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Abstract—With the vast availability of traffic sensors from
which traffic information can be derived, a lot of research effort
has been devoted to developing traffic prediction techniques,
which in turn improve route navigation, traffic regulation, urban
area planning and etc. One key challenge in traffic prediction is
how much to rely on prediction models that are constructed using
historical data in real-time traffic situations, which may differ
from that of the historical data and change over time. In this
paper, we propose a novel online framework that could learn
from the current traffic situation (or context) in real-time and
predict the future traffic by matching the current situation to the
most effective prediction model trained using historical data. As
real-time traffic arrives, the traffic context space is adaptively
partitioned in order to efficiently estimate the effectiveness of
each base predictor in different situations. We obtain and prove
both short-term and long-term performance guarantees (bounds)
for our online algorithm. The proposed algorithm also works
effectively in scenarios where the true labels (i.e. realized traffic)
are missing or become available with delay. Using the proposed
framework, the context dimension that is the most relevant
to traffic prediction can also be revealed, which can further
reduce the implementation complexity as well as inform traffic
policy making. Our experiments with real-world data in real-
life conditions show that the proposed approach significantly
outperforms existing solutions.

I. INTRODUCTION

Traffic congestion causes tremendous loss in terms of
both time and energy wasted. According to a recent report
from the Texas Transportation Institute [1], in 2007, all 439
metropolitan areas experienced 4.2 billion vehicle-hours of
delay, which is equivalent to 2.8 billion gallons in wasted
fuel and $87.2 billion in lost productivity, or about 0.7%
of the nation’s GDP. Traffic congestion is caused when the
traffic demand approaches or exceeds the available capacity
of the traffic system. In United States, Federal Highway
Administration [2] [3] has observed that the number of miles
of vehicle travel increased by 76 percent from 1980 to 1999,
while the total miles of highway increased merely by 1.5
percent, which hardly accommodates growth in travel. It is
now generally conceded that it is impossible to build our way
out of congestion, mainly because increased capacity results in
induced demand. These factors motivate an information-based
approach to address these problems.

Fortunately, due to thorough sensor instrumentations of road
networks in major cities as well as the vast availability of
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auxiliary commodity sensors from which traffic information
can be derived (e.g., CCTV cameras, GPS devices), a large
volume of real-time and historical traffic data at very high
spatial and temporal resolutions has become available. Several
companies, such as Inrix, now sell both types and at our
research center we have had access to both datasets from
Los Angeles County for the past three years. As shown by
many studies [4] [5] [6] [7] [8], these traffic datasets can be
used to predict traffic congestion, which in turn enables drivers
to avoid congested areas (e.g., through intelligent navigation
systems), policy makers to decide about changes to traffic
regulations (e.g., replace a carpool lane with a toll lane), urban
planners to design better pathways (e.g., adding an extra lane)
and civil engineers to plan better for construction zones (e.g.,
how a short-term construction would impact traffic).

One major challenge in predicting traffic is how much to
rely on the prediction model constructed using historical data
in the real-time traffic situation, which may differ from that of
the historical data due to the fact that traffic situations are nu-
merous and changing over time. Previous studies showed that
depending on the traffic situation one prediction model may be
more useful than the other. For example, in [7] it is shown that
a hybrid forecasting model that selects in real-time depending
on the current situation between Auto-Regressive Integrated
Moving Average (ARIMA) model and Historical Average
Model (HAM) model yields significant better prediction ac-
curacy. It is shown that the ARIMA prediction model is more
effective in predicting the speed in normal conditions but at
the edges of the rush-hour time (i.e., the beginning and the end
of rush hour), the HAM model is more useful. This becomes
even more challenging when considering different causes for
congestion, e.g., recurring (e.g., daily rush hours), occasional
(e.g., weather conditions), unpredictable (e.g., accidents), and
temporarily – for short term (e.g., a basketball game) or long
term (e.g., road construction) congestions. However there is no
holistic approach on when and in which situations to switch
from one prediction model to the other for a more effective
prediction. The exhaustive method that trains for each traffic
situation a prediction model is obviously impractical since it
would induce extremely high complexity due to the numerous
possible traffic situations.

Our main thesis in this paper is that we try to learn from
the current traffic situation in real-time and predict the future
traffic by matching the current situation to the most effective
prediction model that we constructed using historical data.
First, a finite (possibly small) number of traffic predictors
are constructed for the same number of representative traffic
conditions using historical data. Using a small set of base
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predictors reduces the training and maintenance costs. Given
this set of base predictors, we learn to select the most effective
predictor that best suits the current traffic situation in real-
time. For instance, suppose we have two traffic predictors
trained on historical datasets in different weather conditions,
sunny and rainy. We will learn online which predictor to use
for prediction in a cloudy weather which does not have a
predictor trained for it. The basic idea to learn and select
the most effective predictor is based on estimating the reward
of a predictor in different situations. The reward estimate is
calculated based on how accurate each predictor has been in
predicting, say, speed value, given the actual speed values
we have observed in the recent past via the real-time data.
However, significant challenges still remain as we will explain
shortly.

Many features can be used to identify a traffic “situation”,
which henceforth are called context. Example features include:
location, time, weather condition, number of lanes, area type
(e.g., business district, residential), etc. Therefore, the context
space is a multidimensional space with D dimensions, where
D is the number of features. Since D can be very large and
the value space can be continuous, learning the most effective
predictor in each individual context using reward estimates
for this individual context (i.e. a D-dimensional point in the
context space) can be extremely slow. For example, there
are numerous possible weather conditions (characterized by
temperature, humidity, wind speed etc.) but each specific
weather condition only appears occasionally in real-time.
Thus, we may initially group weather conditions into rough
categories such as sunny, rainy, cloudy etc. and then refine
each category to improve prediction. However, how to adap-
tively group contexts and partition the context space poses a
significant challenge for fast learning of the best predictor for
different traffic contexts. Moreover a rigourous performance
characterization of such a method is missing. These are the
problems that we are going to solve in this paper.

