
Decentralized algorithms for classifier topology
optimization in large-scale multi-concept detection

ABSTRACT
Multi-concept identification in high volume multimedia streams
is critical for a number of applications, including large-scale
multimedia analysis, processing, and retrieval. Content of
interest is filtered using a collection of binary classifiers that
are deployed on distributed resource-constrained infrastruc-
ture. In this paper, we design distributed algorithms for
determining the optimal topology of single concept detec-
tors (classifiers) to identify the multiple concepts of inter-
est. These algorithms dynamically order individual classi-
fiers into chain topologies to tradeoff accuracy against pro-
cessing delay, based on underlying data characteristics, sys-
tem resource constraints as well as the performance and
complexity characteristics of each classifier.

1. INTRODUCTION
There is a large class of emerging applications for anno-

tation, knowledge extraction and online search and retrieval
that require the analysis of high volume data streams in real
time. Examples of these applications include online financial
analysis, fraud detection, photo and video retrieval, spam
classification, medical services, search engines, etc. Each
application can be viewed as a processing pipeline that ana-
lyzes high volume data from a set of data sources to extract
valuable information in real time. Furthermore, depend-
ing on the underlying data characteristics, volume, and con-
cepts of interest, the mining tasks may be computationally
very challenging. For instance, YouTube users currently up-
load more than 10 hours of video every minute. If we apply
Support Vector Machine (SVM) models trained on 100,000
images on such data, it can take up to 270,000 2.16 GHz
Dual-Core CPUs to detect 1000 concepts in real time.

The development of large-scale stream mining platforms
has enabled applications to be constructed as topologies of
distributed operators deployed on a set of heterogeneous
processing resources. Constructing applications as topolo-
gies of distributed processing operators can lead to enhanced
scalability, reliability and performance-complexity tradeoffs
– allowing us to achieve the desired performance. Specif-
ically, we build multi-concept detection applications using
a topology of low-complexity binary classifiers, each per-
forming feature extraction and classification specific to in-
dividual concepts of interest [6]. In this paper, we focus on
constructing and ordering classifiers into chain topologies
on distributed processing nodes tailored towards answering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

specific queries of interest on data streams, while trading off
accuracy against processing delays.

This work lies at the intersection of research in large-
scale stream mining, and the linear topology ordering prob-
lems. Prior research on stream mining optimization [1] is fo-
cused on resource allocation in resource-constrained topolo-
gies. More recent works [5] have concentrated on optimizing
classification accuracy under resource constraints, yet with-
out considering the classifier ordering problem: the topol-
ogy of the classifiers are given a-priori and the optimization
performed takes these topologies as granted. Furthermore,
processing delay has seldom been studied [4] and always at
equilibrium. Finally, there has been a significant body of
work on using ensembles of classifiers to improve classifica-
tion accuracy [7]. The ordering problem has been studied as
part of the broader pipeline-ordering problem [2] as well as
the classical set-cover problem [11]. These approaches de-
sign low-complexity algorithms to minimize the end-to-end
processing time. However, they always consider perfect clas-
sifiers, i.e. classifiers that make no mistakes, and neglect re-
source constraints. In our case, we consider the general case
of imperfect classifiers distributed on a resource-constrained
network.

A centralized approach of stream mining ordering has also
been studied in our paper [3]. In general, centralized ap-
proaches are incompatible with the distributed nature of
the stream mining system, as they are limited in terms of
scaling, adaptation to dynamics, and failure resilience. In
this paper, we determine the optimal topology of a stream
mining system using a decentralized approach. Our algo-
rithms combines stochastic decision processes and reinforce-
ment learning techniques.

This paper is organized as follows. In Section 2, we pro-
vide a background on classifiers used for concept detection
and underline the accuracy tradeoff between detection and
false alarm. In Section 3, we formulate the order and oper-
ating point selection as an optimization problem aiming to
achieve the highest accuracy of classification with the least
delay. Section 4 introduces a stochastic decision process
where order and operating point are selected locally by each
classifier in a decentralized fashion, using limited message
exchange. In Section 5, we construct decentralized search al-
gorithms, based on reinforcement learning techniques. Our
results are presented in Section 6. Finally, in Section 7,
we consider the case of resource-constrained stream mining,
where the system gains in being organized as multiple par-
allel chains. Conclusions are drawn in Section 8.

2. BINARY CLASSIFICATION
Multimedia retrieval and analysis applications pose queries

on data that require multiple concepts to be identified. More
specifically, a query is answered as a conjunction of a set ofN
classifiers C = {C1, ..., CN}, each associated with a concept
to be identified. By partitioning the problem into this en-
semble of classifiers and filtering data (i.e. discarding data

that is labeled ”no” by any classifier) successively; we can
control the amount of resources consumed by each classi-
fier in the ensemble. This justifies using a chain topology
of classifiers, where the output of one classifier is passed to
another classifier, etc, as shown in Fig. 1.

Definition: Order of a set of classifiers. An order of a
set of classifiers {C1, ...CN} is a permutation σ ∈ Perm(N)
such that input data flows from Cσ(1) to Cσ(N).

Throughout this paper, we will generically use the index
i to identify a classifier and h to refer to its depth in the
chain of classifiers. Hence, Ci = Cσ(h) will mean that the

hth classifier in the chain is Ci.

