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Abstract—The last decade has witnessed a tremendous growth
in the volume as well as the diversity of multimedia content
generated by a multitude of sources (news agencies, social media,
etc.). Faced with a variety of content choices, consumers are
exhibiting diverse preferences for content; their preferences often
depend on the context in which they consume content as well
as various exogenous events. To satisfy the consumers’ demand
for such diverse content, multimedia content aggregators (CAs)
have emerged which gather content from numerous multimedia
sources. A key challenge for such systems is to accurately predict
what type of content each of its consumers prefers in a certain
context, and adapt these predictions to the evolving consumers’
preferences, contexts and content characteristics. We propose a
novel, distributed, online multimedia content aggregation frame-
work, which gathers content generated by multiple heterogeneous
producers to fulfill its consumers’ demand for content. Since
both the multimedia content characteristics and the consumers’
preferences and contexts are unknown, the optimal content
aggregation strategy is unknown a priori. Our proposed content
aggregation algorithm is able to learn online what content
to gather and how to match content and users by exploiting
similarities between consumer types. We prove bounds for our
proposed learning algorithms that guarantee both the accuracy
of the predictions as well as the learning speed. Importantly,
our algorithms operate efficiently even when feedback from
consumers is missing or content and preferences evolve over time.
Illustrative results highlight the merits of the proposed content
aggregation system in a variety of settings.

Index Terms—Social multimedia, distributed online learning,
content aggregation, multi-armed bandits.

I. INTRODUCTION

A plethora of multimedia applications (web-based TV [2],
[3], personalized video retrieval [4], personalized news aggre-
gation [5], etc.) are emerging which require matching multime-
dia content generated by distributed sources with consumers
exhibiting different interests. The matching is often performed
by CAs (e.g., Dailymotion, Metacafe [6]) that are responsible
for mining the content of numerous multimedia sources in
search of finding content which is interesting for the users.
Both the characteristics of the content and preference of the
consumers are evolving over time. An example of the system
with users, CAs and multimedia sources is given in Fig. 1.

Each user is characterized by its context, which is a real-
valued vector, that provides information about the users’
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Fig. 1. Operation of the distributed content aggregation system. (i) A
user with type/context xi(t) arrives to Content Aggregator (CA) i, (ii) CA
i chooses a matching action (either requests content from another CA or
requests content from a multimedia source in its own network).

content preferences. We assume a model where users arrive
sequentially to a CA, and based on the type (context) of the
user, the CA requests content from either one of the multime-
dia sources that it is connected to or from another CA that it
is connected to. The context can represent information such
as age, gender, search query, previously consumed content,
etc. It may also represent the type of the device that the user
is using [7] (e.g., PDA, PC, mobile phone). The CA’s role
is to match its user with the most suitable content, which
can be accomplished by requesting content from the most
suitable multimedia source.1 Since both the content generated
by the multimedia sources and the user’s characteristics change
over time, it is unknown to the CA which multimedia source
to match with the user. This problem can be formulated
as an online learning problem, where the CA learns the
best matching by exploring matchings of users with different
content providers. After a particular content matching is made,
the user “consumes” the content, and provides feedback/rating,
such as like or dislike.2 It is this feedback that helps a CA
learn the preferences of its users and the characteristics of the
content that is provided by the multimedia sources. Since this

1Although we use the term request to explain how content from a multime-
dia source is mined, our proposed method works also when a CA extracts the
content from the multimedia source, without any decision making performed
by the multimedia source.

2Our framework also works when the feedback is missing for some users.
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is a learning problem we equivalently call a CA, a content
learner or simply, a learner.

Two possible real-world applications of content aggregation
are business news aggregation and music aggregation. Busi-
ness news aggregators can collect information from a vari-
ety of multinational and multilingual sources and make per-
sonalized recommendations to specific individuals/companies
based on their unique needs (see e.g. [8]). Music aggrega-
tors enable matching listeners with music content they enjoy
both within the content network of the listeners as well as
outside this network. For instance, distributed music aggre-
gators can facilitate the sharing of music collections owned
by diverse users without the need for centralized content
manager/moderator/providers (see e.g. [9]). A discussion of
how these applications can be modeled using our framework
is given in Section III. Moreover, our proposed methods are
tested on real-world datasets related to news aggregation and
music aggregation in Section VII.

