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  General Procedure for time series modelling: when, how and why? 
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Problem Model Evaluation 

1- Forecasting 
2- Hypothesis testing 
3- Control 
4- Clustering 
5- Learning structure & 
dynamics 

Pick a model based on the 
structure of the problem 
and the validity of 
assumptions 

Validation, statistical 
efficiency 



 
 Medical Problems involving Time Series Analysis 
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1- Forecasting: -> Regression analysis 
Predicting future values of physiological measurements, predicting 
length of a hospital’s waiting list, predicting population level spread 
of epidemics, survival analysis, etc.  
 
2- Hypothesis testing: -> Early classification 
Detecting disorders, confounding effects of treatments, testing 
patients’ latent classes, etc. 
 
3- Control: -> Planning interventions over time 
 
4- Clustering:-> Learning similarities across temporal data 
 
5- Learning structure & dynamics:-> Learning causalities 
 



 
 Medical References involving Time Series Analysis 
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 How to start? 
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Intuition and understanding  
the idiosyncrasies of the problem! 

Exogenous interventions? 

Causalities between series? 

Multiple dependent series? 

Strong mixing? 

Is the series stationary? Disorders? 
Pick a set of 

Models 

Evaluate and 
eliminate 



 
 The two dimensions of multivariate time series 
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Features 
(channels) 

Time 

Every model captures: 
Evolution: impacts timeliness of decisions and accuracy of predictions 
Relational structure: impacts cost, computational and statistical efficiency  



 
  1) Autoregressive Moving Average Models (ARMA) 
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Assumptions 
 
Underlying process being modeled is (weakly) stationary: the 
process exhibits no trends over time (i.e. constant mean and 
variance). 

Construction: univariate ARMA(p,q) model 
 

Constant 
Gaussian 

noise 
AR coefficients MA coefficients 



 
  1) ARMA: stationarity of the generative model 
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  1) ARMA model capturing evolution 
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  1) Multivariate ARMA model 
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Evolution described by AR and MA coefficients, what about 
relational structure? 
 
Construction: multivariate ARMA(p,q) model 
 

Companion matrix (AR matrix) and MA matrix 
capture the relational structure 

 
Variant constructions can capture drifts, periodicity, etc. E.g. 
ARIMA and seasonal ARIMA. 
 



 
  1) Fitting the ARMA model 
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Learning the parameters of the ARMA(p,q) model (model fitting) 
 

Time 

Model fitting = find AR, MA coefficients, and 
number of such coefficients! 



 
  1) Fitting the ARMA model 
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Learning the parameters of the ARMA(p,q) model (model fitting) 
 
1) Estimate the number of coefficients p and q 
 
Use an information criterion to select a model (e.g. Akaike IC and 
Bayesian IC). 
 
 
2) Maximum Likelihood Estimation 
 
Estimating the covariance and mean parameters as a function of the 
AR and MA parameters. 
 



 
  1) Fitting the ARMA model 
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Learning the parameters of the ARMA(p,q) model (model fitting) 
 
1) Estimate the number of coefficients p and q: use AIC 
 
• Measures relative quality of statistical models for a given set of 

data.  
• Relative estimate of the information lost when a given model is 

used to represent the process that generates the data.  
• Trade-off between the goodness-of-fit of the model and the 

complexity of that model. 
 
 
 
 



 
  1) Fitting the ARMA model 
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Learning the parameters of the ARMA(p,q) model (model fitting) 
 
Estimate the number of coefficients p and q: use AIC 
 
 
 
 
 
 
 
MLE for specific p and q 
 
 
 
 
 
 
 
 
 
 
 

p 

q 

Maximum AIC = 
Best Model 



 
  1) ARMA model: pros and cons 
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Advantages 
 
Stationarity assumption (coefficients are constant over time) leads 
to statistical efficiency and ease of construction 
 
Limitations 
 
Cannot capture complicated or non-stationary dynamics unless 
upgraded in a way that sacrifices statistical efficiency 
 
ARMA is usually used in quantitative finance, econometrics, 
weather forecasting, etc, in order to predict future values of a 
series  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  1) ARMA model: key papers 
 

 

The Data Science and Decisions Lab, UCLA                                       16     

  

[1] Harrison, L., William D. Penny, and Karl Friston. "Multivariate autoregressive modeling of fMRI time series." NeuroImage 19.4 (2003): 1477-1491. 
 
