparison
between LEX and the above algorithms is given in Table II.
As the performance metric, we use the diagnostic accuracy
(i.e., the percentage of patients that are correctly diagnosed
by LEX). LEX outperforms other learning algorithms by
having more than 13% diagnostic accuracy than the best
of the other methods. Moreover, as the number of patients
N increases, the diagnostic accuracy increases because LEX
learns the expertise of the experts with a higher accuracy as
more patients arrive. The poor performance of LinUCB and
Hybrid-ε algorithms is due to the fact that they don’t have the
training phase that LEX have, and they learn considering all
the contexts in the context vector, rather than learning for the
most relevant context as LEX does.

Results on cooperation among the clinics: In order to
assess the effect of cooperation between clinics, we simulate
the performance of LEX for different numbers of clinics
that clinic i can forward its patient’s context for diagnosis
recommendation. As shown in Table III diagnosis accuracy
of LEX increases with the number of clinics that clinic i
is connected to. This is due to the diversity of the expertise
among different clinics. While a clinic can be good at making
diagnosis recommendation to patients with a specific type of
context, another clinic may be better specialized for other types
of contexts.

TABLE III
DIAGNOSTIC ACCURACY OF LEX AS A FUNCTION OF THE NUMBER OF

CLINICS

Number of clinics M=1 M=2 M=4
LEX 75.96% 81.09% 83.32%

Results on costs associated with cooperation: How and
when the clinics cooperate with each other depends on several
factors including the expertise of the clinics, contexts of the
patients and costs of cooperation (delay, money, etc.). Here, we
evaluate the percentage of times a clinic cooperates with the
other 4 clinics in exploitations using LEX, as a function of the
cost of choosing another clinic for diagnosis recommendation.
We assume this cost is the same for all clinics and denote it by
c. As seen in Table IV, the percentage of cooperation decreases
as the cost increases, and reaches zero when the cost exceeds
some threshold. When the cost is too high, asking for expertise
of another clinic is not advantageous, even when it improves
the diagnostic accuracy.

TABLE IV
COOPERATION % VS. COOPERATION COST. COOPERATION % IS THE

PERCENTAGE OF TIMES ANOTHER CLINIC IS CALLED IN EXPLOITATIONS.
Cost c 0.01 0.05 0.1 0.2 0.5
Cooperation 12.67% 7.68% 5.53% 0% 0%

Results on delayed health state observations: For most
cases, it may not be possible observe the true health state of
the patient just after the diagnostic decision is made. When
the decision is “malignant”, usually a biopsy is performed
in a short amount of time, and this reveals the true health
state of the patient. However, when the decision is “benign”,
the patient usually waits until the next screening, without any
immediate action.

We simulate this by introducing a delay dn, in terms of
the number of patients that have arrived after the nth patient
before the true health state of the nth patient is revealed. We

assume that dn ∼ geometric(λ), for some parameter λ > 0. In
Table V, the performance of LEX as a function of the delay
is shown in terms of parameter λ. Smaller values of λ imply
larger delay, but as seen from the table, the performance of
LEX is only slightly affected by the delay.

TABLE V
TRADEOFF BETWEEN DIAGNOSTIC ACCURACY AND DELAY

λ 0.02 0.01 0.004 0.002
LEX 81.48% 80.43% 80.22% 79.18%

VI. CONCLUSION

In this paper we proposed a context-adaptive medical di-
agnosis system that selects from a pool of human experts
and CDSSs to make diagnosis recommendations. The system
learns online, which context of the patient to use, and which
expert to rely on when making diagnosis recommendations.
We prove that the diagnostic accuracy of the proposed system
converges to the accuracy of the best context-adaptive expert,
which means that the best diagnosis mechanism (whether
a human expert or a CDSS) for each context is perfectly
learned. Moreover, the proposed algorithm LEX learns the
best expert for treating a patient with a specific context
not only within a clinic but also across all clinics; hence,
its performance is better than the performance of the best
expert within any given clinic. In a clinical deployment of
the proposed system, diagnosis recommendations made by
the system will be examined by a clinician before the final
prediction is made. This will provide an additional layer of
safety. For any patient, it is the clinician’s discretion whether
to rely on or to disregard the recommendation of the LEX
algorithm. Future work includes designing algorithms that can
track the changes in a clinician’s performance by exploiting a
recent time window of patient histories.

APPENDIX A
PROOF OF THE LEMMAS

A. Preliminaries

We start with a simple lemma which gives an upper bound
on the highest level hypercube that is active for any patient n.

Lemma 5: A bound on the level of active hypercubes. All
the active hypercubes Adi (n) for type-d contexts for patient n
have at most a level of (log2 n)/p+ 1.

