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Abstract—Free-riding represents a key challenge to the proliferation of today’s peer-to-peer (P2P) networks, since 

there is no deterrent in the system that prevents peers which are not contributing their resources to utilize the 

resources produced by other peers. Overcoming the free-riding problem is particularly difficult because of the 

unique challenges that P2P networks put forward: asymmetric interests of peers, large population of peers 

interacting infrequently, peers dynamically joining and leaving the network, network errors, and low-cost identity 

whitewashing. Incentive protocols play a crucial role in overcoming the free-riding problem. In this paper, we build 

an analytical framework for the design and analysis of a new family of incentive protocols that is based on indirect 

reciprocity and utilizes the idea of social norms, which has been shown to be successful in shaping group behaviors 

in societies with large population. Under this framework, we formally analyze how the unique features of P2P 

networks as well as the peer's foresightedness impact the robustness of protocols. We are able to prove that if peers 

are foresighted to consider the impact of their current actions on their future utilities, our protocols can sustain 

subgame perfect equilibria in the network from which no peer has incentives to deviate since it cannot gain a higher 

utility by unilaterally changing its sharing strategy. Hence, we prove that it becomes in the self-interest of peers to 

contribute their resources to the P2P system rather than free-ride. Subsequently, we formalize the problem of 

finding the optimal protocols that maximize the network performance among the achievable subgame perfect 

equilibria. The structure of the optimal protocols is studied and an efficient searching algorithm to obtain a near-

optimal protocol is proposed. We prove that the family of protocols based on social norms can induce self-interested 

peers to achieve a desirable level of cooperation in the network which is close to Pareto efficiency. 

Keywords- Peer-to-Peer incentive protocols, Social Norm, Reputation Scheme, Subgame Perfect Equilibrium. 

I.  INTRODUCTION 
Peer-to-Peer (P2P) networks have introduced a new distributed paradigm in resource sharing. By 

pooling together the resources of many autonomous devices, P2P networks are able to provide a scalable 

and low-cost platform for distributed computing, storage, routing, and file sharing [7][14][27][31]. While 

P2P networks have many advantages such as scalability, resilience, and effectiveness in coping with 

network dynamics and peer heterogeneity [22], they are vulnerable to intrinsic incentive problems since 

the upload service incurs costs to both the uploader and the downloader, but benefits only the downloader. 

As contributing their content does not directly benefit uploaders, peers tend to avoid uploading while 

trying to download content from other peers, a behavior commonly known as free-riding. Empirical 

studies with P2P file sharing systems like Gnutella [1], Napster [27], and KaZaA [14] confirm the 

concern that free-riding is prevailing and resource owners are not altruistic [1][21][31][32]. For example, 
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70% of all peers in Gnutella do not share files, and 50% of all requests are satisfied by the top 1% sharing 

hosts [1].  

Such studies demonstrate that designing a correct and robust incentive protocol to encourage 

cooperation and mitigate the free-rider problem is crucial to maintain the performance of P2P networks. 

To achieve this goal, a large body of research was dedicated to this area [3][6][11][33]. Many of these 

existing mechanisms rely on game-theoretical approaches and can be classified into two categories: 

pricing and reciprocity [23].  

Pricing mechanisms rely on implementing a currency-based system that is resistant to forgery and 

double-spending [2][10][35]. Peers are incentivized by the reward with virtual currency for uploading and 

the charge for downloading. However, they are regarded as impractical because they require an 

accounting infrastructure to track the transactions of peers [3], which further necessitates a public key 

infrastructure, a web of trust, or threshold cryptography techniques [19]. Furthermore, these systems 

usually make use of auction for price setting, which might slow their convergence. 

The principle of reciprocity states that peers need to contribute their resources such as data and 

bandwidth to accomplish their tasks in order to receive in return such resources from others. Differential 

service schemes are deployed in reciprocity-based protocols to determine how peers should make their 

upload decisions: a peer with a higher rating receives more resources than a peer with a lower rating 

[4][28][29]. Since a peer with a high rating is treated preferentially by other peers, incentives are provided 

for peers to cooperate in order to build up high ratings. Depending on how a peer’s rating is generated, 

reciprocity-based protocols can be classified into two types: direct reciprocity and indirect reciprocity. 

In direct reciprocity, each peer rates a specific peer individually [3][5]. Hence the interaction between 

two peers is only influenced by past interactions between them. Though easy to implement, direct 

reciprocity requires frequent interactions between two peers in order to establish accurate mutual ratings, 

which is restricted by the typical high churn rate in P2P networks. For example, the investigation in [1] 

shows that over 70% P2P traffic take place in networks with more than 1000 peers, which implies that a 

peer normally interacts with a stranger (i.e. with whom it was randomly matched) about whom it has no 

prior history and has no expectation to meet again in the future. Hence, protocols based on direct 

reciprocity such as tit-for-tat perform well only for networks dominated by long-lived relationships, 

where peers have ample opportunities to mutually reciprocate. 

Due to the random matching feature in large P2P networks, indirect reciprocity becomes a more 

appropriate mechanism in designing incentive protocols. Most protocols based on indirect reciprocity use 

reputation mechanisms [8][15][30]. A peer is globally rated with a reputation calculated by its past 

behaviors in the network. In order to make a decision, a peer does not need to know the entire action 

history but the reputation of its opponent. However, the majority of existing works on P2P reputation 
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mechanisms are concerned with system design issues and focus on effective information gathering 

techniques which only differ in how the global reputation is calculated and propagated, e.g. efficient 

information aggregation [15], secure peer identification [30], etc. An analytical framework that is able to 

study how peers can be incentivized to cooperate in P2P networks and what is the resulting impact on the 

network performance when various reputation mechanisms are deployed, is still missing. 

In this paper, we aim to provide a rigorous framework for studying reputation mechanisms in P2P file-

sharing applications such as Gnutella and BitTorrent, and propose effective indirect reciprocity based 

incentive protocols which can sustain cooperation among peers and achieve optimal performance in the 

network. To formalize the idea of indirect reciprocity, we apply the concept of social norm introduced in 

[18] by Kandori, which consists of a reputation scheme and a social strategy. We model the interactions 

among peers as repeated random-matching games [18], and design an appropriate social norm to punish 

the peers’ deviations from the selected social strategy. The peers determine their upload services to a 

specific peer based on this peers’ reputation, as well as their own status in the P2P system (i.e. their own 

reputations). To sustain the desired level of cooperation among the network peers, the social norm is 

designed such that myopic deviations by a peer for hope of immediate gains result in worse performance 

in the long-term for this peer, as other peers will reduce their future uploads to this peer in response to its 

deviation. 

While analyzing the effectiveness of social norms, we also consider the unique features and constraints 

of P2P networks when designing our framework: 

 Asymmetry of interests. Existing reciprocity protocols [5][37] model in general the stage game 

played between peers as a prisoner’s dilemma, where both parties in the game upload and download 

from their opponents. Our work extends this model by considering the asymmetry of interest for peers 

in the same stage game. In other words, there is a mismatch in the services provided and demanded 

by peers. 

 Network errors. Existing reputation-based mechanisms [8][15][30] assume that peers’ reputations are 

truthfully updated by the reputation scheme. This is an idealized assumption which is hard to realize in 

realistic networks due to various types of network errors, which can be incurred due to error-prone data 

transmission, the peer’s inaccurate knowledge of the network dynamics or other peers’ reputations etc. 

In contrast, our framework explicitly takes into consideration that the reputation update may be subject 

to network errors and considers how protocols can be efficiently designed given various levels of 

network errors. 

 Dynamic population and whitewashers. We also consider dynamic P2P networks where peers can 

leave and join the network freely. Each time a peer joins the network, it is granted a new identity. This 

further brings in the whitewashing problem [8]. 
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Our proposed framework for building P2P protocols based on social norms is able to address the 

following questions: 

 How the network conditions and the designing parameters of protocols affect peers’ incentives? 

 Under what condition subgame perfect equilibria (in which no peer can gain a higher utility by 

unilaterally changing its sharing strategy at any stage of the repeated interaction) exist in the network? 

 When multiple subgame perfect equilibria exist, how to select among them the equilibrium (or 

equilibria) that is able to maximize the network performance and appropriately design the protocol that 

is able to achieve these equilibria? 