For each CA i, there are two types of users: direct and
indirect. Direct users are the users that visit the website of
CA i to search for content. Indirect users are the users of
another CA that requests content from CA i. A CA’s goal
is to maximize the number of likes received from its users
(both direct and indirect). This objective can be achieved by
all CAs by the following distributed learning method: all CAs
learn online which matching action to take for its current user,
i.e., obtain content from a multimedia source that is directly
connected, or request content from another CA. However,
it is not trivial how to use the past information collected
by the CAs in an efficient way, due to the vast number of
contexts (different user types) and dynamically changing user
and content characteristics. For instance, a certain type of
content may become popular among users at a certain point
in time, which will require the CA to obtain content from the
multimedia source that generates that type of content.

To jointly optimize the performance of the multimedia
content aggregation system, we propose an online learning
methodology that builds on contextual bandits [10], [11]. The
performance of the proposed methodology is evaluated using
the notion of regret: the difference between the expected total
reward (number of content likes minus costs of obtaining the
content) of the best content matching strategy given complete
knowledge about the user preferences and content character-
istics and the expected total reward of the algorithm used by
the CAs. When the user preferences and content characteristics
are static, our proposed algorithms achieve sublinear regret in
the number of users that have arrived to the system.3 When
the user preferences and content characteristics are slowly
changing over time, our proposed algorithms achieve ε time-
averaged regret, where ε > 0 depends on the rate of change
of the user and content characteristics.

The remainder of the paper is organized as follows. In
Section II, we describe the related work and highlight the
differences from our work. In Section III, we describe the
decentralized content aggregation problem, the optimal content

3We use index t to denote the number of users that have arrived so far. We
also call t the time index, and assume that one user arrives at each time step.

matching scheme given the complete system model, and the
regret of a learning algorithm with respect to the optimal
content matching scheme. Then, we consider the model with
unknown, static user preferences and content characteristics
and propose a distributed online learning algorithm in Section
IV. The analysis of the unknown, dynamic user preferences
and content characteristics are given in Section VI. Using real-
world datasets, we provide numerical results on the perfor-
mance of our distributed online learning algorithms in Section
VII. Finally, the concluding remarks are given in Section VIII.

II. RELATED WORK

Related work can be categorized into two: related work on
recommender systems and related work on online learning
methods called multi-armed bandits.

A. Related work on recommender systems and content match-
ing

A recommender system recommends items to its users based
on the characteristics of the users and the items. The goal
of a recommender system is to learn which users like which
items, and recommend items such that the number of likes is
maximized. For instance, in [5], [12] a recommender system
that learns the preferences of its users in an online way
based on the ratings submitted by the users is provided. It
is assumed that the true relevance score of an item for a
user is a linear function of the context of the user and the
features of the item. Under this assumption, an online learning
algorithm is proposed. In contrast, we consider a different
model, where the relevance score need not be linear in the
context. Moreover, due to the distributed nature of the problem
we consider, our online learning algorithms need an additional
phase called the training phase, which accounts for the fact
that the CAs are uncertain about the information of the other
aggregators that they are linked with. We focus on the long run
performance and show that the regret per unit time approaches
zero when the user and content characteristics are static.
An online learning algorithm for a centralized recommender
which updates its recommendations as both the preferences of
the users and the characteristics of items change over time is
proposed in [13].

The general framework which exploits the similarities be-
tween the past users and the current user to recommend content
to the current user is called collaborative filtering [14]–[16].
These methods find the similarities between the current user
and the past users by examining their search and feedback
patterns, and then based on the interactions with the past
similar users, matches the user with the content that has
the highest estimated relevance score. For example, the most
relevant content can be the content that is liked the highest
number of times by similar users. Groups of similar users can
be created by various methods such as clustering [15], and
then, the matching will be made based on the content matched
with the past users that are in the same group.