A-priori selectivities Each binary classifier Ci = Cσ(h)

labels input data into two classes Hi (class of interest) and
Hi. Data labeled as belonging to H is forwarded, while data
labeled as belonging to H is dropped. If input data into the
classifier is represented as X, each classifier has a a-priori
conditional selectivity φσh = P(X ∈ Hσ(h)|X ∈

Th−1
k=1 Hσ(k))

corresponding to the conditional probability of data belong-
ing to classifier Ci = Cσ(h)’s class of interest, given that it
belongs to the class of interest of the previous h − 1 clas-
sifiers. Similarly, we define the negative a-priori selectivity
as φσh = P(X ∈ Hσ(h)|X /∈

Th−1
k=1 Hσ(k)). Note that these

a-priori selectivities are inherent to the data features and
to the relationships between concepts; they do not depend
on the operating point for individual classifiers.

Classifier performance. The performance of the classifier
is characterized by its Detection Error Tradeoff (DET) curve
that represents tradeoffs between probability of detection
pD and probability of false alarm pF . We represent the
DET curve as a function f : pF 7→ pD that is increasing,
concave and lies over the first bisector. As a consequence,
an operating point on this curve is parametrized uniquely
by its false alarm ratios pF .

We model the average time needed for a classifier to pro-
cess a stream tuple as α (in seconds). The order of mag-
nitude of α depends on the nature of the data, as well as
the classification algorithm, and can vary from microsec-
onds (screening text) to multiple seconds (complex image
classification).

Throughput and goodput of a chain of classifiers.
The forwarded output of a classifier consists of correctly la-
beled data from class H as well as false alarms from class
H. We use g to represent the goodput (portion of data cor-
rectly labeled) and t to represent the throughput (total for-
warded data, including mistakes). As in [5], we can derive
the throughput ti and goodput gi of classifier Ci = Cσ(h)

recursively as»
ti
gi

–
=

»
pFi + φσh(pDi − pFi) (φσh − φσh)(pDi − pFi)

0 φσhp
D
i

–
| {z }

Ti=T
σ
h

»
tσh−1

gσh−1

–

(1)

Figure 1: Classifier chain

3. PROBLEM FORMULATION
Misclassification cost. The misclassification cost, or er-
ror cost, may be computed in terms of the two types of accu-
racy errors – a penalty cM per unit rate of missed detection,
and a penalty cF per unit rate of false alarm. These are spec-
ified by the application requirements. Noting Φ =

QN
h=1 φ

σ
h,

the total misclassification cost is

cσerr = cM (Φt0 − gσN)| {z }
missed data

+ cF (tσN − gσN)| {z }
wrongly classified data

(2)

Processing delay cost. Delay may be defined as the time
required by the classifiers chain to process a stream tuple.

Given that classifier Cσ(h) processes a fraction
tσh
t0

of data ,
the average end-to-end processing time required by the σ-
ordered chain to process stream data is

cσdelay =

NX
k=1

ασ(k)t
σ
k−1 (3)

Optimization Problem Analysis. The utility function
may be defined as the negative weighted sum of both the
misclassification cost and the processing delay cost: U =
−cerr−λ cdelay, where the parameter λ controls the tradeoff
between misclassification and delay. This utility is a function
of the throughputs and goodputs of the stream within the
chain, and therefore implicitly depends on:

1. The order σ in which the classifiers are arranged
2. The operating point xi ∈ [0, 1] selected by each classi-

fier , where (pFi , p
D
i) = (xi, fi(xi)).

The optimization problem can be formulated as:8>><>>:
maximize
σ∈Perm(N)

x∈RN

U(σ,x) = gN −KtσN −
NX
k=1

ρσ(k)t
σ
k−1

subject to 0 ≤ x ≤ 1

(4)

where K = cF

cF+cM
∈ [0, 1] and ρ = λ

cF+cM
α ∈ R+N .

Requirement for algorithms to meet time constraints.
Proposed algorithms must take into account system’s dy-
namics, both in terms of stream characteristics evolutions
and classifiers’ processing time variations. This time-dependency
is yet all the more true in a multi-query context, because the
overall data stream processed is not homogeneous, since it
is the concatenation of chunks of data stream from each
query. Such plurality of queries can lead to very abrupt
changes over small intervals of time: two consecutive tu-
ples could belong to streams corresponding to two different
queries, each with its specific selectivities, processing time
and, most importantly, with its specific set of classifiers to
go through.

These dynamics requires rapid adaptation of the order and
operating points, often even at the granularity of one tuple.
Any optimization algorithm thus needs to provide a solution
with a time granularity finer than the system dynamics.

Denote by τ the amount of time required by an algorithm
to perform one iteration, i.e to provide a solution to the order
and configuration selection problem. The solution given by
an algorithm will not be obsolete if

τ ≤ Cτdyn (5)

where τdyn represents the characteristic time of significant
change in the input data and characteristics of the stream
mining system and C ≤ 1 represents a buffer parameter in
case of bursts.

Observe that centralized algorithm are not systematically
compliant to this time requirement. Indeed, at the contrary
of decentralized algorithms, centralized algorithms cannot
trade-off performance and computational time, and there-
fore τ may be superior to dynamics.