Our approach has three important byproducts. First, since
the reward is continuously being updated/aggregated, we are
utilizing what we learn in real-time to adapt to both short-
term and long-term changes. For example, suppose that on a
location that is a 3-lane freeway, one of the lanes is closed for a
week due to construction. Our approach that is originally using
the predictor that is the most effective to a 3-lane subspace
would start observing that the predictor does not work well
for the 2-lane case and thus switching to the new predictor.
Later once the construction is complete, the reward mechanism
would guide our approach to go back to the previous 3-lane
predictor. Second, our approach is agnostic to the congestion
cause. For example, our reward mechanism may guide us to
select a predictor that is trained for a rush-hour subspace, even
though the current time is not a rush-hour time, but perhaps
because of an incident (e.g., an unknown object in the middle
of the freeway) that resulted in a similar traffic condition as
that of a rush hour at that location. Therefore, we can still
predict the traffic condition successfully in the presence of that
event. Finally, since location and time are two features of our
context space, our approach is inherently spatiotemporal and
takes into consideration the sensor readings that are spatially

and temporally closest to each other.
To evaluate our approach, we obtain and prove both short-

term and long-term performance guarantees (bounds) for our
online algorithm. This provides not only the assurance that our
algorithm will converge over time to the optimal predictor for
each possible traffic situation (i.e., there is no loss in terms of
the average reward) but also provides a bound for the speed
of convergence of our algorithm to the optimal predictor (i.e.,
our algorithm is fast to converge to the optimal performance).
In addition, we conducted a number of experiments to verify
our approach with real-world data in real-life conditions. The
results show our approach significantly outperforms existing
approaches that do not adapt to the varying traffic situations.

The remainder of the paper is organized as follows. Section
II reviews the related work and highlights the distinctions
of our approach. Section III formulates the traffic prediction
problem and defines the performance metric. Section IV de-
scribes our context-aware adaptive traffic prediction algorithm.
Section V discusses several ways to optimize our algorithm.
Section VI reports our experimental results with real world
traffic datasets. Section VII concludes the paper.

II. RELATED WORK

In this related work section, we first compare our scheme
against other existing traffic prediction works (i.e. application-
related work) and afterwards we compare our work against
various classes of online learning techniques (i.e. algorithm
and theory related work).

A. Traffic prediction

Several traffic prediction techniques have been studied in
the past. The majority of these techniques focus on predicting
traffic in typical conditions (e.g., morning rush hours) [4] [7]
[9] [10], and more recently in the presence of accidents, e.g.,
[5] [4]. Both qualitative [11] and quantitative [12] approaches
have been used to measure the impact of an accident on
road networks and various machine learning techniques have
been applied to predict the typical traffic conditions and the
impact of accidents, including Naive Bayesian [13], Decision
Tree Learning [6], and Nearest Neighbor [14]. The main
differences between our work and the existing studies on
traffic prediction are: 1) All existing techniques for traffic
prediction are aimed at predicting traffic in specific traffic
situations, e.g. either typical conditions or when accidents
occur. Instead, our scheme is applicable to all traffic situations
and learns to match the current traffic situation to the best
traffic prediction model, by exploiting spatiotemporal and
other context similarity information. 2) All existing techniques
used for traffic prediction deploy models learned offline (i.e.
they rely on a priori training sessions) or that they are retrained
after long periods and thus, they cannot adapt (learn from)
dynamically changing traffic situations. Instead, our scheme is
able to dynamically adapt to the changing traffic situations on
the fly and improve the traffic prediction overtime as additional
traffic data is received. 3) Most existing works are based
on empirical studies and do not offer rigorous performance
guarantees for traffic prediction. Instead, our scheme is able



3

to provide both short-term and long-term performance bounds
in dynamically changing traffic situations.

B. Ensemble learning

Our framework builds a hybrid traffic predictor on top of
a set of base predictors and thus, it appertains to the class of
ensemble learning techniques. Traditional ensemble schemes
[15] [16] for data analysis are mostly focused on analyzing
offline datasets; examples of these techniques include bagging
[15] and boosting [16]. In the past decade much work has been
done to develop online versions of such ensemble techniques.
For example, an online version of Adaboost is described in
[17]. Another strand of literature on online ensemble learning
is represented by the weight update schemes [18] [19] [20]
[21] [22] that maintain a collection of given predictors, predict
using a weighted majority rule, and update online the weights
associated to the learners. Most of these schemes develop mul-
tiplicative update rules [18] [19] [20]. For example, weighted
majority in [18] decreases the weights of predictors in the pool
that disagree with the true label whenever the ensemble makes
a mistake. Additive weight update is adopted in [21] where the
weights of learners that predict correctly are increased by a
certain amount. In [22], weights of the learners are updated
based on stochastic gradient descent. Most prior works on
ensemble learning provide algorithms which are only asymp-
totically converging to an optimal or locally-optimal solution
without providing any rates of convergence. On the contrary,
we not only prove convergence results, but we are also able to
explicitly characterize the performance loss incurred at each
time step with respect to the omniscient oracle (i.e. complete
knowledge) benchmark which knows the accuracies of all
classifiers for the data. Specifically, we prove regret bounds
that hold uniformly over time. Moreover, existing works do
not exploit the contextual information associated with the
data. In contrast, we focus on how contextual specialization
of predictors can be discovered over time to create a strong
predictor from many weak predictors in different contexts.

C. Contextual multi-armed bandits

The proposed algorithm is analyzed using techniques devel-
oped for the contextual multi-armed bandits (MAB) problems.
Previously, MAB methods were applied to solve problems in
clinical trials [23] [24], multi-user communication networks
[25], web advertising [26], recommender systems [27] [28]
and stream mining systems [29] [30]. A key advantage of
MAB methods as compared to other online learning methods
is that they can provide a bound on the convergence speed
as well as a bound on the loss due to learning compared to
an oracle solution which requires knowledge of the stochastic
model of the system, which is named regret. To the authors’
best knowledge, this paper is the first attempt to develop MAB
methods to solve spatiotemporal traffic prediction problems for
intelligent transportation systems. In existing works on MAB,
the learner can only observe the reward of the selected action
(which in our case is the base predictor). In contrast, in this
paper, the learner can observe the rewards of all predictors
since the prediction action does not have an explicit impact

on reward realization. This makes the learning much faster
than existing works. Moreover, this paper also studies which
context dimension (or set of context dimensions) is more
relevant to the traffic prediction problem, thereby reducing
the implementation complexity and providing guidelines for
traffic policy making by identifying what are the causes for
various traffic situations.

III. PROBLEM FORMULATION

A. Problem setting

Figure 1 illustrates the system model under consideration.
We consider a set of locations L where traffic sensors are
deployed. These locations can be either on the highways or
arterial streets. We consider an infinite horizon discrete time
system t = 1, 2, ... where in each slot t a traffic prediction
request from one of the location lo ∈ L arrives to the system
in sequence. Given the current traffic speed xt at this location,
the goal is to predict the traffic speed ŷt in some predetermined
future time, e.g. in the next 15 minutes or in the next 2 hours.
Note that the notation t is only used to order the requests
according to their relative arrival time. Each request can come
from any location in L at any time in a day, thereby posing a
spatiotemporal prediction problem.