The most striking difference between our content matching
system and previously proposed is that in prior works, there is
a central CA which knows the entire set of different types of
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Our work [5], [12] [15] [14] [19]
Distributed Yes No No No No

Reward model Hölder Linear N/A N/A N/A
Confidence bounds Yes No No No No

Regret bound Yes Yes No No No
Dynamic user Yes No Yes Yes Yes

/content distribution

TABLE I
COMPARISON OF OUR WORK WITH OTHER WORK IN RECOMMENDER

SYSTEMS

content, and all the users arrive to this central CA. In contrast,
we consider a decentralized system consisting of many CAs,
many multimedia sources that these CAs are connected to,
and heterogeneous user arrivals to these CAs. These CAs are
cooperating with each other by only knowing the connections
with their own neighbors but not the entire network topology.
Hence, a CA does not know which multimedia sources another
CA is connected to, but it learns over time whether that CA has
access to content that the users like or not. Thus, our model
can be viewed as a giant collection of individual CAs that are
running in parallel.

Another line of work [17], [18] uses social streams mined
in one domain, e.g., Twitter, to build a topic space that
relates these streams to content in the multimedia domain.
For example, in [17], Tweet streams are used to provide video
recommendations in a commercial video search engine. A
content adaptation method is proposed in [7] which enables
the users with different types of contexts and devices to receive
content that is in a suitable format to be accessed. Video
popularity prediction is studied in [18], where the goal is
to predict if a video will become popular in the multimedia
domain, by detecting social trends in another social media do-
main (such as Twitter), and transferring this knowledge to the
multimedia domain. Although these methods are very different
from our methods, the idea of transferring knowledge from
one multimedia domain to another can be carried out by CAs
specialized in specific types of cross-domain content matching
For instance, one CA may transfer knowledge from tweets to
predict the content which will have a high relevance/popularity
for a user with a particular context, while another CA may scan
through the Facebook posts of the user’s friends to calculate
the context of the domain in addition to the context of the
user, and provide a matching according to this.

The advantages of our proposed approach over prior work
in recommender systems are: (i) systematic analysis of rec-
ommendations’ performance, including confidence bounds on
the accuracy of the recommendations; (ii) no need for a priori
knowledge of the users’ preferences (i.e., system learns on-
the-fly); (iii) achieve high accuracy even when the users’
characteristics and content characteristics are changing over
time; (iv) all these features are enabled in a network of
distributed CAs.

The differences of our work from the prior work in recom-
mender systems is summarized in Table I.

B. Related Work on Multi-armed Bandits

Other than distributed content recommendation, our learning
framework can be applied to any problem that can be formu-
lated as a decentralized contextual bandit problem. Contextual

bandits have been studied before in [10], [11], [20]–[22] in a
single agent setting, where the agent sequentially chooses from
a set of alternatives with unknown rewards, and the rewards
depend on the context information provided to the agent at
each time step. In [5], a contextual bandit algorithm named
LinUCB is proposed for recommending personalized news
articles, which is variant of the UCB algorithm [23] designed
for linear payoffs. Numerical results on real-world Internet
data are provided, but no theoretical results on the resulting
regret are derived. The main difference of our work from single
agent contextual bandits is that: (i) a three phase learning
algorithm with training, exploration and exploitation phases is
needed instead of the standard two phase, i.e., exploration and
exploitation phases, algorithms used in centralized contextual
bandit problems; (ii) the adaptive partitions of the context
space should be formed in a way that each learner/aggregator
can efficiently utilize what is learned by other learners about
the same context; (iii) the algorithm is robust to missing
feedback (some users do not rate the content).