4. DECENTRALIZED APPROACH

4.1 Decentralized optimization problem
The key idea of the decentralized algorithm is to use lo-

cal decisions consisting in determining to which classifier to
forward the stream. To describe this, we set up a stochastic
decision framework {C,S,A,U}, illustrated in Fig. 2, where
− C = {C1, ..., CN} represents the set of classifiers.
− S = ×

i≤N
Si represents the set of states.

− A = ×
i≤N
Ai represents the set of actions.

− U = {U1, ..., UN} represents the set of utilities.

Users of the stream mining system. Consider N clas-
sifiers C = {C1, ..., CN} with the notation Ci = Cσ(h). The
classifiers are supposed autonomous: they do not communi-
cate with each other and take decisions independently. We
will also refer to the stream source as C0 = Cσ(0).

States observed by each classifier. The local state
set of classifier Ci = Cσ(h) is Si = {(Children(Ci), θi)}.
Children(Ci) =

˘
Ck ∈ C|Ck /∈ {Cσ(1), Cσ(2)..., Ci}

¯
rep-

resents the subset of classifiers through which the stream
still needs to be processed after it passes classifier Ci. This
is a required identification information to be included in the
overhead of each stream tuple in order to know to which
classifier the stream should be forwarded, instead of sending
it to a classifier which has already processed it.

The throughput-to-goodput ratio θi =
tσh−1
gσ
h−1

∈ [1,∞] is

a measure of the accuracy of the ordered set of classifiers
{Cσ(1), Cσ(2), ..., Ci}. Indeed, θi = 1 corresponds to perfect

classifiers Cσ(1), Cσ(2), ..., Ci, (with pD = 1 and pF = 0),
while large θi imply that data has been either missed or
wrongly classified. The state θi can be passed along from
one classifier to the next in the stream tuple overhead.

Since θi ∈ [1,∞], the set of states Si is of infinite car-
dinality. For computational reasons, we would require a
finite set of actions. We will therefore approximate the
throughput-to-goodput ratio by partitioning [1,∞] into L
bins Sl = [bl−1, bl] and approximate θi ∈ Sl by some fixed
value sl ∈ Sl.

Actions of a classifier. Each classifier Ci has two in-
dependent actions: it selects its operating point xi and it
chooses among its children the classifier Ci→ to which it
will transmit the stream. Hence Ai = {(xi, Ci→)}, where
− xi ∈ [0, 1] corresponds to the operating point selected

by Ci.
− Ci→ ∈ Children(Ci) corresponds to the child classifier

to which Ci will forward the stream. We will refer to
Ci→ as the trusted child of classifier Ci.

Note that the choice of trusted child Ci→ is the local equiva-
lent of the global order σ. The order is constructed classifier
by classifier, each one selecting the child to which it will for-
ward the stream: ∀h ∈ [1, N], Cσ(h) = Cσ(h−1)→.

Local utility of a classifier. We define the local utility

of a chain of classifiers using backward induction:

Uσ(N) = −ρσ(N)t
σ
N−1 + gσN −KtσN

Uσ(h) = −ρσ(h)t
σ
h−1 + Uσ(h+1)

(6)

The end-to-end utility of the chain of classifiers can then be
reduced to U = Uσ(1).

Proposition. Each classifier Ci = Cσ(h) will globally
maximize the system’s utility by autonomously maximizing

its local utility Ui =
ˆ
vσh wσh

˜ » tσh−1

gσh−1

–
where the local

utility parameters
ˆ
vσh wσh

˜
are defined recursively:ˆ

vσN wσN
˜

= −
ˆ
ρσ(N) 0

˜
+
ˆ
−K 1

˜
TσNˆ

vσh wσh
˜

= −
ˆ
ρσ(h) 0

˜
+
ˆ
vσh+1 wσh+1

˜
Tσh

Figure 2: Stochastic decision process

Decision taking The local utility of classifier Ci can be
rewritten as

Ui =
`
−
ˆ
ρi 0

˜
+
ˆ
vσh+1 wσh+1

˜
Ti(xi)

´ » tσh−1

gσh−1

–
(7)

Therefore, the decision of classifier Ci only depends on the
state θi which it observes and on the local utility parametersˆ
vj wj

˜
of its children classifiers Cj ∈ Children(Ci). Be-

ing provided with the utility parameters of all his children,
classifier Ci can then uniquely determine its best action, i.e,
its operating point xi and its trusted child in order to max-
imize its local utility.

4.2 Decentralized ordering algorithms
At this stage, we consider classifiers with fixed operating

points. The action of a classifier Ci is therefore limited to
selecting to which classifier Ci→ ∈ Children(Ci) it will for-
ward the stream.

4.2.1 Exhaustive Search Ordering Algorithm
We will say that a classifier Ci probes a child classifier Cj

when it requests its child utility parameters
ˆ
vj wj

˜
.

To best determine its trusted child, a classifier only re-
quires knowledge on the utility parameters of all its children.
We can therefore build a recursive algorithm as follows: all
classifiers are probed by the source classifier C0 ; to compute
their local utility, each of them then probes its children for
their utility parameters

ˆ
v w

˜
. To determine these, each

of the probed children needs to probe its own children for
their utility parameter, etc. The local utilities are computed
in backwards order, from leaf classifiers to the root classifier
C0, as shown in Fig. 3. The order yielding the maximal
utility is selected.