The remainder of the paper is organized as follows. In Section II, a rigorous analytical framework is 

proposed to analyze the P2P network. In Section III, conditions for the existence of subgame perfect 

equilibrium are analyzed. Section IV investigates the design of optimal norm-based protocol. Section V 

discusses the optimal whitewashing prevention mechanism. After showing the simulation results with an 

illustrative example in Section VI, we conclude the paper in Section VII. 

II. SYSTEM MODEL 

A. Network assumption 

Without loss of generality, we consider an unstructured P2P file-sharing network such as Bittorrent 

[5][20], Gnutella [1], and KaZaA [14] 1, in which files are uniformly distributed with the distribution 

unrelated to the network topology. We assume that each peer possesses a certain amount of files that are 

shared publicly which can be accessed by the whole network. Peers can exchange entire files or fraction 

of files [5][26]. Trackers maintain and update periodically the file map that records the file possession of 

each peer and is responsible for helping the downloader find the list of peers who have the requested file 

[5]. In general, we assume that peers in the network are self-interested trying to maximize their individual 

utilities, and therefore, they will only upload content if this has a positive impact on their future 

downloads. 

We utilize the widely-used continuum model to characterize the peer population, implying that each 

individual peer is negligible in the network. In practice, the continuum model well approximates the real 

peer population if there is a sufficiently large population in the network [7][8]. The network is modelled 

as a discrete-time system. By dividing time into slots of equal length, the peer population dynamically 

changes across adjacent slots. Specifically, we assume that a percentage a  of the current population 

leaves and the same amount of new peers enters the network at the end of each slot, where a  is referred 

to as the turnover rate [8]. We assume that each peer generate service requests complying with the same 

stationary stochastic process. By selecting the length of a slot small enough, each peer expects to generate 

                                                           
1 The results obtained in this paper can be applied in P2P applications other than file-sharing without any change. 
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one service request on average in each slot [25][37]. 

Once a peer generates a service request, it is randomly matched with a peer from the list provided by 

the tracker. The matching is uniformly random such that all peers in the list have an equal probability to 

be chosen [25][37]. We further assume that the size of the list is also large in the continuum population 

model, which further implies that 1) a peer also serves one download request on average per slot; 2) the 

probability that two peers select the same peer as the server in the same slot is close to 0  and thus, the 

probability that a peer receives multiple download requests in a slot is also 0 . 

B. Stage game 

We model the stage game played by a pair of peers as an asymmetric gift-giving game [13] to 

characterize the asymmetry of interests among peers. To avoid confusion, the peer who requests for 

download service is called a client and the peer who is being requested is called a server. In the stage 

game, only the server is strategic: it determines how to select its actions of contribution or not 

contributing content in order to maximize its utility. The server’s action will not only impact its own 

utility, but also that of its requesting peers, i.e. its clients. Depending on the volume d  of the content 

uploaded from the server to the client, the client receives a benefit of ( )r d  and the server consumes a cost 

of ( )dr . To consider a finite action space of the server, we quantize the volume that a server uploads into 

discrete values [8][36]. Without the loss of generality, we use a binary-level space as the example in our 

paper, i.e. { }0,1d Î  [8][36] 2. When 1d = , the client receives a volume of content that is above its 

minimum requirement and receives a benefit of r , while the server consumes a cost of r ; when 0d = , 

both the client and the server receive a utility of 0. Correspondingly, the server selects its action from a 

binary set, as { },a = C DÎ  , where C  stands for “cooperation” and represents the case when the server 

uploads at least the minimum volume of content requested by the client with 1d = ; whereas D  stands for 

“defection”, which represents the case when the server contributes less than the minimum requested 

content and 0d = . In this paper, we assume r r>  to ensure that the P2P network is socially valuable 3. 

The social welfare of the network is quantified by the social utility U  that is defined as the average 

utility received by all peers in the network. Since r r> , it is obvious that the social utility is optimized 

when all servers choose a C=  in their stage games. Nevertheless a self-interested server who has the 

incentive to free-riding will always choose a D=  if it wants to maximize its stage-game utility 

myopically, which gives rise to an undesirable outcome of zero utilities for both peers in the stage game. 

This phenomenon is widely known as the tragedy of the commons [12]. 

                                                           
2 Our framework can also be applied to the case when d  has multiple levels without changing the analysis. 
3 If r r< , each upload service brings a positive net loss on the total utility of both peers, which makes the file sharing in the network not 

benefitable. 
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C. Repeated game 

In a P2P network, however, the peers interact repeatedly and hence, the peers will play the same stage 

game multiple times. To formalize this, we deploy a general repeated game formulation. To ensure that 

the emerging equilibria of the repeated game is efficient, unlike in the stage game, we deploy the idea of a 

social norm, which is a protocol that encourages the peers to cooperate with each other by threatening 

them with future punishments [9][24].  Since each protocol design is based on a specific social norm, we 

use the two terms of “protocol” and “social norm” interchangeably in the rest of the paper. 

In the repeated game, each peer is tagged with a reputation q  representing its social status. q  is a 

natural number from the finite set { }0,1,2, ,L  . For notational convenience, a peer holding reputation 

q  is referred to as a q- peer. A high reputation relates to a better social status and we also call an 

L-peer as innocent and a q- peer as guilty with Lq < . 

As only the server is strategic in the stage game, we update a peer’s reputation in accordance with its 

behavior when being a server. The reputation should truthfully reflect a peer’s social status, and it is 

maintained and updated in our proposed framework by a trustworthy third-party device - the tracker. At 

the end of each slot, the tracker compares the server’s action reported by the client to the social norm. If 

the action is in accordance to that specified by the social norm, the server will be rewarded with an 

increased reputation; otherwise, if the action is against the social norm, the server will be punished by a 

decreasing reputation. In practical networks, the report is usually a binary value and subject to a small 

error probability e  of being reverted. Here e  is referred to as the reputation update error. 

A social norm k  is composed of a social strategy s  and a reputation scheme t . s  is a reputation-

based behavioral strategy. It specifies the correct action a server should play depending on the reputation 

of the client as well as its own reputation. “Correctness” here indicates that the action is appreciated by 

the social norm and the server will be rewarded by an increased reputation when playing it. 

Mathematically, s  can be represented by a mapping :s ´    , where the first   represents the 

server’s reputation, the second   represents the client’s reputation, and   represents the server’s action. 

It should be noted that the peer’s sharing strategy implemented in the existing reputation mechanisms 

[15][30] are special cases of the social strategy proposed here, as they determine the server’s action 

simply based upon the client’s reputation. t  serves as the reward and punishment system in the social 

norm and it specifies mathematically how a peer’s reputation is updated according to its behavior. 

Specifically, t  maps the server-client pair’s reputations and the server’s action to the server’s new 

reputation: :t ´ ´    4. 

Essentially, if cooperative behavior is encouraged in s  and is distinguished by sufficiently large 

                                                           
4 Here what t  uses in reputation update is actually the client’s assessment instead of the server’s real action, which is subject to the reputation 

update error.  
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reward and punishment in t , it can be enforced among peers. The working procedure of t  in this paper 

can be briefly specified as follows: 

(1) If a peer always plays with s , t  classifies it as an innocent peer and assigns to it a reputation L , i.e.  

 ( )( ), , , ,  L L Lt q s q q= " Î     (1) 

(2) Once a peer deviates from s  by play actions against it, t  will then give it a reputation 0  and start an 

L- slot punishment on it for breaking the social norm, i.e. 

 ( ) ( ), , 0,  ,   ,a and at q q q q s q q= " Î ¹    (2) 

(3) During the punishment phase, the guilty peer has to follow the social strategy in its services to 

improve its reputation, we assume that by the peer’s reputation is increased with one point by 

following the social strategy once,  i.e. 

 ( )( ), , , 1,  0   L andt q q s q q q q q= + " £ < " Î    . (3) 

Therefore, L  is also referred to as the punishment length. t ’s rules are in accordance to the social 

reality that a peer with a better social status faces larger threat of punishment by breaking the social 

norm and thus has less incentive to do so. In summary, t  can be written as follows 

 ( )
( )
( )
( )

        ,   

, , 1   ,   

0        ,

L if a and L

a if a and L

if a

s q q q

t q q q s q q q

s q q

ìï = =ïïïïï= + = <íïïïï ¹ïïî



 



. (4) 

We also assign a new peer who just enters the network at the beginning of a slot a constant initial 

reputation K Î . The selection of K  is discussed in Section V in the aim of preventing whitewashing. 