III. PROBLEM FORMULATION

The system model is shown in Fig. 1. There are M
content aggregators (CAs) which are indexed by the set
M := {1, 2, . . . ,M}. We also call each CA a learner since it
needs to learn which type of content to provide to its users. Let
M−i :=M−{i} be the set of CAs that CA i can choose from
to request content. Each CA has access to the contents over
its content network as shown in Fig. 1. The set of contents
in CA i’s content network is denoted by Ci. The set of all
contents is denoted by C := ∪i∈MCi. The system works in
a discrete time setting t = 1, 2, . . . , T , where the following
events happen sequentially, in each time slot: (i) a user with
context xi(t) arrives to each CA i ∈ M,4 (ii) based on the
context of its user each CA matches its user with a content
(either from its own content network or by requesting content
from another CA), (iii) the user provides a feedback, denoted
by yi(t), which is either like (yi(t) = 1) or dislike (yi(t) = 0).

The set of content matching actions of CA i is denoted
by Ki := Ci ∪M−i. Let X = [0, 1]d be the context space,5

where d is the dimension of the context space. The context
can include many properties of the user such as age, gender,
income, previously liked content, etc. We assume that all these
quantities are mapped into [0, 1]d. For instance, this mapping
can be established by feature extraction methods such as the
one given in [5]. Another method is to represent each property
of a user by a real number between [0, 1] (e.g., normalize
the age by a maximum possible age, represent gender by set
{0, 1}, etc.), without feature extraction. The feedback set of a
user is denoted by Y := {0, 1}. Let Cmax := maxi∈M |Ci|.
We assume that all CAs know Cmax but they do not need to
know the content networks of other CAs.

The following two examples demonstrate how business
news aggregation and music aggregation fits our problem
formulation.

4Although in this model user arrivals are synchronous, our framework will
work for asynchronous user arrivals as well.

5In general, our results will hold for any bounded subspace of Rn.
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Example 1: Business news aggregation. Consider a dis-
tributed set of news aggregators that operate in different
countries (for instance a European news aggregator network as
in [8]). Each news aggregator’s content network (as portrayed
in Fig. 1 of the manuscript) consists of content producers (mul-
timedia sources) that are located in specific regions/countries.
Consider a user with context x (e.g. age, gender, nationality,
profession) who subscribes to the CA A, which is located
in the country where the user lives. This CA has access to
content from local producers in that country but it can also
request content from other CAs, located in different countries.
Hence, a CA has access to (local) content generated in other
countries. In such scenarios, our proposed system is able to
recommend to the user subscribing to CA A also content
from other CAs, by discovering the content that is most
relevant to that user (based on its context x) across the entire
network of CAs. For instance, for a user doing business in
the transportation industry, our content aggregator system may
learn to recommend road construction news, accidents or gas
prices from particular regions that are on the route of the
transportation network of the user.

Example 2: Music aggregation. Consider a distributed set
of music aggregators that are specialized in specific genres
of music: classical, jazz, rock, rap, etc. Our proposed model
allows music aggregators to share content to provide person-
alized recommendation for a specific user. For instance, a
user that subscribes (frequents/listens) to the classical music
aggregator may also like specific jazz tracks. Our proposed
system is able to discover and recommend to that user also
other music that it will enjoy in addition to the music available
to/owned by in aggregator to which it subscribes.

A. User and Content Characteristics

In this paper we consider two types of user and content
characteristics. First, we consider the case when the user and
content characteristics are static, i.e., they do not change over
time. For this case, for a user with context x, πc(x) denotes
the probability that the user will like content c. We call this
the relevance score of content c.

The second case we consider corresponds to the scenario
when the characteristics of the users and content are dynamic.
For online multimedia content, especially for social media, it
is known that both the user and the content characteristics
are dynamic and noisy [24], hence the problem exhibits
concept drift [25]. Formally, a concept is the distribution of
the problem, i.e., the joint distribution of the user and content
characteristics, at a certain point of time [26]. Concept drift is
a change in this distribution. For the case with concept drift,
we propose a learning algorithm that takes into account the
speed of the drift to decide what window of past observations
to use in estimating the relevance score. The proposed learning
algorithm has theoretical performance guarantees in contrast
to prior work on concept drift which mainly deal with the
problem in a ad-hoc manner. Indeed, it is customary to assume
that online content is highly dynamic. A certain type of content
may become popular for a certain period of time, and then,
its popularity may decrease over time and a new content may
emerge as popular. In addition, although the type of the content

remains the same, such as soccer news, its popularity may
change over time due to exogenous events such as the World
Cup etc. Similarly, a certain type of content may become
popular for a certain type of demographics (e.g., users of a
particular age, gender, profession, etc.). However, over time
the interest of these users may shift to other types of content.
In such cases, where the popularity of content changes over
time for a user with context x, πc(x, t) denotes the probability
that the user at time t will like content c.