Observe that this decentralized ordering algorithm leads
to a full exploration of all N ! possible orders. Achieving the
optimal order only requires one iteration, but this iteration
however consists in O(N !) operations and may thus require

Figure 3: Information fed back

substantial time1. For quasi-stationary input data, the or-
dering could be performed offline and such computational
time requirement would not affect the system’s performance.
However, in bursty and heterogeneous settings, we have to
ensure that the order calculated by the algorithm would not
arrive too late and thus be completely obsolete. In particu-
lar, the time constraint τ ≤ Cτdyn, underlined in Section 3,
must not be violated.

We therefore need algorithms capable of quickly deter-
mining a good order, though convergence may require more
than one iteration. In this way, it will be possible to reassess
the order of classifiers on a regular time basis to adapt to
the environment.

4.2.2 Global Partial Search Ordering Algorithm
The key insight of the Partial Search Algorithm is to

screen only through a selected subset of the N ! orders at
each iteration. Instead of probing all its children classifiers
systematically, the hth classifier will only request the utility
parameters

ˆ
v w

˜
of a subset of its N − h children.

From a global point of view, one iteration can be decom-
posed in three major steps, as shown on Fig. 4:
Step 1 Selection of the children to probe. A partial

tree is selected recursively (light grey on Fig. 4). A
subset of the N classifiers are probe as first classifier
of the chain. Then, each of them selects the children
it wants to probe, each of these children select the
children which it wants to probe, etc.

Step 2 Determination of the trusted children. The
order to be chosen is determined backwards: utili-
ties are computed from leaf classifiers to the source
classifier C0 based on feedbacked utility parameters.
At each node of the tree, the child classifier which
provides its parent with the greatest local utility is
selected as trusted child (dark grey on Fig. 4).

Step 3 Stream processing. The stream is forwarded from
one classifier to its trusted child (black on Fig. 4).

Figure 4: Global Partial Search Algorithm

4.2.3 Local Partial Search Ordering Algorithm
Observe that one classifier may appear at multiple depth

and position in the classifiers’ tree. Each time, it will realize
the following local algorithm:

1
This can take τ > 5 minutes for 7 classifiers (see Section 6)

Algorithm 1 Partial Search Ordering Algorithm - for clas-
sifier Ci = Cσ(h)

1. Observe state (θi, Children(Ci))
2. With probability pij , request utility parametersˆ

vσ(h+1) wσ(h+1)

˜
=
ˆ
vj wj

˜
for any of the

N − h classifiers Cj ∈ Children(Ci)
3. For each child probed, compute corresponding utility

Ui(Cj) =
`
−
ˆ
ρσ(i) 0

˜
+
ˆ
vj wj

˜
Ti
´ » tσh−1

gσh−1

–
4. Select the child classifier with the highest Ui as trusted

child.
5. Compute the corresponding

ˆ
vi wi

˜
and transmit it

to a previous classifier who requested it.

4.3 Decentralized ordering and operating point
selection algorithm

In case of unfixed operating points, the local utility of
classifier Ci = Cσ(h) also depends on its local operating point
xi – but it does not directly depend on the operating points
of other classifiers.

As a consequence, we can easily adapt the Partial Search
Ordering Algorithm into a Partial Search Ordering and Op-
erating Point Selection Algorithm by computing the maxi-
mal utility (in terms of xi) for each child:

Ui(Cj) = max
xi

`
−
ˆ
ρσ(i) 0

˜
+
ˆ
vj wj

˜
Ti(xi)

´ » tj
gj

–
(8)

To solve the local optimization problem (8), each classi-
fier can either derive the nullity of the gradient if the DET
curve function fi : pF 7→ pD is known, or search for optimal
operating point using a dichotomy method (since Ui(Cj) is
concave). Such methods have been well-detailed in [8] and
the reader is referred to this reference for further details.

4.4 Robustness of the Partial Search Order-
ing Algorithm

Convergence of Partial Search Algorithm.
– Under stable conditions the Partial Search Algorithm con-
verges to the equilibrium point of the stochastic decision pro-
cess.
– For fixed operating point the Partial Search Algorithm con-
verges to the optimal order if pij > 0 ∀ i, j.

Proof. We consider a stable input stream, i.e. with non varying
characteristics. Each iteration of the Global Partial Search Iteration
will be indexed by the superscript by (t). Convergence of Partial
Search algorithm can be obtained by proving recursively that each
iteration improves the global utility of the stream mining system.

Indeed, since (x
(t+1)
i , C

(t+1)
i→) = arg max

Cj∈Children(Ci)
(t+1)

Ui(Cj), we can

derive recursively that ∀h : U
(t+1)
σ(h) ≥ U

(t)
σ(h), and in particular, this

is true for the source classifier, which corresponds by construction
to the system’s utility. Increasing and upper-bounded, the global
utility thus converges. The limit is thus obtained at an equilibrium
point of the decision process, since by construction, for these stream
characteristics, each classifier cannot find a better operating point
nor forward the stream to a child classifier, without having a loss of
utility.