We assume K L=  in all the other sections without the loss of generality. A schematic representation of a 

social norm is provided in Figure 1 

D. Utility function 

A peer’s long-term utility depends on the probabilities of meeting peers with certain reputations in the 

future. The fraction of the total population with a reputation q  is denoted as ( )h q . Since we assume that 

the list of servers provided by the tracker is large, we use the approximation that the reputation 

distribution of the list is the same as that of the total population. Since in one slot, each peer receives one 

service request on average, its reputation is also updated once correspondingly. As a result, the peer 

reputation distribution ( ){ }h q  in the network evolves over time. When all peers following the social 

strategy, the evolution of ( ){ }h q  across slots can be characterized by the following iterative equations, 

where t  is the index of time slots. 
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( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

1

1

1

1

1 1 1 1 1

1 1 1 ,  1 1 and 

1 1 1

0 1

t t t

t t

t t

t

L L L

L K

K K

h a e h a e h

h q a e h q q q

h a e h a

h a e

+

+

+

+

= - - + - - -

= - - - £ £ - ¹

= - - - +

= -

. (5) 

With the dynamical update of ( ){ }h q , the stage-game utility as well as the long-term utility of a peer 

also changes over time. To simplify our analysis, we focus on the stationary reputation distribution in this 

paper, which is defined as follows. 

Definition 1 {Stationary distribution}. The stationary reputation distribution ( ){ }th q  of a network 

remains unchanged while being updated by Eq. (5) and can be computed using the following set of 

equations 

 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

1 1 1 1 1

1 1 1 ,  1 1 and 

1 1 1

0 1

L L L

L K

K K

t t t

t t

t t

t

h a e h a e h

h q a e h q q q

h a e h a

h a e

= - - + - - -

= - - - £ £ - ¹

= - - - +

= -

. (6) 

In the following lemma, we prove that the stationary reputation distribution ( ){ }th q  is unique in the 

network for a specific social norm and show that ( ){ }h q  always converges to ( ){ }th q  when all peers 

follow the social strategy. 

Lemma 1. When all peers follow the social strategy s , the reputation distribution of the network 

converges to a unique stationary point ( ){ }th q , which are independent with s . 

Proof: It is easy to verify that the coefficient matrix of the equation set in Eq. (6) is full-ranked and its 

spectrum radius is smaller than 1. Therefore, ( ){ }th q  in Eq. (5) converges to a unique stationary point 

which is the solution of Eq. (6). ■ 

Therefore, the expected stage-game utility of a q- peer in a network whose reputation distribution is 

stationary can be specified as 

 ( ) ( ) ( ) ( ) ( ), ,v rk t s t s
q q

q h q q q h q r q q
Î Î

= +å å
 

   
 

, (7) 

where ( ),rs q q  is the stage-game benefit the q- peer can receive when the server has a reputation q and 

follows s ; and ( ),sr q q  is the stage-game cost the q- peer will consume if it follows s  and the client’s 

reputation is q . 

To evaluate a peer’s long-term utility, we use the infinite-horizon discounted sum criterion, and a 

peer’s expected overall utility in the repeated game starting from any slot 0t , when following the social 
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strategy, can be expressed as 

 ( ) ( ) ( ) ( ) ( )0 0

'
0

' '|t t t t

t t

v v v p vk k k k k
q

q d q q d q q q
¥

¥ ¥

=

æ ö÷ç ÷ç= = +÷ç ÷ç ÷÷çè ø
å å . (8) 

where ( )1d b a= -  is the weight that a peer gives to its utility that can be received in the future. It is a 

decreasing linear function of the turnover rate a . As a  increases, a peer has higher probability to leave 

the network in the next slot, and thus gives less weight d  for the future. [ )0,1b Î  is a peer-defined 

discount factor. In this paper, we assume that all peers adopt the same b . ( )' |pk q q  is the transition 

probability of a peer’s reputation across slots. When a peer follows the social strategy, it is always the 

case that it will be rewarded with probability 1 e-  and be punished with probability e  regarding to the 

reputation update error, and thus 

 ( )

( )

( )

'

'
'

'

1 ,  

1 ,  ,  1
|

,  0

0,  

L

L
p

otherwise

k

e q q

e q q q
q q

e q

ìï - = =ïïïï - < = +ïï= íï =ïïïïïïî

. (9) 

The social utility of the network is defined as the expected stage-game utility averaged among all 

peers when the network is stationary as 

 ( ) ( )U vk t k
q

h q q=å . (10) 

As discussed in Section II.B, the social strategy should encourage cooperation among innocent peers. 

Consequently, we consider the family of social strategies which features the following properties:  

(1) A peer does not receive better service than any other peer with a higher reputation, i.e. ( ), Cs q q =  

only if ( )', Cs q q =  for all 'q q>  . This introduces a service threshold reputation ( )ms q  for every 

peer, such that  

 ( )
( )

( )

,   
,

,    

C if m

D if m

s

s

q q
s q q

q q

ìï >ïï= íï £ïïî




 . (11) 

(2) ( )ms q  is non-decreasing on q  such that a peer with a lower reputation has to provide more service to 

others, 

 ( ) ( )1 2 1 2,   m m ifs sq q q q³ >  (12) 

(3) Innocent peers always help other innocent peers, and thus ( ) 1m L Ls £ - . 
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In the following lemma, we shows any social strategy s  which satisfies the above constraints grants a 

peer of higher reputation with better expected overall utility so as to providing peers correct incentives to 

follow it, i.e. ( ) ( )'v vk kq q¥ ¥>  if 'q q> . 

Lemma 2. A social strategy s  satisfying the constraints in Eq. (11) – Eq. (12) ensures the resulting 

expected overall utility monotonically increases with a peer’s reputation, i.e. ( ) ( )'v vk kq q¥ ¥>  if 'q q> . 

Proof: See Appendix A. ■ 

If in a social norm with a punishment length L , the innocent peers are devised to help some of the 

guilty peers in the social strategy, i.e. ( ) ,  1m L L l ls = - > , we prove that such social norm is identical to 

another social norm in which the innocent peers only help the innocent peers. 

Lemma 3. A social norm with the punishment length L  and ( ) ,  1m L L l ls = - >  is identical to the 

social norm with the punishment length 1L l- +  and ( )1m L l L ls - + = - . 

Proof: See Appendix B. ■ 

Lemma 3 proves that we can always set ( ) 1m L Ls = -  when analyzing a social norm without 

reducing the set of social norms we consider. 

III. SOCIAL NORM EQUILIBRIUM  
During the implementation of a social norm in a P2P network, two criteria need to be considered. The 

first is whether the social norm can be sustained in the network, where the self-interested peers will 

follow the prescribed protocol without having the incentive of disobeying it. The second is how the 

punishment in a social norm impacts the efficiency of the network and how to design the most efficient 

protocol to maximize the social utility. These two issues are discussed in the next two sections, with the 

incentive issue being addressed first, which is called the social norm equilibrium. 

A. Definitions  

Definition 3 {Social norm equilibrium}. The social norm ( ),k s t=  is a social norm equilibrium if  

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )' '

' '

' ' ' ' ' '
,, | , | , , , ,  ,   r p v r p v ands k k s k s

q q

q q d q q q q q d q q q s q q q q q s¥ ¥+ ³ + " "å å     . (13) 

where ( )( )' '| , , ,p q q q s q q   is the atransition probability of a peer’s reputation from q  to 'q  when it plays 

( )' ,s q q  to a client with a reputation q  ; and ( )',vk s q¥  is the expected overall utility when the peer plays 's  

in the network implementing the social norm k . 

By comparing the sum of a peer’s instant utility in the current slot and the expected future utility, the 

peer will not have the incentive to deviate if it will receive a lower sum of the overall utility by doing so. 

As we can see, the social norm equilibrium prohibits a peer to gain in any situation of the repeated game, 
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and hence, it is at the same time a subgame perfect equilibrium [24]. 

The definition of social norm equilibrium requires us to verify s ’s optimality over all possible 

behavioral strategies under k , whose computation complexity is high. By employing the criterion of 

unimprovability in Markov decision theory [34], we establish the one-shot deviation principle for social 

norm equilibrium to simplify the computation, which at the same time serves as a sufficient and necessary 

condition for the existence of social norm equilibrium. 

Lemma 4 (One-shot Deviation Principle). k  is a social norm equilibrium if and only if for any pair 

( ),q q , there is no profitable one-shot deviation, i.e. 