Proof: Let l + 1 be the level of the highest level active
hypercube. We must have A

∑l
j=0 2pj < n, otherwise the

highest level active hypercube will be less than l+1. We have
for n/A > 1, A 2p(l+1)−1

2p−1 < n⇒ 2pl < n
A ⇒ l < log2 n

p .

B. Proof of Lemma 1

This directly follows from the number of trainings and
explorations that are required before any diagnostic action can
be exploited (see definition of SiCi(n)

(n)). If the diagnosis rec-
ommendation at any training or exploration phase is incorrect
or a high cost diagnostic action is chosen, clinic i loses at
most 2 from the highest realized reward it could get for that
patient, due to the fact an incorrect diagnosis recommendation
will result in one unit of loss and the cost of a diagnostic action
can at most be one.
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TABLE II
COMPARISION OF LEX WITH STATE-OF-THE-ART LEARNING ALGORITHMS IN TERMS OF DIAGNOSTIC ACCURACY

Patients Type Type Type N = 1000 N = 3000 N = 5439
LEX Distributed Contextual Online 80.03% 82.49% 83.32%
LinUCB Distributed Contextual Online 63.03% 65.93% 66.43%
Hybrid Distributed Contextual Online 63.15% 65.53% 67.91%
AdaSliding Centralized - Online 66.10% 71.20% 73.16%
WM Centralized - Offline 60.50% 59.93% 59.48%

C. Proof of Lemma 2

Let Ω denote the space of all possible outcomes, and w be a
sample path. The event that the LEX exploits when xi(n) ∈ C
is given by Wi

C(n) := {w : SiC(n) = ∅,xi(n) ∈ C,C ∈
Ai(n)}. We will bound the probability that LEX chooses a
suboptimal action for clinic i in an exploitation phase when
i’s context vector is in the set of active hypercubes C for any
C, and then use this to bound the expected number of times
a suboptimal action is chosen by clinic i for its patients in
exploitation steps using LEX. Recall that reward loss in every
step in which a suboptimal action is chosen can be at most 2.

Let Vik,C(n) be the event that a suboptimal action k is
chosen for the set of hypercubes C by clinic i for its nth
patient. For k ∈ Ki ∩ Fi, let E ik,C(n) be the set of rewards
observed by clinic i from action k for its own patients whose
context vectors is in the active set C up to the nth patient.
For j ∈ Ki∩M−i, let E ij,C(n) be the set of rewards observed
from selections of clinic j for patients n′ ∈ {1, . . . , n} of
clinic i with context vectors in the active set C such that
T i1,j,l(n

′) > D2(n′). Let Bij,C(n) be the event that at most
nφ observations in E ij,C(n) are collected from suboptimal
actions of clinic j. For k ∈ Ki ∩ Fi let Bik,C(n) := Ω.
We generate two different artificial i.i.d. processes to bound
the probabilities related to deviation of sample mean reward
estimates r̄i,d

k,Cd
(n), k ∈ Ki, d ∈ D from the expected rewards,

which will be used to bound the probability of choosing a
suboptimal action. The first one is the best process in which
rewards are generated according to a bounded i.i.d. process
with expected reward µdk,Cd , the other one is the worst process
in which the rewards are generated according to a bounded
i.i.d. process with expected reward µd

k,Cd
. Let r̄b,i,d

k,Cd
(n) denote

the sample mean of the n samples from the best process and
r̄w,i,d
k,Cd

(n) denote the sample mean of the n samples from the
worst process. We have for any k ∈ LiC,B
P
(
Vik,C(n),Wi

C(n)
)

≤ P
(

max
d∈D

r̄b,i,d
k,Cd

(T i,d
k,Cd

(n)) ≥ µk,C +Hn,Wi
C(n)

)
+ P

(
max
d∈D

r̄b,i,d
k,Cd

(T i,d
k,Cd

(n)) ≥ r̄w,i,d
∗(C)

k∗(C),Cd∗(C)(T
i,d∗(C)

k∗(C),Cd∗(C)(n))

−2nφ−1,max
d∈D

r̄b,i,d
k,Cd

(T i,d
k,Cd

(n)) < µk,C + L2−lmax(C)α

+Hn + 2nφ−1, r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(T
i,d∗(C)

k∗(C),Cd∗(C)(n))

> µ
k∗(C),C

− L2−lmax(C)α −Hn,Wi
C(n)

)
+ P

(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(T
i,d∗(C)

k∗(C),Cd∗(C)(n)) ≤ µ
k∗(C),C

−Hn

+2nφ−1,Wi
C(n)

)
+ P ((Bik,C(n))c),

where Hn > 0. In order to make the probability in (A-C)

equal to 0, we need

4nφ−1 + 2Hn ≤ (B − 2)L2−lmax(C)α.