[2] Weber, Edith JM, Peter Molenaar, and Maurits W. Molen. "A nonstationarity test for the spectral analysis of physiological time series with an 
application to respiratory sinus arrhythmia." Psychophysiology 29.1 (1992): 55-62. 
 
[3] Kis, Maria. "Time Series Models on Analysing Mortality Rates and Acute Childhood Lymphoid." Connecting Medical Informatics and Bio-
informatics: Proceedings of MIE2005: the XIXth International Congress of the European Federation for Medical Informatics. Vol. 116. IOS Press, 2005. 
 
[4] Imhoff, Michael, et al. Time series analysis in intensive care medicine. No. 1998, 01. Technical Report, SFB 475: Komplexitätsreduktion in 
Multivariaten Datenstrukturen, Universität Dortmund, 1998. 
 
[5] Gersch, Will. "Spectral analysis of EEG's by autoregressive decomposition of time series." Mathematical Biosciences 7.1-2 (1970): 205-222. 
 
[6] Hepworth, Joseph T., Sherry Garrett Hendrickson, and Jean Lopez. "Time series analysis of physiological response during ICU visitation." Western 
Journal of Nursing Research 16.6 (1994): 704-717. 
 
[7] Rathlev, Niels K., et al. "Time series analysis of variables associated with daily mean emergency department length of stay." Annals of emergency 
medicine 49.3 (2007): 265-271. 
 
[8] Jones, Spencer S., et al. "A multivariate time series approach to modeling and forecasting demand in the emergency department." Journal of 
biomedical informatics 42.1 (2009): 123-139. 
 
[9] Kaier, K., et al. "Correlations between bed occupancy rates and Clostridium difficile infections: a time-series analysis." Epidemiology and 
infection139.03 (2011): 482-485. 
 
[10] Gather, Ursula, Michael Imhoff, and Roland Fried. "Graphical models for multivariate time series from intensive care monitoring." Statistics in 
medicine 21.18 (2002): 2685-2701. 
 
[11] Doric, A. G., et al. "The impact of an ICU liaison nurse service on patient outcomes." Critical Care and Resuscitation 10.4 (2008): 296. 
 
[12] Kaier, K., et al. "Epidemiology meets econometrics: using time-series analysis to observe the impact of bed occupancy rates on the spread of 
multidrug-resistant bacteria." Journal of Hospital Infection 76.2 (2010): 108-113. 



 
  2) Diffusion models 
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Assumptions 
 
Underlying process is: 
- Continuous time 
- Solves a stochastic differential equation (SDE)  
- Has a drift component and a diffusion component 
- Usually a Markovian process   

Diffusion 
component 

Wiener process 
(standard 

Brownian motion) Drift component 



 
  2) Diffusion models: depiction 
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Time 

Drift component  (e.g. clinical deterioration) 

Stochastic 
volatility 



 
  2) Diffusion models 
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Advantages 
 
- Models continuous time, some classical results are tractable 
Statistically efficient and non-stationary: only need MLE for drift 
and stochastic volatility 
 
Disadvantages 
- In many cases discrete time models suffice especially if sampler 
is exogenous. Many SDE problems are tedious and intractable. 
- Mostly limited to Markovian processes. 
- Hard to model relational structure. 
 
Unexplored by ML community, intensively used in quantitative 
finance  
 
 



 
  2) Diffusion models: depiction 
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Time 

Brownian motion is the limit of many ARIMA models! 



 
  2) Diffusion models: key papers 
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  3) Hidden Markov Models (HMMs) 
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Assumptions 
 
States are not observable, and what is observed is a set of outputs 
that are observed with a different probability given each state. 
 
 
 

Output-state 
distribution 

Outputs 
(observable) 

States 
(unobservable) 



 
  3) HMM simulation  
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• Observation is a probabilistic function of the state 
 
• HMM is a doubly embedded stochastic process 

. . . . 

. . . . 



 
  3) HMM learning  
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• Learning an HMM is equivalent to learning the state-transition 
probabilities (aij) and the emission probabilities (bik) 

. . . . 

. . . . 



 
  3) HMM learning  
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• Learning an HMM is equivalent to learning the state-transition 
probabilities (aij) and the emission probabilities (bik) given an 
output sequence. 

Time 

. . . . 

Maximum Likelihood 
Estimation for a, b 



 
  3) HMM learning using dynamic programming 
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Algorithms for learning HMMs 
 
1- Brute force: enumerate all output sequences and compute their 
likelihood -> exponential complexity! 
 