 ( ) ( ) ( ) ( ) ( )( ) ( )'

' '

' ' ' ' ', , | | , , ,r r p v p vs k s ss
q q

q q q q d q q q q q q s q q q¥ ¥
é ù
ê ú- £ -ê úê úë û
å å     (14) 

Proof: If ( ),k s t=  is an equilibrium, then clearly there are no profitable one-shot deviations. 

Conversely, if k  is not an equilibrium, we need to show that there will be at least one profitable one-

shot deviation. Since  ( )' ,rs q q  is bounded for an arbitrary 's , this is always true due to the 

unimprovability of Markov decision theory [16][17]. 

Lemma 4 shows that if a peer cannot gain by unilaterally deviating from s  only in the current slot and 

following s  afterwards, it also cannot gain by switching to any other strategy 's , and vice versa. 

B. The existence of social norm equilibrium 

Note that the family of protocols that we are interested in can be fully defined using two elements: the 

punishment length L  and the set of service thresholds ( ){ }ms q . In this section, we use the one-shot 

deviation principle to analyze how to select L  and ( ){ }ms q  depending on the network condition e  and 

a , as well as the peer’s discount factor b , in order to design a social norm equilibrium. 

When an innocent peer receives the service request from another innocent peer, it should always 

provide the service as specified by s . By following it, the peer expects to receive an overall utility of 

( ) ( ) ( ) ( )[ ]1 0LV C v L vk kr d e e¥ ¥= - + - +  as its reputation will remain at L  if updated correctly. On the 

other hand, if the peer drops the request by playing a D= , it saves the instant serving cost of r  in the 

current slot, and its reputation falls to 0  starting from the next slot with a high probability 1 e-  5. The 

overall utility the peer can expect is thus ( ) ( ) ( ) ( )[ ]1 0LV D v v Lk kd e e¥ ¥= - + . As the one-shot deviation 

principle specifies, the peer has no incentive to drop the service request deliberately if ( ) ( )L LV C V D³ , 

which can be transformed in to the following inequality 

                                                           
5 It does not affect the analysis when the reputation does not fall to 0 as in a general reputation mechanism, though peers will have a different 

form of incentive. 
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 ( ) ( ) ( )[ ]1 2 0v L vk kr d e ¥ ¥£ - - ; (15) 

For a guilty peer, the situation is similar. When a q- peer meets a q - peer which it is required to 

serve by s , i.e. ( )msq q> , the condition that needs to be met in order to prevent it from deviating 

deliberately is 

 ( ) ( ) ( )[ ]1 2 1 0v vk kr d e q¥ ¥£ - + - . (16) 

When a peer meets another peer whose reputation is below its service threshold, ( )msq q£ , the peer 

will not deliberately deviate from s  since this will lead to both worse instant utility as well as worse 

expected future utility. Hence, there is no incentive constraint that needs to be considered in this case. 

The first result we derive by analyzing Eq. (15) and Eq. (16) is that a protocol can be sustained as a 

social norm equilibrium if and only if the discount factor a peer adopts is large enough. In other words, 

when a peer gives enough weight to its future utility, it will have no incentive to deviate from the protocol. 

Proposition 1. A protocol ( ),k s t=  can be sustained as a social norm equilibrium if and only if the 

discount factor is larger than a threshold kb . 

Proof: See Appendix C. ■ 

kb  measures the incentive a protocol k  brings to peers. When kb  is smaller, the peers need less 

foresightedness in order to obey k , and the incentive brought by k  is thus larger. The value of kb  is also 

influenced by the turnover rate a  and the reputation update error e . Thus we can also determine 

constraints on them for the existence of the social norm equilibrium. These constraints are instructive for 

determining whether it is possible to design protocols that can be obeyed by all peers depending on the 

network conditions. 

Corollary 1. When 1n r

r
a a

r
> = -

+
 or 

1
1

2n r

r
e e

r

é ù
ê ú> = -ê ú+ë û

, there is no protocol which can be 

sustained as the social norm equilibrium. 

Proof: See Appendix D. ■ 

Corollary 1 provides a necessary condition for the existence of social norm equilibrium in the network. 

When the turnover rate a  is large, the weight a peer gives to its future utility is small even if it adopts the 

largest discount factor 1b = . This makes a protocol fail to provide sufficient threat through the future 

punishment so as to offset a peer’s instant gain from deviation, no matter how long the punishment length 

it deploys. When the reputation update error e  is large, both the probabilities that a peer being falsely 

punished while following the protocol and rewarded while breaking the protocol are high. Thus the peers 

will lose the incentive to obey the protocol. 
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Corollary 2. When 1 /s ra a r< = - , the protocol that can be sustained as the social norm 

equilibrium always exists when 1b   and 0e  .   

Proof: See Appendix D. ■ 

Corollary 3. When ( )1
1 /

2s re e r< = - , the protocol that can be sustained as the social norm 

equilibrium always exists when 1b   and 0a  .  

Proof: See Appendix D. ■ 

Corollary 2 and 3 provide sufficient conditions for the existence of social norm equilibrium. Their 

proofs can be found in Appendix F. In contrast to Corollary 1, when a  and e  are small, the existence of 

social norm equilibrium can be ensured as long as the peers are sufficiently foresighted with b  arbitrarily 

close to 1. 

Figure 3 plots na , sa , ne , and se  as functions of the ratio between the benefit r  and the cost r  per 

service. For a specific pair of r  and r , if the values of a  and e  are above the red lines with cross 

markers, no social norm equilibrium exists. As a result, there will always be some peers who deliberately 

deviate from the protocol no matter how the punishment scheme is designed. On the other hand, if the 

values of a  and e  are below the blue lines with triangle markers, social norm equilibria always exist, and 

hence we can always find at least one protocol which can be followed by all peers. It should also be noted 

that when 
r

r
 increases, i.e. the service cost becomes negligible compared with the service benefit, the 

gaps between the blue and red lines diminish. In this case, we can use either line as an approximation of 

the sufficient and necessary condition for the existence of the social norm equilibrium. 

The above analytical results can help us construct a method of designing a protocol as the social norm 

equilibrium. The procedure is specified as follows (here we use sa  and se  as the approximations of the 

sufficient and necessary condition): 

 Step 1: Determine a  and e  in the network. If sa a>  or se e> , the social norm equilibrium does not 

exist and thus, no suitable protocol can be constructed to achieve cooperation. 

 Step 2: If sa a<  and se e< , the method searches the desirable protocol from the minimum 

punishment length 1L = . 

 Step 3: Specify the service threshold ( ){ }ms q  and determine the discount factor’s threshold kb
6. If 

kb  is smaller than the discount factor b  that is adopted in the network, the protocol k  formed by L  

                                                           
6 The method of determining kb  can be Appendix D. 
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and ( ){ }ms q  is a social norm equilibrium, the method ends with k . Otherwise impose more severe 

punishment by increasing the punishment length : 1L L= +  and restart step 3. 

IV. THE OPTIMAL SOCIAL NORM EQUILIBRIUM 
We end up the above section by providing a method of searching for the social norm equilibrium. 

However, multiple protocols may exist in the network that can be sustained as social norm equilibria. To 

select among these protocols, we would like to find the one that optimizes the network’s performance, 

which is defined as the social utility in Eq. (10). The protocol designer’s problem can be formalized as 

follows, with the resulting protocol being the optimal social norm equilibrium: 

 ( ){ }( )
( ) ( )

( )( ) ( ) ( )( )
,

      

 :     1 1 2 0 ,  

L m
maximize U v

subject to v v

s
k t k

q q

k k

h q q

b a e q r q¥ ¥

=

- - - ³ "

å
. (17) 

Since r r> , it is obvious that the social utility is maximized when full cooperation exists in the 

network, i.e. all peers provide services to others once is requested. This gives the most efficient outcome 

that the network can achieve, denoted as U r r= - . Nevertheless, since the punishment implemented in a 

protocol always leads to some efficiency loss, we can show that full cooperation and hence U  can be 

achieved if and only if there is no error in the network, i.e. 0e = . 

Lemma 5. The social utility of the network can reach U r r= -  if and only if 0e = . 