Each request is associated with a set of traffic context
information which is provided by the road sensors. The context
information can include but is not limited to:

• The location context, e.g. the longitude and latitude of the
requested location lo, the location type (highway, arterial
way), the area type (business district, residential).

• The time context, e.g. whether on weekday or weekend,
at daytime or night, in the rush hour or not, etc.

• The incident context, e.g. whether there is a traffic
incident occurred nearby and how far away from lo, the
type of the incident, the number of affected lanes etc.

• Other contexts such as weather (temperature, humidity,
wind speed etc.), temporary events etc.

We use the notation θt ∈ Θ to denote the context information
associated with the t-th request where Θ is a D-dimensional
space and D is the number of types of context used. Without
loss of generality, we normalize the context space Θ to be
[0, 1]D. For example, time in a day can be normalized with
respect to 24 hours.

The system maintains a set of K base predictors f ∈ F that
can take input of the current speed xt, sent by the road sensors,
and output the predicted speed f(xt) in the predetermined
future at location lo. These base predictors are trained and
constructed using historical data for K representative traffic
situations before the system operates. However, their perfor-
mance is unknown for the other traffic situations since they
are changing over time. We aim to build a hybrid predictor
that selects the most effective predictor for the real-time traffic
situations by exploiting the traffic context information. Thus,
for each request, the system selects the prediction result of
one of the base predictors as the final traffic prediction result,
denoted by yt. The prediction result can be consumed by third-
party applications such as navigation.



4

Base PredictorsBase Predictor
Context Space Partition

Reward Estimates
Context (location, time) θ

Current traffic xPredicted future traffic y

P
C

Observed future traffic ŷ
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Fig. 1. System Diagram.

Eventually, the real traffic at the predetermined future for
the t-th request, denoted by ŷt, is revealed. We also call
ŷt the ground-truth label for the t-th request. For now we
assume that the label is revealed for each request at the
end of each prediction. In reality, the label can arrive with
delay or even be missing. We will consider these scenarios
in Section V. By comparing the system predicted traffic yt

and the true traffic ŷt, a reward rt is obtained according to a
general reward function rt = R(yt, ŷt). For example, a simple
reward function indicates the accuracy of the prediction, i.e.
R(yt, ŷt) = I(yt = ŷt) where I(·) is the indicator function.
The system obtains a reward of 1 only if the prediction is
correct and 0 otherwise. Other reward functions that depend
on how close the prediction is to the true label can also be
adopted.

As mentioned, each based predictor is a function of the
current traffic xt which outputs the future traffic prediction yt.
Since for a given xt the true future traffic ŷt is a random vari-
able, the reward by selecting a predictor f , i.e. R(f(xt), ŷt),
is also a random variable at each t. The effectiveness of a base
predictor is measured by its expected reward, which depends
on the underlying unknown joint distribution of xt and ŷt.
The effectiveness of a base predictor in a traffic context θ is
thus its expected reward conditional on θ and is determined
by the underlying unknown joint distribution of xt and ŷt

conditional on the event θ. Let πf (θ) = E{R(f(x), ŷ)|θ} be
the expected reward of a predictor f in context θ. However,
the base predictors are constructed using historical data can
thus, their expected reward is unknown a priori for real-time
situations which may vary over time. Therefore, the system
will continuously revise its selection of base predictors as it
learns better and better the base predictors’ expected rewards
in the current context.

B. Spatiotemporal prediction and multi-predictor diversity
gain

By taking into consideration of the traffic context infor-
mation when making traffic prediction, we are exploiting
the multi-predictor diversity to improve the prediction perfor-
mance. To get a sense of where the multi-predictor diversity
gain comes from, consider the simple example in Figure 2,
which shows the expected rewards of various base predictors.
Since the traffic prediction is a spatiotemporal problem, we use
both time and location of the traffic as the context information.
Given a location at 5 miles from the reference location, we
have three predictors constructed for three representative traffic
situations - morning around 6am, afternoon around 2pm and
evening around 7pm. These predictors work effectively in their
corresponding situations but may not work well in other time
contexts due to the different traffic conditions in different time
of the day. If we use the same predictor for the entire day, then
the average prediction performance can be very bad. Instead,
if we use the predictors for traffic situations that are similar
to the representative situation, then much better prediction
performance can be obtained. However, the challenge is when
to use which predictor for prediction since the effectiveness of
the base predictors is unknown for every traffic context. For
example, the three base predictors (0 mile, 5 miles, 10 miles)
given time 12pm have complex expected reward curves which
need to be learned over time to determine which predictor is
the best at different locations.

C. Performance metric for our algorithm

The goal of our system is to learn the optimal hybrid
predictor which selects the most effective base predictor for
each traffic situation. Since we do not have the complete
knowledge of the performance of all base predictors for all
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Fig. 2. Spatiotemporal prediction and multi-predictor diversity gain.

contexts in the online environment, we will develop online
learning algorithms that learn to select the best predictors
for different traffic contexts over time. The benchmark when
evaluating the performance of our learning algorithm is the
optimal hybrid predictor that is constructed by an oracle that
has the complete information of the expected rewards of all
base predictors in all situations. For a traffic context θ, the
optimal base predictor selected in the oracle benchmark is

fopt(θ) := argmax
f∈F

πf (θ), ∀θ ∈ Θ (1)

Let σ be a learning algorithm and fσ(t) be the predictor
selected by σ at time t, then the regret of learning by time
T is defined as the aggregate reward difference between our
learning algorithm and the oracle solution up to T , i.e.

Reg(T ) :=
T∑

t=1

πf∗(θt)(θ
t)− E

[
T∑

t=1

R(fσ(t)(xt), ŷt)

]
(2)

where the expectation is taken with respect to the random-
ness of the prediction, true traffic realization and predictors
selected. The regret characterizes the loss incurred due to
the unknown transportation system dynamics and gives the
convergence rate of the total expected reward of the learning
algorithm to the value of the optimal hybrid predictor in (1).
The regret is non-decreasing in the total number of requests T
but we want it to increase as slow as possible. Any algorithm
whose regret is sublinear in T , i.e. Reg(T ) = O(T γ) such that
γ < 1, will converge to the optimal solution in terms of the
average reward, i.e. lim

T→∞
Reg(T )

T = 0. The regret of learning
also gives a measure for the rate of learning. A smaller γ will
result in a faster convergence to the optimal average reward
and thus, learning the optimal hybrid predictor is faster if γ
is smaller.