We also want to prove that in case of fixed Operating Point, the al-
gorithm will always converge to the optimal order. Let P (N) = P(For
any N classifiers, the Partial Search Ordering Algorithm converges

to optimal order). Denote by σ(t) the order provided by the algo-
rithm at time t and σopt the optimal order of this chain of classi-

fiers. Then P (N) = P(∃t s.t. σ(t)(1) = σopt(1))P (N − 1), where,

P(∃t s.t. σ
(t)

(1) = σopt(1)) = lim
t→∞

tX
t=1

p
0
σopt(1)(1− p

0
σopt(1))

t
. Since

p0σopt(1) > 0, the geometric sum converges and P (N) = 1∗P (N−1) =

... = P (1) = 1, which ends the proof

In case of joint ordering and operating point selection,
there exist multiple equilibrium points, each corresponding
to a local minimum of the utility function. The selection
of the equilibrium point among the set of possible equilib-
ria depends on the initial condition (i.e. order and operating
points) of the algorithm. We can perform the Partial Search
Algorithm for multiple initial conditions and select the equi-
librium yielding the maximum utility.

Convergence speed. In practice, stable stream condition
will not be verified by the stream mining system, since the
system’s characteristics vary at a time scale of τdyn. Hence,
rather than achieving convergence, we would like the Partial
Search Algorithm to reach near-equilibrium fast enough for
the system to deliver solution to the accuracy and delay joint
optimization on a timely basis.

5. PARAMETRIC PARTIAL SEARCH OR-
DER AND OPERATING POINT SELEC-
TION ALGORITHM

In this section, we aim to construct an algorithm which
would maximize as fast as possible the global utility of the
stream mining system expressed in (4). We want to deter-
mine whether it is worth for a classifier Ci to probe a child
classifier Cj for its utility parameters and determine search
probabilities pij of the Partial Search Algorithm accordingly.

5.1 Tradeoff between efficiency and computa-
tional time

Define an experiment Ei→j as classifier Ci’s action of
probing a child classifier Cj by requesting its utility param-
eter

ˆ
vj wj

˜
. Performing an experiment can lead to a

higher utility, but will induce a cost in terms of computa-
tional time:
− Let Û(Ei→j |sk) be the expected additional utility achieved

by the stream mining system if the experiment Ei→j
is performed under state sk.

− Let τex represent the expected amount of time required
to perform an experiment.

Then, the total expected utility per iteration is given by
Û(pij) =

P
pijÛ(Ei→j |sk) and the time required for one it-

eration is τ(pji) = n̂(pij)τ
ex, where n̂(pij) represents the ex-

pected number of experiments performed in one iteration of
the Partial Search Algorithm.

The allocation of the screening probabilities pij aims to
maximize the total expected utility within a certain time:8<: maximize

pij∈[0,1]
Û(pij)

subject to τ(pji) ≤ Cτdyn
(9)

5.2 How much to search? – Efficiency VS Flex-
ibility

Suppose for the moment that we perform random search:
any classifier Ci searches through its children with the same
probability pij = p:
− p ≈ 0 corresponds to algorithms which seldom per-

form new search and thus screen only a few branches
of the classifiers’ tree at each iteration. Hence, reach-
ing the optimal order requires on average 1/pN → ∞
iterations, each with complexity O(N !pN → 0).

− p ≈ 1 corresponds to algorithms which screens through
nearly all the branches of the classifier tree at each it-
eration. Hence, reaching the optimal order requires on

average 1/pN ≈ 1 slow iterations, each with complex-
ity O(N !pN ≈ O(N !)).

Performance of search algorithm for random search.
For a given p, the average number of children that classifier
Cσ(h) probes is then

nh =

N−kX
k=0

k

„
k

N − h

«
pk(1− p)N−h−k| {z }

P(k children probed)

= (N − h)p

The average number of orders explored per iteration will

thus be NO =

N−1Y
h=0

nh = N !pN and the processing time re-

quired will be τ(p) = τex
N−1X
h=0

hY
i=0

ni

!
= τex

N−1X
h=0

N !

(N − h)!
ph.

Speed of search as a modeling variable for the ex-
pected utility. Since the utility Û expected from a set of
experiments (Ei→j) cannot be determined analytically, we

can monitor performance by modeling Û by the speed of
search V , defined as the average number of orders explored
in a certain amount of time.

V (p) =
NO
τ

=

τex

NX
h=1

1

(N − h)!pN−h

!−1

This modeling choice corresponds to the assumption that
expected utility is proportional to the speed of search. Doing
so, the optimization problem introduced in Eq. (9) becomes(

maximize
p∈[0,1]

V (p)

subject to τ (p) ≤ Cτdyn
C << 1 (10)

Since both the objective function and the constraint func-
tion are increasing in p, the optimal average screening p∗

will be obtained by saturating the time constraint: τ (p) =
Cτdyn. Hence the Partial Search Algorithm with constant
screening probability pij = p∗ = τ−1(Cτdyn) enables to scout
at each iteration as many orders as possible within a time
window of average size Cτdyn.

5.3 Where to search? – Exploration VS Ex-
ploitation

We refine the speed-driven optimization for the selection
of the average probability by additionally keeping record of
the local utilities achieved in the past by classifier and taking
decisions accordingly. Given an average search probability
p, we can encourage exploring unprobed children or exploit
already-visited orders, by weighting the propensity of clas-
sifier Ci to probe one of its children classifier Cj , based on
past experiments’ reward.