Proof: See Appendix E. ■ 

When 0e > , an efficiency loss always exists since there are always some peers that will be falsely 

punished even if all peers follow the protocol and no one deviates deliberately. Since innocent peers 

always punish guilty peers in a protocol, it is straightforward that a protocol with a punishment length L  

can achieve its optimal social utility if its service thresholds are specified as: ( ) 1, 0 1m Ls q q= - £ £ -  

and ( ) 1m L Ls = - , in which the guilty peers always mutually help each other. The corresponding 

optimal social utility is 

 ( ) ( ) ( ) ( ) ( )[ ]
1 1

0 0

L L

U L r L r Lt t t t
q q

h q h q r h h r
- -

= =

é ù
ê ú= - + -ê ú
ë û

å å . (18) 

By varying the punishment length L , we can compute the difference between ( )U L  and ( )1U L-  as 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )( ){ }

2

0

2 1

1

1

1 1 2 1 1 1 1 1

L

L L L

U L U L U L

L r L

r

t t t
q

h r h h q

a e e r a a e a e

-

=

- -

D = - -

ì üæ öï ï÷ï ïç ÷= - - - -çí ý÷ç ÷ï ï÷çè øï ïî þ
é ù= - - - - - + - - + - -ê úë û

å . (19) 
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whose polarity is determined by the polarity of the term ( )( ) ( )( )12 1 1 1 1 1L La a e a e-é ù- + - - + - -ê úë û , 

which monotonically decreases with L . Therefore, the optimal social utility that can be achieved by a 

protocol when 0e >  is reached when the punishment length is either 1L =  or L  ¥ . In the first case, 

the protocol has a minimum punishment length; and in the second case, the protocol has infinite 

punishment such that all peers are guilty and mutually help each other, which is obviously infeasible in 

practical P2P networks. 

Since a shorter punishment length requires a smaller set of reputations, which in turn saves storage 

space and communication overheads from/to the tracker, it is desirable if we can minimize the 

punishment length to achieve the optimal social utility. With 1L = , there are only two reputation levels 

and the service thresholds can be specified as ( )0 1ms =-  and ( )1 0ms = . The resulting protocol is 

denoted as 1k . In the following proposition, we provide sufficient conditions for 1k  to achieve the 

optimal social utility when 0e > . 

Proposition 2. If 
1

2
a >  or e a£ , 1k  is the protocol which achieves the optimal social utility. 

Proof: From Eq. (19), 1L =  is the optimal punishment length when (1) 
1

2
a ³  or (2) 

1

2
a <  and 

( ) ( )1 lim
L

U U L
¥

> . We have 

 ( ) ( ) ( )[ ] ( )( )[ ] ( )( )( )1 1 1 1 1 1 1U r ra e a e r a a e a a e ré ù= - - - + + - - - + - -ë û  (20) 

and  

 ( ) ( )( )2lim 1
L
U L ra a r

¥
= - + - . (21) 

When e a< , 

 
( ) ( )( )[ ] ( )( )( )

( )( )[ ][ ] ( )( )[ ][ ] ( )( )2

1 1 1 1 1

1 1 1 1 1

U r

r r r

a a e a a e r

a a e r a a a r a a r

é ù> + - - - + - -ë û

> + - - - > + - - - = - + -
. (22) 

■ 

With the sufficient conditions provided by Proposition 2, 1k  is the optimal social norm equilibrium 

that solves Eq. (17) if the incentive constraints are satisfied. Proposition 3 gives a sufficient condition that 

1k  is sustained as a social norm equilibrium. 

Proposition 3. When 
( )

1

3
1

1 2 r

r
e a

e b

æ ö÷ç ÷< < -ç ÷ç ÷ç -è ø
, 1k  is the optimal social norm equilibrium, i.e. the 

optimal norm-based protocol that maximizes the social utility. 

Proof: With 1k  implemented, the reputation distribution of the population is  
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( ) ( )

( ) ( )

0 1

1 1 1

h a e

h a e

= -

= - -
. (23) 

Substituting this into Eq. (7), we get the expected stage-game utilities of 1k  as 

 
( ) ( )

( ) ( )[ ]
1

1

0 1

1 1 1

v r

v r

k

k

a e r

a e r

= - -

= - - -
. (24) 

From Eq. (43), we have 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

0 0 1 1 0

1 1 1 1 0

v v v v

v v v v

k k k k

k k k k

d e e

d e e

¥ ¥ ¥

¥ ¥ ¥

é ù= + - +ê úë û
é ù= + - +ê úë û

, (25) 

and thus ( ) ( ) ( ) ( )
1 1 1 1

1 0 1 0v v v vk k k k
¥ ¥- = - . 

Consequently, the following inequality needs to be satisfied in order to sustain 1k  as an equilibrium 

 
( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

1 1
1 1 2 1 0

1 1 2 1 1 1

v v

r

k kr b a e

b a e a e a er

£ - - -

é ù= - - - - + -ë û
 (26) 

Since we already have e a< , this inequality is satisfied when  

 ( ) ( )( ) ( )
( )

31 1 1 1
1 2

r r
r

a a e a
b e

- - - ³ - ³
-

. (27) 

As 1 1e a- > - , Inequality (26) is again satisfied when  

 ( ) ( )31 1 2
r

r
a e

b
- - ³ , (28) 

which leads to our conclusion. ■ 

The reason that a  is upper-bounded is due to the fact that a peer needs to put sufficiently large weight 

on its future utility to have the incentive to follow 1k . On the contrary, a  should also be larger than e  

such that there are more innocent peers than guilty peers at the beginning of each slot. As a result, 1L = , 

rather than L  ¥ , can maximize the social utility. As a byproduct of proving Proposition 3, we can 

show that when 

1

3
1
r

r
a

æ ö÷ç< - ÷ç ÷çè ø
, 1k  can be sustained as the equilibrium social norm as long as the discount 

factor b  is sufficiently large and the reputation-update error approaches to 0. 

Corollary 4. When 

1

3
1
r

r
a

æ ö÷ç< - ÷ç ÷çè ø
, 1k  can always be sustained as the equilibrium social norm if 1b   

and 0e  . ■ 

When 1k  cannot be sustained as a social norm equilibrium, we need to extend the punishment length 

in the protocol to provide peers stronger incentives.  Despite its existence, there is no simple explicit 
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expression of the optimal social norm equilibrium. We therefore propose a general iterative method to 

find a social norm equilibrium which has close performance to the optimal social norm equilibrium. 

 Step 1. Set 0
opt

Uk = . Determing whether 1k  is the optimal social norm equilibrium by checking the 

condition in Proposition 3 satisfies the incentive constraints in Eq. (17). If it is satisfied, the method 

stops. We have the optimal social norm equilibrium 1optk k=  and 
1opt

U Uk k= . 

If the condition in Proposition 3 is not satisfied, the method then enters the iterative process. 

 Step 2. Increase the punishment length by 1  as : 1L L= + . 

 Step 3. Find the set of feasible social strategies LB  which satisfies the incentive constraints in Eq. (17) 

with the punishment length L . 

 Step 4. If B  is empty, go to step 2. Otherwise, find the strategy L Bs Î  which maximizes the social 

utility in B . Let Lk  be the social norm formed by L  and Ls . If the corresponding social utility 

L opt
U Uk k> , set :opt Lk k=  and 

opt L
U Uk k= . The method goes to step 2. Otherwise, the method stops, 

and optk  is the near-optimal social norm equilibrium selected. 

A schematic representation of this method is shown in Figure 2.  The performance gap between the 

output of our method and the optimal social norm equilibrium is plotted in Figure 4, with the social 

utilities normalized by U . As it shows, when the network conditions are good (i.e. a  and e  are small), 

our method can well approximate the optimal social norm equilibrium with a performance gap close to 0. 

Meanwhile, Figure 4 (b) shows that either the optimal social norm equilibrium or the near-optimal 

protocol can achieve the most efficient outcome U , i.e. full cooperation in the network, when e  

approaches 0. It should also be noted that when 1s r

r
a a> = -  and 

1
1

2s r

r
e e

æ ö÷ç> = - ÷ç ÷çè ø
 as pointed in 

Figure 3, a social norm equilibrium does not exist, and thus the social utility faces significant degradation 

beyond those points. 

V. THE SOCIAL COST OF WHITEWASHING 
In Section III, we show that the free-riding behavior can be effectively discouraged by the punishment 

executed in a protocol since no peer will deliberately deviate from it. However, the effectiveness of the 

punishment scheme is undermined by the whitewashing effect [8], which refers to the action of a peer 

leaving and rejoining the network in order to acquire a new identity. In particular, a free-rider might 

choose to whitewash in order to get an initial reputation K  the same as a new peer when it rejoins the 

network. Since higher reputations lead to larger expected overall utilities, a peer with a reputation Kq <  

might have the incentive to whitewash itself if the cost of acquiring a new identity is low. The lower the 

cost of acquiring a new identity is, the more likely a peer will engage in whitewashing. Under our 
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framework, a protocol assigns new peers an initial reputation K L<  to decrease the overall utility that a 

new peer expects to receive. A guilty peer’s incentive to whitewash its identity is thus eliminated. Since 

the extra punishment on new peers will degrade the social utility of the network and it is getting severe as 

K  decreases, we would like to find the largest initial reputation optK  which ensures that whitewashing is 

eliminated in the networks. 