IV. CONTEXT-AWARE ADAPTIVE TRAFFIC PREDICTION

A natural way to learn a base predictor’s performance in a
non-representative traffic context is to record and update its
sample mean reward as additional data (i.e. traffic requests)
in the same context arrives. Using such a sample mean-based
approach to construct a hybrid predictor is the basic idea of
our learning algorithm; however, significant challenges still
remain.

One the one hand, exploiting the context information can
potentially boost the prediction performance as it provides
ways to construct a strong hybrid predictor as suggested in
Section III(B). Without the context information, we would
only learn the average performance of each predictor over
all contexts and thus, a single base predictor would always
be selected even though on average it does not perform well.
On the other hand, building the optimal hybrid predictor can
be very difficult since the context space Θ can be very large
and the value space can even be continuous. Thus, the sample
mean reward approach would fail to work efficiently due to
the small number of samples for each individual context θ.

Our method to overcome this problem is to dynamically
partition the entire context space into multiple smaller context
subspaces and maintain and update the sample mean reward
estimates for each subspace. This is due to the fact that the
expected rewards of a predictor are likely to be similar for sim-
ilar contexts. For instance, similar weather conditions would
have similar impacts on the traffic on close locations. Next,
we will propose an online prediction algorithm that adaptively
partitions the context space according to the traffic prediction
request arrivals on the fly and guarantees the sublinear learning
regret.
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A. Algorithm description

In this subsection, we describe the proposed online adaptive
traffic prediction algorithm (CA-Traffic). First we introduce
several useful concepts for describing the proposed algorithm.

• Context subspace. A context subspace C is a subspace
of the entire context space Θ, i.e. C ⊆ Θ. In this
paper, we will consider only context subspaces that are
created by uniformly partitioning the context space on
each dimension, which is enough to guarantee sublinear
learning regrets. Thus, each context subspace is a D-
dimensional hypercube with side length being 2−l for
some l. We call such a hypercube a level-l subspace. For
example, when the entire context space is [0, 1], namely
the context dimension is D = 1, the entire context space
is a level-0 subspace, [0, 1/2) and [1/2, 1] are two level-
1 subspaces, [0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1] are
four level-2 subspaces etc.

• Context space partition. A context space partition P is
a set of non-overlapping context subspaces that cover the
entire context space. For example, when D = 1, {[0, 1]},
{[0, 1/2), [1/2, 3/4), [3/4, 1]} are two context space par-
titions. Since our algorithm will adaptively partition the
context space by adaptively removing subspaces from the
partition and adding new subspaces into the partition, the
context space partition is time-varying depending on the
context arrival process of the traffic requests. Initially, the
context space partition includes only the entire context
space, i.e. P0 = {Θ}.

• Active context subspace. A context subspace C is active
if it is in the current context space partition Pt, at time t.
For each active context subspace C ∈ Pt, the algorithm
maintains the sample mean reward estimates r̄tf (C) for
each for the predictor for the context arrivals to this
subspace. For each active subspace C ∈ Pt, the algorithm
also maintains a counter M t

C that records the number of
context arrivals to C.

The algorithm works as follows (See Algorithm 1). We will
describe the algorithm in two parts. The first part (line 3 - 8)
is the predictor selection and reward estimates update. When
a traffic prediction request comes, the current and past traffic
speed vector xt along with the traffic context information θt

are sent to the system. The algorithm first checks to which
active subspace Ct ∈ Pt in the current partition Pt the context
θt belongs (line 3). Next, the algorithm activates all predictors
and obtains their predictions f(xt),∀f ∈ F given the input
xt (line 4). However, it selects only one of the prediction as
the final prediction yt, according to the selection as follows
(line 5)

yt = f̃(xt) where f̃ = argmax
f

r̄tf (C
t) (3)

In words, the selected base predictor has the highest reward
estimate for the context subspace Ct among all predictors.
This is an intuitive selection based on the sample mean
rewards. Next the counter M t

C steps by 1 since we have one
more sample in C. When the true traffic pattern ŷt is revealed
(line 6), the sample mean reward estimates for all predictors
are then updated (line 7-8).

2t plCM A≥Current context space partition
Current context subspace

New context space partition
Old subspace removed;New subspaces added

time location
�

�
Fig. 3. An illustration of the context space partitioning in a 2-dimensional
space: the lower left subspace is further partitioned into 4 smaller subspaces
because the partition condition is satisfied.

The second part of the algorithm, namely the adaptive
context space partitioning, is the key of our algorithm (line
9 - 11). At the end of each slot t, the algorithm decides
whether to further partition the current subspace Ct, depending
on whether we have seen sufficiently many request arrivals
in Ct. More specifically, if M t

C ≥ A2lp, then Ct will be
further partitioned (line 9), where l is the subspace level of
Ct, A > 0 and p > 0 are two design parameters. When
partitioning is needed, Ct is uniformly partitioned into 2D

smaller hypercubes (each hypercube is a level-l+ 1 subspace
with side-length half of that of Ct). Then Ct is removed from
the active context subspace set P and the new subspaces are
added into P (line 11). In this way, P is still a partition whose
subspaces are non-overlapping and cover the entire context
space. Figure 3 provides an illustrative example of the context
space partitioning for a 2-dimensional context space. The
current context space partition Pt is shown in the left plot and
the current subspace Ct is the shaded bottom left square. When
the partitioning condition is satisfied, Ct is further split into
four smaller squares. Intuitively, the context space partitioning
process can help refine the learning in smaller subspaces. In
the next subsection, we will show that by carefully choosing
the design parameters A and p, we can achieve sublinear
learning regret in time, which implies that the optimal time-
average prediction performance can be achieved.

B. Learning regret analysis

In this subsection, we analyze the regret of the proposed
traffic prediction algorithm. To enable this analysis, we make a
technical assumption that each base predictor achieves similar
expected rewards (accuracies) for similar contexts; this is
formalized in terms of a Hölder condition.