Learning algorithm. We define the probing probability
as

pij = pσ(h) eβUi(j,k)X
Cl∈Children(Ci)

eβUi(l,k)
(11)

where the utility Ui(j, k) represents the latest local utility
achieved by classifier Ci when it transmitted the stream to
classifier Cj , given that θi ∈ Sk2, and is updated on-the-go.

2
The number of bins L used to described the continuous segment

[1,∞] as a finite set of points and the quantization chose have im-
portant impact on the performance of the learning algorithm: higher
number of states enable a more tailored decision, but since states
will be more seldom visited, past utilities will be updated less often

In practice, the weight associated to a specific child based
on its past reward could be determined using any increasing

function f . Using fβ(U) = eβUP
V e

βV is motivated by the

analogy of a classifiers utility U to an energy [9]. In this case,
eβUP
V e

βV represents the equilibrium probability of being at an

energy level U . As such, the parameter β can be interpreted
as the inverse of a temperature, i.e it governs the amount of
excitation of the system:
− β = 0 corresponds to a very excited system with highly

time-varying characteristics. In this case, since char-
acteristics change very quickly, random exploration:
pij = p is recommended by the algorithm.

− β = ∞ corresponds to a non-varying system. Then,
full-exploitation of past rewards is recommended (given
that all states were explored at least once) and weight
should be concentrated only on the child which pro-
vides the maximum utility.

− 0 < β < ∞ is a tradeoff between exploration (β = 0)
and exploitation (β =∞) and corresponds to settings
where algorithmic search and environment evolution
are performed at the same time scale (τ ≈ Cτdyn).

6. EXPERIMENTAL RESULTS

6.1 Accuracy VS Delay tradeoff analysis
Upper bound of delay cost λmax. Since the system’s
global utility is bounded, we can show that for λ > λmax =

cMPN
k=1 αk−min(αk)/Φ

, the stream should not be processed: the

first classifier would then be the one with minimal process-
ing cost and would drop all tuples.

Impact of cost parameters. We consider N = 4 clas-
sifiers C1, ..., C4 with different processing costs α and differ-
ent DET curves, characterized by their Area Under Graph
(AUG). We quantize the DET curve and keep 4 operating

α AUG
C1 .25 .82
C2 .5 .87
C3 .75 .93
C4 1 .98
Data Table 1

points xi = 0, 1/3, 2/3, 1. For this
experiment, we choose classifiers with
increasing α and decreasing AUG, as
shown in Data Table 1, and fix equal
a-priori selectivities φ and φ. With
this choice of parameters, we expect

classifiers to be ordered increasingly for high relative delay
penalty or decreasingly for high accuracy weight.

The results in Table 1 are obtained by computing the util-
ity achieved for every order and operating point and keep-
ing the optimal setup. We verify that classifiers are ordered
according to their accuracy (AUG) for λ = 0 and accord-
ing to their processing time α when delay is taken into ac-
count. Furthemore, we can notice that as the misclassifi-
cation cost cF becomes more important, classifiers choose
operating points with low probability of false alarm.

cM = 10 cF = 0 cF = 1 cF = 3

λ = 0 σ [C4 C3 C2 C1] [C4 C3 C2 C1] [C4 C3 C2 C1]
x [x4 x4 x4 x4] [x4 x4 x2 x2] [x3 x2 x2 x2]

λmax
30

σ [C1 C4 C3 C2] [C1 C2 C3 C4] [C1 C2 C3 C4]
x [x4 x4 x4 x4] [x4 x3 x2 x2] [x3 x2 x2 x2]

λmax
10

σ [C1 C4 C3 C2] (C1,x1) (C1,x1)
x [x2 x2 x3 x4] No trans. No trans.

Table 1: Optimal configuration for varying cM and λ

and stored values might be obsolete for time-varying settings. Tak-
ing advantage of this tradeoff can be done through methods such as
prioritized sweeping [10], to which we refer the interested reader.

6.2 System compliance of joint algorithms
For joint ordering and configuration, the optimal order

cannot be achieved in a timely fashion. Indeed, for N clas-
sifiers with A operating points each, O(N !AN) iterations
are required to determine the optimal order and operating
points. Even though the joint algorithms exposed can only
be proved to converge to local optima (due to non convex-
ity of utility function), they enable to obtain a suboptimal
order and operating points within a fixed amount of time.

To cope with the stream mining environment, algorithms
must update their results on regular time basis: we are thus
interested in the amount of time required by one iteration
of the Partial Search algorithm, shown on Table 2 for 20
classifiers, each having 100 operating points3.

pij = .01 pij = .03 pij = .05
τ 0.34s 5.3s 37s

Table 2: Computational time achieved for various p

The Partial Search algorithm makes sure that each itera-
tion is performed in a sufficiently small amount of time to
ensure that it arrives on time: τ ≤ Cτdyn by adjusting the
parameter p.

6.3 Decentralized convergence rate
Figure 5 compares the utility achieved by the Partial Search

algorithm for varying values of p, with N = 20 and A = 100
actions.

Figure 5: Joint algorithms comparison

By construction, the Partial Search Algorithm is non in-
creasing. The parameter p enables to control the time per
iteration. As such, small values of p correspond to small
stair steps, while higher value of p correspond to stairs with
only a few large steps.