As we stated earlier, a CA i can either recommend content
from multimedia sources that it is directly connected to or
can ask another CA for content. By asking for content c from
another CA j, CA i will incur cost dij ≥ 0. For the purpose
of our paper, the cost is a generic term. For instance, it can
be a payment made to CA j to display it to CA i’s user, or
it may be associated with the advertising loss CA i incurs by
directing its user to CA j’s website. When the cost is payment,
it can be money, tokens [27] or Bitcoins [28]. Since this cost is
bounded, without loss of generality we assume that dij ∈ [0, 1]
for all i, j ∈ M. In order make our model general, we also
assume that there is a cost associated with recommending a
type of content c ∈ Ci, which is given by dic ∈ [0, 1], for CA
i. For instance, this can be a payment made to the multimedia
source that owns content c.

An intrinsic assumption we make is that the CAs are
cooperative. That is, CA j ∈ M−i will return the content
that is mostly to be liked by CA i’s user when asked by CA
i to recommend a content. This cooperative structure can be
justified as follows. Whenever a user likes the content of CA
j (either its own user or user of another CA), CA j obtains a
benefit. This can be either an additional payment made by CA
i when the content recommended by CA j is liked by CA i’s
user, or it can simply be the case that whenever a content of
CA j is liked by someone its popularity increases. However,
we assume that the CAs’ decisions do not change their pool
of users. The future user arrivals to the CAs are independent
of their past content matching strategies. For instance, users
of a CA may have monthly or yearly subscriptions, so they
will not shift from one CA to another CA when they like the
content of the other CA.

The goal of CA i is to explore the matching actions in Ki
to learn the best content for each context, while at the same
time exploiting the best content for the user with context xi(t)
arriving at each time instance t to maximize its total number
of likes minus costs. CA i’s problem can be modeled as a
contextual bandit problem [10], [21], [22], [29], where likes
and costs translate into rewards. In the next subsection, we
formally define the benchmark solution which is computed
using perfect knowledge about the probability that a content
c will be liked by a user with context x (which requires
complete knowledge of user and content characteristics). Then,
we define the regret which is the performance loss due to
uncertainty about the user and content characteristics.

B. Optimal Content Matching with Complete Information

Our benchmark when evaluating the performance of the
learning algorithms is the optimal solution which always rec-
ommends the content with the highest relevance score minus
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cost for CA i from the set C given context xi(t) at time t. This
corresponds to selecting the best matching action in Ki given
xi(t). Next, we define the expected rewards of the matching
actions, and the action selection policy of the benchmark. For
a matching action k ∈ M−i, its relevance score is given as
πk(x) := πc∗k(x)(x), where c∗k(x) := arg maxc∈Cj πc(x). For
a matching action k ∈ Ci its relevance score is equal to the
relevance score of content k. The expected reward of CA i
from choosing action k ∈ Ki is given by the quasilinear utility
function

µik(x) := πk(x)− dik (1)

where dik ∈ [0, 1] is the normalized cost of choosing action k
for CA i. Our proposed system will also work for more general
expected reward functions as long as the expected reward of a
learner is a function of the relevance score of the chosen action
and the cost (payment, communication cost, etc.) associated
with choosing that action. The oracle benchmark is given by

k∗i (x) := arg max
k∈Ki

µik(x) ∀x ∈ X . (2)