A peer’s incentive of whitewashing depends on the cost of acquiring a new identity, denoted as nr . 

We have the following preliminary results: 

 When 0nr = , a peer can whitewash itself freely. This is also referred to as the free-identity problem 

[8]. In this case, a whitewasher with a reputation q  can gain a benefit of ( ) ( )v K vk k q¥ ¥-  while 

paying no cost. Consequently, K  should be set to 0 in order to eliminate the incentive of 

whitewashing for any peer. 

 When nr  ¥ , it is impossible for a peer to replace its identity. It is straightforward that no peer will 

have the incentive to whitewash itself and the protocol does not have to impose any punishment on 

new peers, and thus K L= . This is also referred to as the permanent-identity problem [8]. 

In the remainder of this section, the general case of ( )0,nr Î ¥  is discussed. Because a whitewasher 

leaves the network at the end of a slot, it is not affected by the future punishment imposed by the protocol 

beyond this slot. It can thus expect a future utility of ( )v Kk
¥ . Alternatively, if a q- peer stays in the 

network, it can expect a future utility of ( ) ( ) ( )1 1 0v vk ke q e¥ ¥- + + . Whitewashing is effectively 

prevented on a q- peer if its loss on the future utility due to whitewashing sufficiently offsets its instant 

gain. As a peer’s gain in a stage game by breaking the protocol is upper-bounded by r , no peer will have 

the incentive to whitewash itself if the following inequalities holds for any q  

 ( ) ( ) ( ) ( ) ( )[ ]1 1 1 0 ,nv v v Kk k kb a e q e r r q¥ ¥ ¥- - + + - ³ - " . (29) 

From Eq. (29), we can extend the above preliminary results. Proposition 4 shows that new peers 

should start at a low reputation when nr  is small, and quantifies the upper bound of nr  when 0optK = . 

Proposition 5 shows that new peers can start with a high reputation when nr  is large enough, and 

quantifies the lower bound of nr  when optK L= . 

Proposition 4. If nr r< , optK  should be set as 0  in order to prevent whitewashing.  

Proof: When nr r< , we have  

 ( ) ( ) ( ) ( ) ( )[ ]1 1 1 0 0nv v v Kk k kb a e e r r¥ ¥ ¥- - + - ³ - > . (30) 

Since ( ) ( ) ( ) ( )1 1 0 0v v v Kk k ke e¥ ¥ ¥- + - <  if and only if 0K = , we should assign a initial reputation of 0  

in this case. ■ 
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Proposition 5. When ( ) ( )( )/ 1 1n rr r r b a> + + - - , optK  can be set as L  without giving any 

incentive to whitewashing.  

Proof: If K L=  and whitewashing is prevented, we should have 

 ( ) ( ) ( ) ( ) ( )[ ]1 1 1 0 nv v v Lk k kb a e e r r¥ ¥ ¥- - + - ³ - . (31) 

From the proof of Proposition 3, we know that both ( )1vk
¥  and ( )0vk

¥  are smaller than 

( )[ ] ( )1 L r Lt th h r- - , while ( ) ( )v L r Lk th r¥ = -  . Therefore, the right side of Eq. (31) is larger than 

( ) ( )( )[ ]1 1 1 rb a a a e- - + - -  and our conclusion is derived. ■ 

When ( ) ( )( )/ 1 1n rr r r r b a< < + + - - , optK  is determined through the following optimization 

 

( ) ( ) ( ) ( )[ ]

argmax

. . 0

    1 0 ,

opt

n

K K

s t K L

v v v Kk k kd e q e r r q¥ ¥ ¥

=

£ £

- + - ³ - "

. (32) 

An example on the selection of  optK  is discussed in the next section together with the illustrative 

example of a specific indirect reciprocity based protocol. 

VI. ILLUSTRATIVE EXAMPLE 

We illustrate how to use the above analytical framework in practical protocol design by considering a 

specific set of social norms, whose service thresholds are ( ) 1m Ls q = -  for all q . We call the set of the 

corresponding protocols as “Constant-service Protocol” or CP for short. In the CP, an innocent peer is 

always being served by all other peers, while a guilty peer cannot receive any service. Any peer’s 

deviation from the above strategy triggers a punishment on it that lasts for L  slots. During the 

punishment phase, if the guilty peer deviates from the social strategy again, the punishment is restarted 

from the beginning. The CP’s rule can be simply summarized as follows 

 If the client is innocent, the server cooperates. 

 If the client is guilty, the server defects. 

Formally, the CP’s social strategy CPs  can be represented as 

 ( )
,   

,
,  CP

C if L

D otherwise

q
s q q

ìï =ïï= íïïïî


 , (33) 

We can also obtain the corresponding stage-game utility by substituting Eq. (33) into Eq. (7) 

 ( )
( )

( )

,   

,   

CP

CP
CP

L if L
v

r L if L

h r q
q

h r q

ì- <ïïï= íï - =ïïî
, (34) 
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where ( )CP Lh  is the fraction of innocent peers in CP’s stationary reputation distribution. 

A. Equilibrium analysis 

We consider how to construct the CP as the social norm equilibrium. The analysis on the CP as in 

Section III shows that among all the peers, an innocent peer always has the largest incentive to follow as 

the right side of Eq. (16) is maximized, with the incentive monotonically increases with L ; whereas a 

0- peer always has the smallest incentive to follow as the right side of Eq. (16) is minimized, with the 

incentive monotonically decreases with L . Therefore, in order to be sustained as a social norm 

equilibrium, the CP’s punishment length should be large enough to provide the sufficient incentive for 

innocent peers and small enough to provide the sufficient incentive for 0- peers. The result is quantified 

in the next proposition. 

Proposition 6. The CP can be sustained as a social norm equilibrium if and only if its punishment 

length 

 
( ) ( )( )

( )

( )
( )

( )( )

1 1
ln ln

1 1 1 1 2 1 2

ln 1 ln 1 1

r r
L

r r e
b a b a e e

b a b e a

æ ö -÷ç ÷-ç ÷ç ÷ç - - - -è ø -
£ £

- - -
. (35) 

Proof: The differences on the CP’s stage-game utility can be derived from Eq. (34) as 

 ( )
0,   

,   CP

if L
v

r if L

q
q

q

ì <ïïï= íï =ïïî
 , (36) 

and thus  

 ( ) ( ) ( ) ( )1 111 0 1 1L LL
CP CPv v rb a e- -¥ ¥ -- = - - . (37) 

Applying the equilibrium social norm’s sufficient and necessary condition from Eq. (56), we have the 

conclusion that CP is an equilibrium if and only if  

 ( )( ) ( ) ( )1 111 1 2 1 1L LL rb a e b a e r- --- - - - ³ . (38) 

Solving this inequality leads to the right half of Eq. (35).  

To provide the correct incentive for the innocent peers from deviation, we should have 

( ) ( ) ( )[ ]1 2 0CP CPv L vd e r¥ ¥- - ³ . Since 

 ( ) ( )
1

0
1

L

CP CPv L v r
d
d

¥ ¥
æ ö- ÷ç ÷- = ç ÷ç ÷ç -è ø

, (39) 

we have  

 ( )
1

1 2
1

L

r
d

d e r
d

æ ö- ÷ç ÷- ³ç ÷ç ÷ç -è ø
, (40) 
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which leads to the left side of Eq. (35). ■ 

Stemming from Proposition 6, it can be shown that when the P2P network is socially valuable, 

i.e. r r> , there always exists at least one equilibrium CP, as long as e  and a  are small enough and peers 

have sufficient rationality. 

Corollary 5. There always exists at least one CP that can be sustained as a social norm equilibrium 

when 0e  , 0a  , and 1b  . 

Proof: From Proposition 6 by setting 1L = . ■ 

Next, we are interested in finding the optimal punishment length of the CP that maximizes the social 

utility. The social utility of the CP is  

 
( ) ( ) ( )( ) ( )( ) ( )

( )( )

1CP CP CP CP CP

CP

U L L L r L L

L r

h r h h r h

h r

=- - + -

= -
. (41) 

Since ( )CP Lh  also monotonically decreases with L , we can conclude that the social utility of CP is 

always maximized when 1L = . 