7. EXTENSION: PARALLEL TOPOLOGIES
FOR MULTI-NODE CLASSIFIER

The proposed ordering algorithm apply to a chain of clas-
sifiers ordered linearly. Yet, classifier chains are not neces-
sarily optimal for classifiers distributed on multiple resource-
constrained processing nodes. Indeed, simultaneously pro-
cessing the stream in parallel on multiple classifiers chains
could reduced the total delay, thus improving global perfor-
mance. In this section, we provide a extension framework
for alternate non-linear topologies and discuss the number
of chains to be used under simplifying assumptions.

3
Classifier’s characteristics (pF , pD), φ and α were generated ran-

domly. cM = 10, cF = 1, λ = 0.1

7.1 Resource constrained stream mining
Resource constraints. A key challenge in distributed
real-time stream mining systems arises from the need to cope
effectively with system overload, due to large data volumes
and limited system resources (e.g. CPU, memory, I/O band-
width) [1]. Specifically, there is a large computational cost
incurred by each classifier (proportional to the data rate)
that limits the rate at which the application can handle in-
put data.

Let N classifiers be instantiated on M processing nodes4,
each of which has a given available resource rmaxm .

Message exchange. In previous sections, we did not
take into consideration the time required by classifiers to
communicate with each other. If classifiers are all grouped
on a single computer, such communication time can be ne-
glected compared to the time required by classifiers to ex-
tract data features. However for classifiers instantiated on
separate nodes, this communication time can greatly in-
crease the total time required to deal with a stream tuple.

As such, we would like to limit the communication be-
tween nodes, ie:
− Limit sending the data and control messages across

nodes.
− Limit the message exchanges required by the decen-

tralized algorithm (
ˆ
v w

˜
) and by the load-shedding

ratios γ learning.

Parallel processing of a stream. When classifiers are
placed across multiple nodes, one way to minimize transmis-
sion (of the stream and messages) across processing nodes
we can organize classifiers within each node into local chains,
and connect only the root and leaf of this chain to classifiers
on other nodes. This is equivalent to imposing local con-
straints on the order selection process. In general, for M
nodes, this will lead to M such chains, with the data stream
being forwarded across from one node to another only M-1
times.

Alternately, we can also consider a parallel processing sce-
nario, where all classifiers within one node are organized into
a chain, and data is processed in parallel through the differ-
ent chains. Since we are interested only in a conjunction of
the output of all classifiers, the results of the multiple chains
can be fused (i.e. select only data passed by all chains) to get
the final result. Note that this parallel processing requires
replicating the stream across the nodes, thereby leading to
increased resource consumption, however it also leads to re-
duced end-to-end latency.

Examples of the serial and parallel processing topologies
are shown in Figure 6.

In practice, the optimal topology selection may be a com-
bination of the serial and parallel topologies based on the
communication time between nodes, their processing capa-
bilities etc.

In the following paragraph, we are going to model the
stream mining system in order to encompass such non-linear
topology. We highlight the intuitions justifying the use of
parallel chain topologies and propose a method for deter-
mining such topology under simplifying assumptions. This
is included as a motivation for future work.

7.2 Global utility of a set of classifiers for multi-
node stream mining system

4
The placement of classifiers across nodes is outside the scope of this

paper.

Figure 6: Stream processing through multiple chains

Single chain We model the average time needed for classi-
fier Ci to extract the feature of a stream tuple as αfeati (in
seconds) and the average time needed to send a stream tuple
from classifier Ci to classifier Cj as αcomi,j (in seconds). The
matrix αcom can be supposed as symmetric. The average
end-to-end processing time required by the σ-ordered chain
to process stream data is

cσdelay =

NX
k=1

αfeatσ(k)t
σ
k−1 +

N−1X
k=1

αcomσ(k),σ(k+1)t
σ
k (12)

Multiple chain Suppose that instead of considering clas-
sifiers in a chain, we process the stream through R chains,
where chain r hasNr classifiers with the order σr ∈ Perm(Nr).
The answer of the query is then obtained by intersecting the
output of each chain and we neglect the time required for
this operation.

The end-to-end processing time is then given by

cσdelay = max
1≤r≤R

NrX
k=1

αfeatσr(k)t
σr
k−1 +

Nr−1X
k=1

αcomσr(k),σr(k+1)t
σr
k

!
(13)

The output of parallel processing chain is recomposed by
intersection. As a consequence, we will make the approxi-
mation that the accuracy is independent of the number of
chains carried out (the end-goodput is not modified, and,
assuming independance of classifiers, niether would the end-
throughput).

7.3 How to group classifiers within parallel chains
of classifiers

Let’s suppose that all classifiers have extraction time αfeat.
Furthermore, we will consider that the communication time
is either αcomint for classifiers of a same node or αcomext for clas-
sifiers of different nodes.

Let’s define the symmetric binary matrix P = 1−MMT .