Assumption. For each f ∈ F , there exists L > 0, α > 0 such
that for all θ, θ′ ∈ Θ, we have

|πf (θ)− πf (θ
′)| ≤ L∥θ − θ′∥α (4)

This is a natural and reasonable assumption in traffic pre-
diction problems since similar contexts would lead to similar
impact on the prediction outcomes. Note that L is not required
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Algorithm Context-aware Traffic Prediction (CA-Traffic)
1: Initialize P0 = {Θ}, r̄f (Θ) = 0, ∀f ∈ F , M0

Θ = 0.
2: for each traffic prediction request (time slot t) do
3: Determine Ct ∈ Pt such that θt ∈ Ct.
4: Generate the predictions results for all predictors

f(xt),∀f .
5: Select the final prediction yt = f∗(xt) according to

(18).
6: The true traffic pattern ŷt is revealed.
7: Update the sample mean reward r̄f (C

t), ∀f .
8: M t

C = M t
C + 1.

9: if M t
C ≥ A2pl then

10: Ct is further partitioned.
11: end if
12: end for

to be known and that an unknown α can be estimated online
using the sample mean estimates of accuracies for similar
contexts, and our proposed algorithm can be modified to
include the estimation of α.

To facilitate the analysis, we artificially create two learning
steps in the algorithm: for each traffic prediction request at
time t, it belongs to either a virtual exploration step of a virtual
exploitation step. We introduce a control function ζ(t) with the
form ζ(t) = 22αl log(t) that controls which virtual step a time
slot t belongs to, where l is the level of the current active
subspace Ct. Specifically, it depends on the counter M t

C of
the current active context subspace. If M t

C ≤ ζ(t), then it is a
virtual exploration step; otherwise, it is a virtual exploitation
step. Note that these steps are not part of the algorithm, they
are solely used for the regret analysis.

Next, we introduce some notations here for the regret anal-
ysis. Let Etf,C be the set of rewards collected from choosing
predictor f by time t for subspace C. For each subspace
C let f∗

C be the predictor which is optimal for the center
context in that subspace. Let π̄f,C := supθ∈C πf (θ) and
πf,C := infθ∈C πf (θ). For a level-l subspace C, we defined
the set of suboptimal predictor as

SC,l,B := {f : πf∗
C ,C − π̄f,C > B2−αl} (5)

where l is the level of subspace C, B > 0 is a constant, L
and α are the Hölder condition parameters. We also define

βa :=
∞∑
t=1

1/ta.

The prediction regret can be written as a sum of three terms:

Reg(T ) = Rege(T ) +Regs(T ) +Regn(T ) (6)

where Rege(T ) is the regret due to virtual exploration steps
by time T , Regs(T ) is the regret due to sub-optimal predictor
selection in the virtual exploitation steps by time T and
Regn(T ) is the regret due to near-optimal predictor selection
in the virtual exploitation steps by time T . We will bound
these three terms separately to obtain the complete regret.

The first lemma gives an upper bound on the highest level
of the active subspace at any time t.

Lemma 1. Any active subspace C ∈ Pt has a level at most
⌈log(t)/p⌉+ 1.

The next lemmas bound the regrets for any subspace of level
l.

Lemma 2. For any level-l subspace the regret due to virtual
explorations by time t is bounded above by 22αl log(t) + 1.

Proof. The result follows from the fact that the number of
exploration slots for contexts arriving to context subspace C
by time T is upper bounded by 22αl log T + 1.

Lemma 3. For any level-l subspace, given that
2L(
√
D/2l)α + (2 − B)2−αl ≤ 0, the regret due to

choosing a sub-optimal predictor in the exploitation slots is
bounded above by 2Kβ2.

Proof. We will bound the probability that the algorithm fol-
lows a suboptimal predictor in the virtual exploitation slots in
a context subspace C with level l. Thus, using this we will
bound the expected number of times a sub-optimal predictor is
selected by the algorithm in the virtual exploitation slots in C.
Let λt

f,C be the event that a sub-optimal predictor f ∈ SC is
selected at time t. Let γt

C be the event that the request arrival
to C belongs to a exploitation slot. We have

Rs,C(T ) ≤
T∑

t=1

∑
f∈SC

P (λt
f,C , γ

t
C) (7)

For some Ht > 0, we have

P (λt
f,C , γ

t
C) ≤ P (r̄tf (C) ≥ r̄tf∗(C), γt

C)

≤ P (r̄tf (C) ≥ π̄t
f (C) +Ht, γ

t
C)

+P (r̄tf∗(C) ≤ πt
f∗(C)−Ht, γ

t
C)

+P (r̄tf (C) ≥ r̄tf∗(C),

r̄tf (C) < π̄t
f (C) +Ht,

r̄tf∗(C) > πt
f∗(C)−Ht, γ

t
C)

(8)

and for a sub-optimal predictor f ∈ SC ,

P (r̄tf (C) ≥ r̄tf∗(C), r̄tf (C) < π̄t
f (C) +Ht,

r̄tf∗(C) > πt
f∗(C)−Ht, γ

t
C)

≤ P (r̄t,bestf (C) ≥ r̄t,worst
f∗ (C),

r̄t,bestf (C) < π̄t
f (C) + L(

√
D/2−l)α +Ht,

r̄t,worst
f∗ (C) > πt

f∗(C)− L(
√
D/2−l)α −Ht, γ

t
C)

(9)
For f ∈ SC , when

2L(
√
D/2l)α + 2Ht −B2−αl ≤ 0 (10)

we have (9) equal to zeros. Let Ht = 2−αl. Assume that (10)
holds. Using a Chernoff-Hoeffding bound, for any f ∈ SC ,
since on the event γt

C , the number of samples is greater than
22αl log t, we have

P (r̄tf (C) ≥ π̄t
f (C) +Ht, γ

t
C) ≤ e−2(Ht)

222αl log t =
1

t2
(11)

and similarly,

P (r̄tf∗(C) ≤ 1

t2
(12)

Hence, when (10) holds, summing over time and the sub-
optimal predictors, we get Rs,C(T ) ≤ 2Kβ2.
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Lemma 4. For any level-l subspace, the regret due to selecting
a near-optimal predictor in the virtual exploitation slots is
bounded above by AB2l(p−α).

Proof. If a near optimal predictor is selected for a level l
subspace C, then the one-slot contribution to the regret is at
most B2−αl. We multiply this by A2pl, which is the maximum
number of slots that C can stay active.

Next, we combine the results from the previous lemmas
to obtain our regret bound. Denote Wl(T ) be the number of
level-l subspaces that are activated by time T , we know that
Wl(T ) ≤ 2Dl for any l and T . Moreover, from the result of
Lemma 1, we know that Wl(T ) = 0 for l > ⌈log(t)/p⌉+ 1.