B. Numerical results 

In this section, we present the simulation results to show the CP’s performance. Unless stated 

otherwise, the setting of the P2P network is as below: the number of peers ( 1000N = ), the benefit per 

service ( 20r = ), the cost per service ( 1r = ), and the initial reputation of the new peer (K L= ). The 

social utilities are all normalized by U . 

The Impact of Network conditions: We first look at how the network conditions impact the CP’s 

performance. Figure 6 illustrates the social utility achieved with different a  and e . The punishment 

lengths chosen for illustration are 1,3,5L = , respectively. As we can see, the social utility increases as 

the turnover rate a  rises when na a< . This is due to the fact that the new peers are regarded as innocent. 

With larger a , more guilty old peers will be replaced by innocent new peers at the end of each slot. Since 

innocent peers are always being served, the corresponding social utility rises. However, high a  will hurt 

a peer’s incentive to follow the CP as the peer gives less weight to its future utility. As we showed in 

Corollary 1, when 1 0.95n r

r
a a

r
> = - =

+
, no social norm equilibrium exists and all peers will choose 

to deviate, with the corresponding social utility falls to 0 . 

The situation is similar with the reputation update error e . As e  rises, the social utility decreases 

since high error in reputation update hurts the incentive of peers to follow the CP. When 

0.5 1 0.48n r

r
e e

r

é ù
ê ú> = - =ê ú+ë û

, no peer has the incentive to follow the CP and the social utility falls to 0 . 
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On the other direction, when e  approaches 0, the CP can always achieve the most efficient outcome U , 

regardless of the punishment length chosen. 

The Impact of Peer Condition: We then discuss how the peer condition impact the CP’s performance, 

specifically we look at the discount factor b  and the rate that a peer generates download request, denoted 

as l . The results are shown in Figure 6. 

With b  increases, a peer gives higher weight on its overall utility instead of its instant utility. As 

Proposition 1 shows, the social norm will be more effective in incentivizing peers to cooperate in such 

cases. It should also be noted that the CP with longer punishment has a better performance when b  is 

small, even though the punishment prohibits the sharing activity between peers. The reason for this 

phenomenon is that innocent peers in the CP have stronger incentives if they face a longer punishment. 

As a result, when b  is around 0.3 , innocent peers with 3L =  and 5  already have the incentive to follow 

the protocol, and will mutually cooperate with each other; while innocent peers with 1L =  are still 

disincentivized and will not cooperate in the case. 

In the above analysis, we assume that a peer generates and receives one service request on average per 

slot, i.e. 1l = . Here we analyze how variable l  impacts the social utility. We assume that the arrival of 

service requests is non-bursty, i.e. 1l < . If multiple service requests arrive at a peer simultaneously in a 

slot, a peer would serve only one request and drop all the rest. In this case, the peer will still be rewarded 

by the social norm since it provides the service as specified by the protocol, whereas it should in fact be 

punished since some other requests are dropped. The correct execution of a protocol will be violated in 

this case. As Figure 6 shows, the social utility increases with l , which is intuitive since more data traffic 

in the network will generally make the network more socially valuable. l  also impacts a peer’s incentive 

to follow the social norm. Since the expected future utility a peer receives will be discounted by l  and 

the instant utility a peer receives always remains unchanged, a lower l  decreases a peer’s expected future 

utility and thus decreases the peer’s incentive to follow the social norm. This is the reason for the 

discontinuities in Figure 6. 

The Impact of Non-reciprocative Peers: Our analysis in this paper assumes that all peers in the 

network are reciprocative, which are self-interested and strategic while selecting their actions to play. 

Nevertheless, in practical P2P networks, there are also other types of peers who are not strategic and play 

constant actions. For example, the benevolent external helper, e.g. seeds, have all the files and serve other 

peers unconditionally; and there are also the malicious peers, who always refuse to help any other peer. 

We adjust the fractions of such peers in the peer population to examine how the social utility received by 

the reciprocative peers will be influenced by the non-reciprocative population. The fractions of 

benevolent helpers and malicious peers in the peer population are denoted as ca  and da , respectively. 
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As Figure 7 illustrates, the social utility of the reciprocative peers falls rapidly against da  and 

gradually approaches 0. In the case of ca , the social utility in general rises as ca  increases. However, 

because a large ca  ensures that a reciprocative peer has a high chance to be served and thus lowers its 

risk of being punished, it has less incentive to follow the protocol. Therefore, the social utility drops 

immediately when ca  achieves some level, as those are the points where reciprocative peers lose their 

incentives to follow the CP. 

The Impact of the Initial Reputation: We finish the discussion of the CP by analyzing its selection 

of the optimal initial reputation optK  for new peers. Figure 8 presents the selection of optK  and the 

resulting social utility as functions of the new identity cost nr . Since low turnover rate a  makes a peer 

more foresighted when evaluating its overall utility, the penalty on the new peers becomes more effective 

on preventing whitewashing. Hence the required penalty is less severe with low a  than that with high a , 

with the corresponding optK  being larger. Also high a  implies a more dynamical peer population with a 

high fraction of new peers in each slot. Therefore, the penalty on new peers decreases the social utility 

more severely. When 0a = , the network is static and hence its social utility will not be influenced by the 

selection of optK  . 

VII. CONCLUSIONS 
In this paper, we used the idea of “social norm” to establish a rigorous mathematical framework to 

analyze the incentive protocols based on indirect reciprocity in P2P file-sharing networks. We showed 

that under certain conditions, the protocol can be sustained as a social norm equilibrium in the network, in 

which no peer has the incentive to deviate deliberately. These conditions include: (1) a peer gives 

sufficient weight to its future utility; (2) the network error is sufficiently small; and (3) the network’s 

turnover rate is sufficiently small. We also quantified the efficiency loss in the social norm equilibrium as 

a trade-off to the incentive given to peers to follow the protocol. We proved that full cooperation can be 

achieved when the network error approaches 0, in which case there is no trade-off between the efficiency 

loss and the incentive. We also studied the problem of finding the optimal social norm equilibrium in the 

aim of maximizing the network’s social utility. An efficient searching algorithm for a near-optimal 

protocol was proposed. In addition, we proposed a whitewashing prevention mechanism and proved that 

the whitewashing effect can always be eliminated in indirect reciprocity mechanisms. The efficiency loss 

due to such a prevention mechanism was also studied. Our simulation measured the robustness and 

performance of a set of specific indirect reciprocity based protocols against different aspects of the P2P 

network, such as unreciprocative helpers, malicious peers, variable service rate, etc. 
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APPENDIX A 

PROOF OF LEMMA 2 

Eq. (7) can be rewrite as 

 ( ) ( )
( )

( )
( )H S

v rk t t
q q q q

q h q h q r
Î Î

= -å å
 

  . (42) 

Define ( ) ( ){ }argmaxn ms s
q

q q q= >


 , ( ) ( ){ }|H nsq q q q= £   is the set of peers which provide services to 

the q- peer in the social strategy s . For the consistency of representation, here we let ( ) 1ns q = -  if 

( )H q = F . ( ) ( ){ }|S msq q q q= >  , on the other hand, is the set of peers which a q- peer provides 

service to in the social strategy s . 

Due to ( )ms q ’s non-decreasing property given by Eq. (12), ( )S q  preserves a non-increasing inclusion 

partial order over q , i.e. ( ) ( )1 2S Sq qÍ  if 1 2q q> . With simple manipulation, it is easy to determine that 

( )ns q  is also a non-decreasing function over q , which ensures the non-decreasing inclusion partial order 

of ( )H q , i.e. ( ) ( )1 2H Hq qÊ  if 1 2q q> . Thus, it is straightforward that ( )vk q  is a non-decreasing function 

on q .  

From Eq. (8) and (9), the set of overall utilities can be represented by the set of stage-game utilities as 

follows: 

 
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]

1 0

1 1 0 ,  0 1

v L v L v L v

v v v v L

k k k k

k k k k

d e e

q q d e q e q

¥ ¥ ¥

¥ ¥ ¥

= + - +

= + - + + £ < -
. (43) 

This is a full-ranked set of equations, which has a unique solution ( ){ }vk q¥  and can be solved by the 

iterative update below, as convergence is guaranteed. 