By Lemma 5, (A-C) holds when

4nφ−1 + 2Hn ≤ (B − 2)L2−αn−α/p.

For Hn = 4nφ−1, φ = 1 − z/2, z ≥ 2α/p and B =
12/(L2−α) + 2, (A-C) holds by which (A-C) is equal to zero.
Also by using a Chernoff-Hoeffding bound we can show that

P

(
max
d∈D

r̄b,i,d
k,Cd

(T i,d
k,Cd

(n)) ≥ µk,C +Hn,Wi
C(n)

)
≤ D/n2,

and

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(T
i,d∗(C)

k∗(C),Cd∗(C)(n)) ≤ µ
k∗(C),C

−Hn

+2nφ−1,Wi
C(n)

)
≤ 1/n2.

We also have P (Bik,C(n)c) = 0 for k ∈ Fi and
P (Bij,C(n)c) ≤ E[Xi

j,C(n)]/nφ ≤ 2Fmaxβ2n
z/2−1. for

j ∈ M−i, where Xi
j,C(n) is the number of times a sub-

optimal expert of clinic j is selected when clinic i calls
clinic j in exploration and exploitation phases for patients
of clinic i with context vectors in the set of hypercubes C
that are active for the nth patient. Combining all of these
we get P

(
Vik,C(n),Wi

C(n)
)
≤ (1 + D)/n2, for k ∈ Fi

and P
(
Vij,C(n),Wi

C(n)
)
≤ (1 + D)/n2 + 2Fmaxβ2n

z/2−1,
for j ∈ M−i. We get the final bound by summing these
probabilities from n = 1 to N .

D. Proof of Lemma 3

Let Xi
j,C(N) denote the random variable which is the

number of times a suboptimal expert of clinic j ∈ M−i is
chosen in exploitation phases of clinic i when xi(n

′) is in
set C ∈ Ai(n′) for n′ ∈ {1, . . . , N}. It can be shown that
E[Xi

j,C(N)] ≤ 2Fmaxβ2. Thus, the contribution to the regret
from suboptimal actions of clinic j is bounded by 4Fmaxβ2.
We get the final result by considering the regret from all M−1
other clinics.

E. Proof of Lemma 4

The following lemma bounds the per-patient (one-step)
regret to clinic i from choosing near optimal actions. This
lemma is used later to bound the total regret from near optimal
actions.

Lemma 6: One-step regret due to near-optimal actions
for a set of hypercubes. Let LiC,B , B = 12/(L2−α) + 2
denote the set of suboptimal actions for set of hypercubes C.
When LEX is run with parameters p > 0, 2α/p ≤ z < 1,
D1(n) = D3(n) = nz log n and D2(n) = Fmaxn

z log n, for
any set of hypercubes C, the one-step regret of clinic i from
choosing one of its near optimal actions is bounded above
by BL2−lmax(C)α, while the one-step regret of clinic i from
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choosing a near optimal clinic which chooses one of its near
optimal experts is bounded above by 2BL2−lmax(C)α.

Proof: For the nth patient of clinic i if xi(n) ∈ C ∈
Ai(n), the per-patient regret of any near optimal expert of any
near optimal clinic j ∈ M−i is bounded by 2BL2−lmax(C)α

by the definition of LiC,B . Similarly, the per-patient regret of
any near optimal expert k ∈ Fi is bounded by BL2−lmax(C)α.

For the nth patient of clinic i, for the set of active
hypercubes Ci(n) that the patient’s context vector belongs
to, lmax(Ci(n)) is at least the level of the active hyper-
cube xdi (n) ∈ Cdi (n) for some type-d context. Since a
near optimal action’s regret for the nth patient is upper
bounded by 2BL2−lmax(Ci(n))α, the total regret due to near
optimal actions up to the N th patient is upper bounded
by 2BL

∑N
n=1 2−lmax(Ci(n))α ≤ 2BL

∑N
n=1 2−l(C

d
i (n))α. Let

lmax,u be the maximum level type-d hypercube when type-
d contexts of the first N patients are uniformly distributed.
We must have A

∑lmax,u−1
l=1 2l2pl < N , otherwise the highest

level hypercube for the N th patient will be lmax,u−1. Solving
this equation for lmax,u, we get lmax,u < 1+log2(N)/(1+p).∑N
n=1 2−l(C

d
i (n))α takes its greatest value when type-d context

up to the N th patient is uniformly distributed in Xd. Therefore
we have

∑N
n=1 2−l(C

d
i (n))α ≤ A22(1+p−α)

21+p−α−1 N
1+p−α
1+p .
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