Theorem 1. The regret is upper bounded by

Reg(T ) ≤
⌈log(T )/(3α)⌉+1∑

l=1

Wl(T )(2
2αl(2LDα/2 + 2 + log(T )) + 2Kβ2)

(13)

Proof. Consider a subspace C, the highest order of regret
comes from Rege,C(T ) and Regn,C(T ). The former is on the
order of O(22αl) and the latter is on the order of O(2l(p−α)).
These two are balanced for p = 3α. Although choosing p
smaller than 3α will not make the regret in C larger, it will
increase the number of subspaces activated by time T , causing
an increase in the regret. Since we sum over all activated
hypercubes, it is best to choose p as large as possible. In
order for the condition in Lemma 3 to hold, B needs to satisfy
B ≥ 2(LDα/2 +1). Choosing B = 2(LDα/2 +1) minimizes
Regn,C(T ).

The following corollary establishes the regret bound when
the context arrivals are uniformly distributed over the context
space. For example, if the context is the location, then the
requests come uniformly from the area. This is the worst-case
scenario because the algorithm has to learn over the entire
context space.

Corollary 1. If the context arrival by time T is uniformly
distributed over the context space, we have

Reg(T ) ≤T
D+2α
D+3α 2(D+2α)l(2LDα/2 + 2 + log(T )) (14)

+ T
D

D+3α 2Dl2Kβ2 (15)

Proof. First we calculate the highest level when context ar-
rivals are uniform. In the worst case, all level l subspaces
will stay active and then, they are deactivate till all level l+1
subspaces become active and so on. Let lmax be the maximum
level subspace under this scenario. We have

lmax−1∑
l=1

2Dl23αl < T (16)

Thus, we must have lmax < 1 + log T/(D + 3α). Therefore,

Reg(T )

≤
1+log T/(D+3α)∑

l=1

2Dl(22αl(2LDα/2 + 2 + log(T )) + 2Kβ2)

≤ T
D+2α
D+3α 2(D+2α)l(2LDα/2 + 2 + log(T ))

+T
D

D+3α 2Dl2Kβ2

(17)

We have shown that the regret upper bound is sublinear
in time, implying that the average traffic prediction rewards
(e.g. accuracy) achieves the optimal reward as time goes to
infinity. Moreover, it also provides performance bounds for
any finite time T rather than the asymptotic result. Ensuring a
fast convergence rate is important for the algorithm to quickly
adapt to the dynamically changing environment.

V. EXTENSIONS

A. Dimension reduction

In the previous section, the context space partitioning is
performed on all context dimensions simultaneously. In par-
ticular, each context subspace C has dimension D and each
time it is further partitioned, 2D new subspaces are added
into the context space partition P . Thus, learning can be very
slow when D is large since many traffic requests are required
to learn the best predictors for all these subspaces. One
way to reduce the number of new subspaces created during
the partitioning process is to maintain the context partition
and subspaces and perform the partition for each dimension
separately. In this way, each time a partitioning is needed for
one dimension, only two new subspaces will be created for
this dimension. Therefore, at most 2D more subspaces will
be created for each request arrival. Note, however, that most
of the time a partitioning is not needed.

The modified algorithm works as follows. For each context
dimension (e.g. time, type and distance), we maintain a similar
context space and partition structure as in Section III (in
other words the context space dimension is 1 but we have
D such spaces). Denote Pt

d as the context space partition
for dimension d and Ct

d as the current context subspace for
dimension d, at time t. Note now that since we consider only
one dimension, Ct

d is a one-dimensional subspace for each d.
Each time a traffic instant xt with context θt arrives, we obtain
the prediction results of all base predictors given xt. The final
prediction yt is selected according to a different rule than (18)
as follows

yt = f̃(xt) where f̃ = argmax
f
{max

d
r̄tf (C

t
d)} (18)

In words, the algorithm selects the predictor that has the
highest reward estimate for all current subspace among all
context dimensions. Figure 4 shows an illustrative example for
the predictor selection when we only use the time and location
as the contexts. In this example, the time context (10:05am)
falls into the subspace at the most left quarter (7am - 11pm)
and the location context (3.7 miles away from a reference
location) falls into the right half subspace (2.5 - 5 miles).
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22 2pltC AM ≥
Time context

Location context Partition on location context only 11 2pltC AM <10:05am3.7 miles away
Fig. 5. An illustrative example for context space partition with relevant
context: partitioning only occurs on the location context since the partitioning
condition is satisfied.

According to the time context dimension, the predictor with
the highest reward estimate is Predictor 1 while according to
the location context dimension, the predictor with the highest
reward estimate is Predictor 2. Overall, the best estimated
predictor is Predictor 2, which is selected by the algorithm.

After the true traffic ŷt is observed, the reward estimates
for all predictors in all D one-dimensional context subspace
Ct

d,∀d are updated. The D partitions Pt
d,∀d are also updated

in a similar way as before depending on whether there have
been sufficiently many traffic requests with contexts in the
current subspaces. Figure 5 illustrates the context space parti-
tion for each individual dimension. In this example, only the
location context satisfies the partitioning condition and hence
its right half subspace is further partitioned.

B. Relevant context dimension

While using all context dimensions is supposed to provide
the most refined information and thus leads to the best perfor-
mance, it is equally important to investigate which dimension
or set of dimensions is the most informative for a specific
traffic situation. The benefits of revealing the most relevant
context dimension (or set of dimensions) are manyfold, in-
cluding reduced cost due to context information retrieval and
transmission, reduced algorithmic and computation complexity
and targeted active traffic control. In the extreme case, a
context dimension (e.g. the time) is not informative at all if for
all values of the context along this dimension, the best traffic
predictor is the same. Hence, having this context dimension
does not add benefits for the traffic prediction but only incurs
additional cost.

For the expositional clarify, in the following we will focus
only on the most relevant context. The extension to the k most
relevant context dimensions (∀k < D) is straightforward. Let
πf (θd) be the expected prediction reward of predictor f ∈ F
when the context along the d-th dimension is θd and f∗(θd) =
argmaxf πf (θd) be the predictor with the highest expected
reward given θd. Then the expected reward if we only use d-
th dimension context information is Rd = Eθd{πf∗(θd)(θd)}
where the expectation is taken over the distribution of the d-
th dimension context. The most relevant context dimension is
defined to be d∗ = argmaxd Rd.