The oracle benchmark depends on relevance scores as well as
costs of matching content from its own content network or
other CA’s content network. The case dik = 0 for all k ∈ Ki
and i ∈ M, corresponds to the scheme in which content
matching has zero cost, hence k∗i (x) = arg maxk∈Ki πk(x) =
arg maxc∈C πc(x). This corresponds to the best centralized
solution, where CAs act as a single entity. On the other
hand, when dik ≥ 1 for all k ∈ M−i and i ∈ M, in the
oracle benchmark a CA must not cooperate with any other
CA and should only use its own content. Hence k∗i (x) =
arg maxc∈Ci(πc(x) − dic). In the following subsections, we
will show that independent of the values of relevance scores
and costs, our algorithms will achieve sublinear regret (in the
number of users or equivalently time) with respect to the oracle
benchmark.

C. The Regret of Learning

In this subsection we define the regret as a performance
measure of the learning algorithm used by the CAs. Simply,
the regret is the loss incurred due to the unknown system
dynamics. Regret of a learning algorithm which selects the
matching action/arm ai(t) at time t for CA i is defined with
respect to the best matching action k∗i (x) given in (2). Then,
the regret of CA i at time T is

Ri(T ) :=

T∑
t=1

(
πk∗i (xi(t))(xi(t))− d

i
k∗i (xi(t))

)
− E

[
T∑
t=1

(
I(yi(t) = L)− diai(t)

)]
. (3)

Regret gives the convergence rate of the total expected reward
of the learning algorithm to the value of the optimal solution
given in (2). Any algorithm whose regret is sublinear, i.e.,
Ri(T ) = O(T γ) such that γ < 1, will converge to the optimal
solution in terms of the average reward.

A summary of notations is given in Table II. In the next sec-
tion, we propose an online learning algorithm which achieves

M: Set of all CAs
Ci: Contents in the Content Network of CA i
Cmax: maxi∈M |Ci|
C: Set of all contents
X = [0, 1]d: Context space
Y: Set of feedbacks a user can give
xi(t): d-dimensional context of tth user of CA i
yi(t): Feedback of the tth user of CA i
Ki: Set of content matching actions of CA i
πc(x): Relevance score of content c for context x
dik: Cost of choosing matching action k for CA i
µi
k(x): Expected reward (static) of CA i from

matching action k for context x
k∗i (x): Optimal matching action of CA i given
context x (oracle benchmark)
Ri(T ): Regret of CA i at time T
βa :=

∑∞
t=1 1/ta

TABLE II
NOTATIONS USED IN PROBLEM FORMULATION.

sublinear regret when the user and content characteristics are
static.

IV. A DISTRIBUTED ONLINE CONTENT MATCHING
ALGORITHM

In this section we propose an online learning algorithm for
content matching when the user and content characteristics
are static. In contrast to prior online learning algorithms that
exploit the context information [10], [11], [20]–[22], [29],
which consider a single learner setting, the proposed algorithm
helps a CA to learn from the experience of other CAs. With
this mechanism, a CA is able to recommend content from
multimedia sources that it has no direct connection, without
needing to know the IDs of such multimedia sources and their
content. It learns about these multimedia sources only through
the other CAs that it is connected to.

In order to bound the regret of this algorithm analytically we
use the following assumption. When the content characteristics
are static, we assume that each type of content has similar
relevance scores for similar contexts; we formalize this in
terms of a Lipschitz condition.

Assumption 1: There exists L > 0, γ > 0 such that for all
x, x′ ∈ X and c ∈ C, we have |πc(x)−πc(x′)| ≤ L||x−x′||γ .

Assumption 1 indicates that the probability that a type c
content is liked by users with similar contexts will be similar to
each other. For instance, if two users have similar age, gender,
etc., then it is more likely that they like the same content. We
call L the similarity constant and γ the similarity exponent.
These parameters will depend on the characteristics of the
users and the content. We assume that γ is known by the CAs.
However, an unknown γ can be estimated online using the
history of likes and dislikes by users with different contexts,
and our proposed algorithms can be modified to include the
estimation of γ.