 
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]

1

1

| 1 | 0 |

| 1 1 | 0 | ,  0 1

t t t

t t t

v L v L v L v

v v v v L

k k k k

k k k k

d e e

q q d e q e q

¥ ¥ ¥
+

¥ ¥ ¥
+

= + - +

= + - + + £ < -
 (44) 

Therefore, if we pick up an arbitrary initial ( ){ }0|vk q¥  which satisfies the non-decreasing partial order 

as ( ) ( )1 0 2 0| |v vk kq q¥ ¥>  if 1 2q q> . It is easily verified that this partial order is preserved after each update, 

i.e.  

 ( ) ( ) ( ) ( )1 2 1 1 2 1| |   | |t t t tv v v vk k k kq q q q¥ ¥ ¥ ¥
+ +>  > ( ) ( )1 1 2 1| |t tv vk kq q¥ ¥

+ +> , (45) 

and hence also holds on the unique solution Eq. (44) converges to, which is the solution of Eq. (43). 

Therefore, the overall utility always monotonically increases with the reputation q . ■ 
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APPENDIX B 

PROOF OF LEMMA 3 

In order to show that two social norms are identical, we only have to show that a peer receives the 

same utility in every stage game with these two social norms.  

For a social norm ( ),k s t=  with a punishment length L  and ( ) ,  1m L L l ls = - > , we construct 

another social norm ( )' ' ',k s t=   which has the following properties: (1) the punishment length of 'k  is 

1L l- + ; (2) ( ) ( )' ,  1m m L lss q q q= < - +  and ( )' 1m L l L ls - + = - . Denote the stationary 

distributions of these two social norms as ( ){ }th q  and ( ){ }'th q , respectively. It is easy to verify that  

 

( ) ( )

( ) ( )

'

'

1

,  1

1
L

L l

L l

L l

t t

t t
q

h q h q q

h q h
= - +

= < - +

= - +å
 (46) 

Substituting Eq. (46) into Eq. (42), we have that  

 
( ) ( )

( ) ( )

'

'

,  1

1 ,  1

v v L l

v v L l L l L

k k

k k

q q q

q q

= < - +

= - + - + £ £
 (47) 

Therefore, it is obvious that peers with reputation higher than L l-  in k  receive the same utility in 

every stage game. Since there is no difference on the utilities they receive, they can be put into the same 

category as innocent peers in k . In this way, k  also has peers with 2L l- +  reputation levels as 'k , 

while the peer with every reputation level receives the same stage-game utility in both social norms. We 

can thus conclude that k  and 'k  are identical, and hence a social norm with ( )1m L l L ls - + = -  can 

always be replaced by another social norm in which the innocent peers only mutually help each other. A 

peer with the same behavioral strategy receives the same utility after such replacement. ■ 

APPENDIX C 

PROOF OF PROPOSITION 1 

As Lemma 2 proves that the overall utility ( )vk q¥  monotonically increases with q , and hence the 

constraints in Eq. (15) and Eq. (16) are binding. Because the maximum gain a peer can achieve in stage-

game utility from the deviation is r , we only have to examine the validity of the following inequality to 

verify a social norm k ’s equilibrium property 

 ( )( ) ( ) ( )( )1 1 2 1 0v vk kr b a e ¥ ¥£ - - -  (48) 

Expanding ( ) ( )1 0v vk k
¥ ¥-   
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( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]

1 0

1 1 2 0 0 1 1 0

1 0 1 2 1

v v

v v v v v v
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k k

k k k k k k

k k k k

d e e d e e

d e
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-

= + - + - - - +
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. (49) 

Similarly, we have 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ]
( ) ( ) ( ) ( )
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- - - = - - - + - - - -

- - = - -


. (50) 

Substituting Eq. (50) iteratively into Eq. (49), ( ) ( )1 0v vk k
¥ ¥-  can be represented in terms of the stage-

game utilities as 

 

( ) ( )

( ) ( ) ( )( )[ ] ( ) ( ) ( ) ( ) ( )
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1

1 11

1
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-
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å

å

.(51) 

As ( ){ }vk q  and L  are fixed in a protocol k , ( ) ( )1 0v vk k
¥ ¥-  and hence the right side of Eq. (48) 

monotonically increases with b . Taking kb  as the discount factor which equals both sides of Eq. (48), it 

is thus straightforward that k  can be sustained as a social norm equilibrium if and only the discount factor 

b  adopted by peers is larger than kb . ■ 

APPENDIX D 

PROOF OF COROLLARY 1 - 3 

The stage-game utility ( )vk q  can be represented by ( )ms q  and ( )ns q  as 

 ( ) ( )
( )

( )
( )n m

v r
s s

k t t
q q q q

q h q r h q
£ >

= -å å
 

  . (52) 

Since all peers serve L-peers and ( ) 1m L Ls = - ,   

 
( ) ( )

( )( )1 1 L

v L r L

r

k th r

a a e r

= -

é ù= - + - -ê úë û
. (53) 

Substitute Eq. (52) and Eq. (53) into Eq. (51), we note that an upper bound of ( ) ( )1 0v vk k
¥ ¥-  can be 

achieved by setting ( )0 1ns = -  and ( ) , 0n L Ls q q= < < , and at the same time ( )0 1ms = -  and 

( ) 1, 0m Ls q q= - " > , which can be represented as follows 

 ( ) ( ) ( )1 0 1v v rk k a r¥ ¥- < + - . (54) 
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Thereby, if ( )( ) ( )[ ]1 1 2 1rb a e a r r- - + - < , then there is no social norm which can be sustained as 

an equilibrium. It is obvious that this inequality is satisfied when ( )[ ]1 ra r r- + <  or ( )[ ]1 2 re r r- + < . 

Therefore, there is no social norm equilibrium if 1n r

r
a a

r
> = -

+
 or 

1
1

2n r

r
e e

r

é ù
ê ú> = -ê ú+ë û

, and 

Corollary 1 is proved. 

To prove the next two corollaries, we design a strategy s  by setting its ( )0 1ns = - , 

( ) 1, 0n L Ls q q= - < < . Therefore, the service threshold ( ) 0, 0m Ls q q= £ < . The ( )vk qD  of s  is 

( )( )1 L rth-  when 1q = , ( ) ( ) ( )( )1 0L r Lt t th h h r+ - -  when Lq = , and 0  otherwise. Setting 1L = , a 

sufficient condition that s  can be enforced in a social norm equilibrium k  is thus 

 ( )( )1 1 2 rb a e r- - ³ . (55) 

Therefore, when 1 /s ra a r< = - , Eq. (55) can always be satisfied when 1b   and 0e  , there is 

at least one social norm equilibrium with a punishment length 1L = . Similarly, when 

( )1
1 /

2s re e r< = - , Eq. (55) can always be satisfied when 1b   and 0a  , we thus have the same 

conclusion. Therefore, Corollary 2 and 3 are proved. ■ 

APPENDIX E 

PROOF OF LEMMA 5 

When 0e = , we design the social strategy as ( ){ }1,m Ls q q= - " , then we can compute the overall 

utilities as 
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From Eq. (15), no L- peer has the incentive to deviate from the social norm deliberately when 

1

1 1

L

r
d

d r
d d

æ ö÷ç ÷- ³ç ÷ç ÷ç - -è ø
. When 

r

r
d

r
³

+
, this inequality can always be satisfied as long as L  is large 

enough. Since there is no reputation update error, all peers will remain as innocent if following the social 

norm. In this case, full cooperation can be achieved with U  being reached.  

When 0e > , there is always a non-zero fraction of 0- peers in the network, i.e. ( ) ( )0 1 0th a e= - > . 

U  can be reached in this case if and only if ( ){ }1,ms q q= - " , i.e. all peers in the network mutually help 

each other. In this case, the stage game utilities as well as the overall utilities for all peers are the same, 
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denoted as vs  and vs
¥ . As the right side of Eq. (15) and Eq. (16) become 0, no social norm equilibrium 

can be sustained in this case with any positive service cost 0r > . Therefore,  U  can never be reached by 

a social norm equilibrium. ■ 

APPENDIX F 

FIGURES 
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Figure 1. The schematic representation of a social norm 
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Figure 2. A schematic representation of the method to compute the optimal norm protocol 
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Figure 5. CP’s performance along with a  and e ; 
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Figure 6. CP’s performance along with b  and l  
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Figure 7. CP’s performance along with da  and ca  
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Figure 8. The optimal initial reputation and the resulting social utility along with the new identity cost 
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