Our framework can be easily extended to determine the most
relevant context dimension. For each dimension, we maintain
the similar partition and subspace structure as in Section III

(with D = 1). In addition, we maintain the time-average pre-
diction reward R̄t

d for each dimension d. The estimated most
relevant dimension at time t is thus (d∗)t = argmaxd R̄

t
d.

Theorem 2. The estimated most relevant dimension converges
to the true most relevant dimension, i.e. lim

t→∞
(d∗)t = d∗.

Proof. Since for each dimension d, the time-average regret
tends to 0 as t→∞, the time-average reward also R̄t

d → Rd

as t → ∞. Therefore, the most relevant dimension can also
be revealed when t→∞.

C. Missing and delayed feedback

The proposed algorithm requires the knowledge of the true
label ŷt on the predicted traffic to update reward estimates
of different predictors so that their true performance can be
learned. In practice, the feedback about true traffic label ŷt

can be missing or delayed due to, for example, delayed traffic
reports and temporary sensor down. In this subsection, we can
make small modifications to the proposed algorithm to deal
with such scenarios.

Consider the case when the feedback is missing with
probability pm. The algorithm is modified so that it updates the
sample mean reward and performs context space partitioning
only for requests in which the true label is revealed. Let
Regm(T ) denote the regret of the modified algorithm with
missing feedback, we have the following result.

Proposition 1. Suppose the feedback about the true label is
missing with probability pm, we have

Regm(T )

≤
⌈log(T )/(3α)⌉+1∑

l=1

Wl(T )(2
2αl(2LDα/2 + 2

+ 1
1−pm

log(T )) + 2Kβ2)

(19)

Proof. Missing labels cause more virtual exploration slots to
learn the performance of base predictors accurately enough.
In expectation, 1

1−pm
− 1 more virtual exploration slots are

required in ratio. Hence, the regret due to virtual exploration
increases to 1

1−pm
of before. The regret due to virtual exploita-

tion slots is not affected since the the control function ζ(t)
ensures the reward estimates are accurate enough. Using the
original regret bound and taking into account the increased
regret due to virtual exploration, we obtain the new regret
bound.

Consider the case when the feedback is delayed. We assume
that the true label of the request at t is observed at most Lmax

slots later. The algorithm is modified so that it keeps in its
memory the last Lmax labels and the reward estimates are
updated whenever the corresponding true label is revealed.
Let Regd(T ) denote the regret of the modified algorithm with
delayed feedback. We then have the following result

Proposition 2. Suppose the feedback about the true label is
delayed by at most Lmax slots, then we have

Regd(T ) ≤ Lmax +Reg(T ) (20)

Proof. A new sample is added to sample mean accuracy
whenever the true label of a precious prediction arrives. The
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Time contextLocation context
1 21 2

Predictor 1 has the highest reward estimate for the time context
Predictor 2 has the highest reward estimate for the location context2 Predictor 2 has the highest reward estimate overall10:05am 3.7miles away

Fig. 4. An illustrative example for predictor selection with separately maintained context partition: a request with context (10:05am and 3.7 miles away from
reference location) arrives; Predictor 1 is the best for the time context and Predictor 2 is the best for the location context; Predictor 2 is the finally selected
predictor

worst case is when all labels are delayed by Lmax time steps.
This is equivalent to starting the algorithm with an Lmax

delay.

The above two propositions show that the missing and
delayed labels reduce the learning speed. However, since the
regret bounds are still sublinear in time T , the time average
reward converges to the optimal reward as T → ∞. This
shows that our algorithm is robust to errors caused by uncertain
traffic conditions.

VI. EXPERIMENTS

A. Experimental setup

1) Dataset: Our experiment utilizes a very large real-world
traffic dataset, which includes both real-time and historically
archived data since 2010. The dataset consists of two parts:
(i) Traffic sensor data from 9300 traffic loop-detectors located
on the highways and arterial streets of Los Angeles County
(covering 5400 miles cumulatively). Several main traffic pa-
rameters such as occupancy, volume and speed are collected in
this dataset at the rate of 1 reading per sensor per minute; (ii)
Traffic incidents data. This dataset contains the traffic incident
information in the same area as in the traffic sensor dataset. On
average, 400 incidents occur per day and the dataset includes
detailed information of each incident, including the severity
and location information of the incident as well as the incident
type etc.

2) Evaluation Method: The proposed method is suitable
for any spatiotemporal traffic prediction problem. In our
experiments, the prediction requests come from a freeway
segment of 3.4 miles on interstate freeway 405 (I-405) during
daytime 8am to 17pm. Figure 6 shows the freeway segment
used in the experiment. Locations will be referred using the
distance from the reference location A. For each request from
location lo, the system aims to predict whether the traffic will
be congested at lo in the next 15 minutes using the current
traffic speed data. If the traffic speed drops below a threshold
λ, then the location is labeled as congested, denoted by ŷ = 1;

A

B

Fig. 6. Freeway segment used in the experiment.

otherwise, the location is labeled as not congested, denoted
by ŷ = −1. We will show the results for different values of
λ. We use the simple binary reward function for evaluation.
That is, the system obtains a reward of 1 if the prediction is
correct and 0 otherwise. Therefore, the reward represents the
prediction accuracy. The context information that we use in
the experiments include the time when the prediction request
is made and the location where the request comes from. These
contexts capture the spatiotemporal feature of the considered
problem. Nevertheless, other context information mentioned
in Section III(A) can also be adopted in our algorithm.

Using historical data, we construct 6 base predictors (Naive
Bayes) for 6 representative situations with context information
from the set [8am, 12pm, 16pm] × [0mile, 3.4miles]. These
are representative traffic situations since 8am represents the
morning rush hour, 12pm represents non-rush hour, 16pm
represents the afternoon rush hour, “0 mile” is at the freeway
intersection and “3.4 miles” is the farthest location away from
the intersection in considered freeway segment.
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CA-Traffic MU AU GDU
λ = 50mph 0.94 0.83 0.83 0.82
λ = 30mph 0.91 0.82 0.80 0.78

TABLE I
OVERALL PREDICTION ACCURACY.

3) Benchmarks: Since our scheme appertains to the class
of online ensemble learning techniques, we will compare our
scheme against several such approaches. These benchmark
solutions assign weights to base predictors but use different
rules to update the weights. Denote the weight for base
predictor f by wf . The final traffic prediction depends on the
weighted combination of the predictions of the base predictors:

y =

{
+1, if

∑
f∈F

wfyf ≥ 0

−1, otherwise
(21)

Three approaches are used to update the weights:
• Multiplicative Update (MU) [18] [19]: If the prediction

is correct for predictor f , i.e. yf = ŷ, then wf ← αwf

where α > 1 is a constant; otherwise, wf ← wf/α.
• Additive Update (AU) [21]: If the prediction is correct for

predictor f , i.e. yf = ŷ, then wf ← wf + 1; otherwise,
wf ← wf .