2- Viterbi algorithm (dynamic programming): same idea as Viterbi 
decoders in convolutional codes. 
 
Used if there is a known state-space that is not observed, and that 
has a non-injective map to an observed output sequence. 



 
  3) HMM learning using dynamic programming 
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HMMs in a medical context (e.g. Martin’s problem) 

Time 

. . . . 

Time . . . . 

Unobserved true clinical status 

Observed physiological stream 

Learn model by 
 Viterbi, 

Decoder emits a  
risk score! 



 
  3) HMM control 
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Markov  
Chain 

MDP 

HMM POMDP 

Actions + rewards 

Actions + rewards 



 
  3) HMMs: key papers 
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  4) State-space model 
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Assumptions 
 
- Continuous state-space 
- This leads to linearity assumptions for mapping state transitions 
and states to outputs. 
 
 
 



 
  4) State-space model 
 

 

The Data Science and Decisions Lab, UCLA                                       31     

  

Learning task: finding the matrices mapping states to outputs, and 
transition matrices across states + covariance of Gaussian noise 
 
 
 



 
  4) State-space model 
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High-dimensional time series: Large matrices A and C 
 
 
 



 
  4) State-space model 
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Some temporal streams are redundant: 
 
How to reduce the dimensionality and capture dynamics? 
Redundancy can be time-varying!! 
 
 
 

Time 

4 streams ->  
effectively 2 streams 



 
  5) Dynamic Latent Factor Models 
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Goal: Embed high dimensional time series into a lower dimensional 
space and maintain the dynamics 
 
Dynamic functional connectivity (neuroscience) -> Time varying 
correlations 
 
Models that seek low dimensional embedding of dynamics 
 
 
 

Low dimensional 
State-space High dimensional 

Observation space 

k << p 

Factor loadings 



 
  5) Dynamic Latent Factor Models 
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i.i.d Sequence 
with no 

dynamics => 
 

Latent factor 
model 



 
  5) Dynamic Latent Factor Models 
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  5) Dynamic Latent Factor Models 
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Incorporating 
dynamics => 

 
Dynamic latent 

factor model 



 
  5) Dynamic Latent Factor Models 
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t 

2-dimensional state-space dynamics 

5-dimensional observation-space dynamics 

t 



 
  5) Dynamic Latent Factor Models 
 

 

The Data Science and Decisions Lab, UCLA                                       39     

  

t 

Correlation pattern is still 
Fixed over time! 

t 

Lag covariance = WSS 



 
  5) Dynamic Latent Factor Models 
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Complex 
dynamics=> 

 
Nonparametric 

latent factor 
evolution 



 
  5) Dynamic Latent Factor Models 
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Complex 
dynamics=> 

 
Nonparametric 

latent factor 
evolution 

 
Usually a 

Gaussian process 
is used for 

nonparametric 
evolution 



 
  5) Dynamic Latent Factor Models 
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What is a Gaussian Process? 

- Distribution over functions f ~ GP (m, K)  
- m: mean function, K: covariance Kernel 

t 

Mean function 

Brownian motion 
is a GP with 

Matern Kernel 



 
  5) Dynamic Latent Factor Models 
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Fit the latent factor  
process using  
GP regression 

=> 
Get f(.) 



 
  5) Dynamic Latent Factor Models 
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We modeled EVOLUTION by a GP, but 

How to capture the changing  
correlation pattern  

(RELATIONAL STRUCTURE)? 

t 

Low correlation 

High correlation 



 
  5) Dynamic Latent Factor Models 
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Model every entry in Latent factor matrix by a GP 



 
  5) Dynamic Latent Factor Models 
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GP to model evolution  
and dynamics 

GP to model latent  
factor process 



 
  5) Dynamic Latent Factor Models 
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Conclusion: Dynamic Latent Factor 
Model can capture complicated 

dynamics and encapsulates most of 
other models 



 
  5) Dynamic Latent Factor Model: key papers 
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  Model Selection 
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. . .  

Model fitting 
And parameter 

estimation 

Select best model with a desired model 
confidence interval 



 
  Further topics to discuss….. 
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• Dynamic Bayesian networks: modeling cause and effect 
 
• Real-time Cox regression: survival analysis based on 

time series 
 
• Structure learning: learning graphs of patients, 

treatments, etc, based on time series 
 
• Time series clustering: personalization! 