Pi1,i2 = 1−
MX
j=1

Mi1,jMi2,j =

(
0 if Ci1 , Ci2 are on the same node

1 if Ci1 , Ci2 are on different nodes

With αcomi1,i2 = αcomext Pi1,i2 + αcomint (1− Pi1,i2)
= αcomint + Pi1,i2(αcomext − αcomint)

the end-to-end processing time can be rewritten as:

cσdelay = max
1≤r≤R

"
αfeat

NrX
k=1

tσrk−1 + αcomint

Nr−1X
k=1

tσrk

+ (αcomext − αcomint)

Nr−1X
k=1

Pσ(k),σ(k+1)t
σr
k

!#
By indexing the chain responsible of maximal processing
time as r0, the delay can be expressed as:

cσdelay = αfeatt0 + (αfeat + αcomint)

Nr0−1X
k=1

t
σr0
k

+ (αcomext − αcomint)

Nr0−1X
k=1

Pσr0 (k),σr0 (k+1)t
σr0
k

Instinctively, we want to group classifiers instantiated on a
same node on a same chain in order to limit the stream being
sent back and forth from one node to the other. Indeed,
with chains grouping classifiers instantiated on a same node,
Pσr(k),σr(k+1) = 0 and the total delay is minimized.

7.4 Determination of number of chains
Expected delay. Suppose that N classifiers on M nodes
process data in parallel through R streams. Since we want
to limit the maximum delay, we are going to choose chains
with more or less the same number of classifiers. We will
therefore model that each chain groups N/R classifiers.

Furthermore, since we group – as much as possible – clas-
sifiers instantiated on a same node on a common chain, the
average number of nodes per chain is M/R. Stream will be
send from one node to another M/R − 1 times in average:
the probability of consecutive classifiers of a chain belonging

to the different nodes is then P(Pi,j=1) = M/R−1
N/R−1

= M−R
N−R .

Hence, with Ψ =
PNr−1
k=1 tσrk ,

E(cσdelay) = (t0+Ψ)αfeat+(Ψ
M −R
N −R)αcomext +(Ψ

N −M
N −R)αcomint| {z }

≈0

Observe that in practice, αcomint << αcomext , α
feat and we

will suppose it to be zero.

Expected resource constraints. The total amount of
resource used by the stream mining system is given by

rtot =

MX
j=1

rj =

RX
r=1

αfeat
NrX
k=1

tσrk−1 ≈ Rα
feat

N/RX
k=1

tσrk−1

It is clearly increasing with the number of chains R.

Tradeoff between extraction time and communica-
tion time. We can thus observe a tradeoff between ex-
traction time αfeat and communication time αcom:
− If αcom << αfeat, there should be only one chain, so

that lower classifier only process a small fraction of
the whole data and in order to reduce the resource
constraints.

− If αfeat << αcom, then there should be as many chains
as possible, i.e one chain per node. Indeed, in this case,
the stream would never be sent from one node to the
other. Observe that the order of classifiers within each
node is determined using Partial Search Algorithm.

− αfeat ∼ αcom represents a tradeoff situation where
there should be 1 ≤ R ≤M chains, each chain group-
ing classifiers belonging to a common node.

8. CONCLUSION
In this paper, we design distributed and adaptive algo-

rithms to determine the optimal linear topology of a set
of classifiers to trade off filtering accuracy and processing
delay. These algorithms are designed for large scale mul-
timedia analysis applications that require the detection of
multiple concepts from high volume multimedia data using
a set of distributed processing resources. We also extend
our algorithms to optimize the configuration of individual
classifiers in the selected topology, by determining their op-
timal operating points under the given data characteristics,
classification performance, and delay constraints. In our de-
centralized approach individual classifiers make autonomous
decisions on what operating point (e.g. filtering threshold)
to use while classifying data, as well as which classifier to
forward the data to, after processing, i.e. distributedly de-
termining a topology order. We use a Parametric Partial
Search Algorithm, that dynamically searches through a sub-
set of all orders in each iteration, to tradeoff the optimality
of the solution with the time required for convergence. Our
experimental results shows how the screening parameter p
enables to realize such tradeoff. Finally, the proposed algo-
rithms are extended to consider resource-constraints, where
a multi-chain stream mining system can be preferred.

9. REFERENCES
[1] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain:

operator scheduling for memory minimization in data
stream systems. In ACM SIGMOD, 2003.

[2] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters.
ACM SIGMOD international conference on Management
of data, 2004.

[3] R. Ducasse, D. S. Turaga, and M. van der Schaar. Adaptive
topologic optimization for large-scale stream mining. IEEE
Journal on Selected Topics in Signal Processing, under
review.

[4] B. Foo and M. van der Schaar. A distributed approach for
optimizing cascaded classifier topologies in real-time stream
mining systems.

[5] F. Fu, D. S. Turaga, O. Verscheure, M. van der Schaar, and
L. Amini. Configuring competing classifier chains in
distributed stream mining systems. IEEE Journal on
Selected Topics in Signal Processing, 2007.

[6] R. Lienhart, L. Liang, and A. Kuranov. A detector tree of
boosted classifiers for real-time objects detection and
tracking. In Proceeedings of the International Conference
on Multimedia and Expo (ICME), 2003.

[7] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly.
Detecting spam web pages through content analysis. In
Proceedings of the 15th international conference on World
Wide Web, May 2006.

[8] H. Park, D. S. Turaga, O. Verscheure, and M. van der
Schaar. Foresighted tree con guring games in resource
constrained distributed stream mining systems. IEEE Int.
Conf. on Acoustics, Speech, and Signal Process, 2009.

[9] L. Saul and M. I. Jordan. Learning in boltzman trees.
Neural Computation, 1994.

[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. The MIT Press, Cambridge, MA,, 1998.

[11] V. Vazirani. Approximation algorithms. Springer Verlag.