• Gradient Descent Update (GDU) [22]: The weight of
predictor f is update as wf ← (1−β)wf−2β(wfyf−ŷ)ŷ
where β ∈ (0, 1) is a constant.

B. Prediction accuracies

In Table I, we report the prediction accuracies of our
proposed algorithm (CA-Traffic) and the benchmark solutions
for λ = 50mph and λ = 30mph. Our algorithm outperforms
the benchmark solutions by more than 10% in terms of
prediction accuracy. Note that this is a huge improvement
since a random guessing can already achieve 50% accuracy
and thus, the improvement cannot be more than 50%.

Table II and III further report the prediction accuracies in
different traffic situations. In Table II, the location context
is fixed at 0.8 miles from the reference location and the
accuracies for various time contexts (i.e. 10am, 2pm and 5pm)
are presented for our proposed algorithm and the benchmarks.
In Table III, the time context is fixed at 10am and the
accuracies for various location contexts (i.e. 0.8 miles, 2.1
miles, 3.1 miles) are reported. In all traffic situations, the
proposed algorithm significantly outperforms the benchmark
solutions since it is able to match specific traffic situations to
the best predictors.

C. Convergence of learning

Since our algorithm is an online algorithm, it is also impor-
tant to investigate its convergence rate. Figure 7 and 8 illustrate
the prediction accuracies of our proposed algorithm over time,
where the horizontal axis is the number of requests. As we can
see, the proposed algorithm converges fast, requiring only a
couple of hundreds of traffic prediction requests.

(λ = 50mph) CA-Traffic MU AU GDU
10am 0.93 0.81 0.85 0.83
2pm 0.93 0.86 0.81 0.80
5pm 0.99 0.86 0.87 0.88

(λ = 30mph) CA-Traffic MU AU GDU
10am 0.93 0.83 0.83 0.81
2pm 0.91 0.80 0.83 0.82
5pm 0.99 0.81 0.85 0.83

TABLE II
TRAFFIC PREDICTION ACCURACY AT 0.8 MILES.

(λ = 50mph) CA-Traffic MU AU GDU
0.8 mile 0.92 0.84 0.83 0.82
2.1 mile 0.96 0.81 0.85 0.85
3.1 mile 0.93 0.85 0.83 0.81

(λ = 30mph) CA-Traffic MU AU GDU
0.8 mile 0.92 0.81 0.83 0.82
2.1 mile 0.93 0.83 0.82 0.81
3.1 mile 0.94 0.81 0.82 0.82

TABLE III
TRAFFIC PREDICTION ACCURACY AT 10AM

D. Missing context information

The context information associated with the requests may be
missing occasionally due to, for example, missing reports and
record mistakes. However, our modified algorithm (described
in Section V(A)), denoted by CA-Traffic(R), can easily handle
these scenarios. In this set of experiments, we show the
performance of the modified algorithm for the extreme cases
in which one type of context information is always missing.
Table IV reports the accuracies of our algorithms (CA-Traffic
and CA-Traffic(R)) as well as the benchmarks. Although CA-
Traffic(R) performs slightly worse than CA-Traffic when there
is no missing context, it performs much better than CA-
Traffic and the benchmark solutions when context can be
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Fig. 7. Accuracy over time with different time contexts at 0.8 miles. (λ =
50mph)
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Fig. 8. Accuracy over time with different location contexts at 10am. (λ =
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Fig. 9. Relative importance of contexts.

missing because it maintains the context partition separately
for each context type and hence, it is robust to missing context
information.

E. Relevant context

In this set of experiments, we unravel the most relevant
context that leads to the best prediction performance. To
do so, we run the algorithm using only a single context
(i.e. either time or location) and records the average reward.
The most relevant context is the one leading to the highest
average reward. Figure 9 shows the the relative importance
(e.g. Reward(time)/(Reward(time)+Reward(location)))
of each context for different congestion threshold λ =
20mph, 30mph, 50mph. The result indicates that time is the
more important context for the traffic prediction problem in
our experiment.

F. Missing and delayed labels

Finally, we investigate the impact of missing and delayed
labels on the prediction accuracy, as shown in Figure 10 and
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Fig. 10. Prediction accuracy with missing and delayed labels. λ = 50mph.
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Fig. 11. Prediction accuracy with missing and delayed labels. λ = 30mph.

11. In the missing label case, the system observes the true
traffic label with probability 0.8. In the delayed label case, the
true label of the traffic comes at most five prediction requests
later. In both cases, the prediction accuracy is lower than that
without missing or delayed labels. However, the proposed
algorithm is still able to achieve very high accuracy which
exceeds 90%.

VII. CONCLUSIONS

In this paper, we proposed a framework for online traffic
prediction, which discovers online the contextual specializa-
tion of predictors to create a strong hybrid predictor from
several weak predictors. The proposed framework matches
the real-time traffic situation to the most effective predictor
constructed using historical data, thereby self-adapting to the
dynamically changing traffic situations. We systematically
proved both short-term and long-term performance guarantees
for our algorithm, which provide not only the assurance that
our algorithm will converge over time to the optimal hybrid
predictor for each possible traffic situation but also provide a
bound for the speed of convergence to the optimal predictor.
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(λ = 50mph) CA-Traffic CA-Traffic(R) MU AU GDU
time&distance 0.94 0.89 0.83 0.83 0.82

time 0.78 0.92 0.76 0.76 0.78
distance 0.72 0.88 0.79 0.77 0.78

(λ = 30mph) CA-Traffic CA-Traffic(R) MU AU GDU
time&distance 0.91 0.80 0.81 0.83 0.78

time 0.76 0.86 0.70 0.72 0.75
distance 0.75 0.89 0.72 0.71 0.74

TABLE IV
TRAFFIC PREDICTION ACCURACY WITH INCOMPLETE CONTEXT INFORMATION.

Our experiments on real-world dataset verified the efficacy of
the proposed scheme and show that it significantly outperforms
existing online learning approaches for traffic prediction. As
a future work, we plan to extend the current framework
to distributed scenarios where traffic data is gathered by
distributed entities and thus, coordination among distributed
entities are required to achieve a global traffic prediction goal
[31] [32] [33].
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