In view of this assumption, the important question becomes
how to learn from the past experience which content to
match with the current user. We answer this question by
proposing an algorithm which partitions the context space of
a CA, and learns the relevance scores of different types of
content for each set in the partition, based only on the past
experience in that set. The algorithm is designed in a way to
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Fig. 2. Content matching within own content network.

Fig. 3. Content matching from the network of another CA.

achieve optimal tradeoff between the size of the partition and
the past observations that can be used together to learn the
relevance scores. It also includes a mechanism to help CAs
learn from each other’s users. We call our proposed algorithm
the DIStributed COntent Matching algorithm (DISCOM), and
its pseudocode is given in Fig. 4, Fig. 5 and Fig. 6.

Each CA i has two tasks: matching content with its own
users and matching content with the users of other CAs when
requested by those CAs. We call the first task the maximization
task (implemented by DISCOMmax given in Fig. 5), since the
goal of CA i is to maximize the number of likes from its
own users. The second task is called the cooperation task
(implemented by DISCOMcoop given in Fig. 6), since the
goal of CA i is to help other CAs obtain content from its
own content network in order to maximize the likes they
receive from their users. This cooperation is beneficial to
CA i because of numerous reasons. Firstly, since every CA
cooperates, CA i can reach a much larger set of content
including the content from other CA’s content networks, hence
will be able to provide content with higher relevance score to
its users. Secondly, when CA i helps CA j, it will observe the
feedback of CA j’s user for the matched content, hence will
be able to update the estimated relevance score of its content,
which is beneficial if a user similar to CA j’s user arrives
to CA i in the future. Thirdly, payment mechanisms can be
incorporated to the system such that CA i gets a payment from
CA j when its content is liked by CA j’s user.

In summary, there are two types of content matching actions
for a user of CA i. In the first type, the content is recommended
from a source that is directly connected to CA i, while in
the second type, the content is recommended from a source
that CA i is connected through another CA. The information
exchange between multimedia sources and CAs for these two
types of actions is shown in Fig. 2 and Fig. 3.

Let T be the time horizon of interest (equivalent to the
number of users that arrive to each CA). DISCOM creates a
partition of X = [0, 1]d based on T . For instance T can be

the average number of visits to the CA’s website in one day.
Although in reality the average number of visits to different
CAs can be different, our analysis of the regret in this section
will hold since it is the worst-case analysis (assuming that
users arrive only to CA i, while the other CAs only learn
through CA i’s users). Moreover, the case of heterogeneous
number of visits can be easily addressed if each CA informs
other CAs about its average number of visits. Then, CA i can
keep M different partitions of the context space; one for itself
and M −1 for the other CAs. If called by CA j, it will match
a content to CA j’s user based on the partition it keeps for
CA j. Hence, we focus on the case when T is common to all
CAs.

We first define mT as the slicing level used by DISCOM,
which is an integer that is used to partition X . DISCOM forms
a partition of X consisting of (mT )d sets (hypercubes) where
each set is a d-dimensional hypercube with edge length 1/mT .
This partition is denoted by PT . The hypercubes in PT are
oriented such that one of them has a corner located at the
origin of the d-dimensional Euclidian space. It is clear that the
number of hypercubes is increasing in mT , while their size is
decreasing in mT . When mT is small each hypercube covers
a large set of contexts, hence the number of past observations
that can be used to estimate relevance scores of matching
actions in each set is large. However, the variation of the true
relevance scores of the contexts within a hypercube increases
with the size of the hypercube. DISCOM should set mT to a
value that balances this tradeoff.

A hypercube in PT is denoted by p. The hypercube in PT
that contains context xi(t) is denoted by pi(t). When xi(t)
is located at a boundary of multiple hypercubes in PT , it is
randomly assigned to one of these hypercubes.

DISCOMmax operates as follows. CA i matches its user at
time t with a content by taking a matching action based on
one of the three phases: training phase in which CA i requests
content from another CA j for the purpose of helping CA j
to learn the relevance score of content in its content network
for users with context xi(t) (but CA i does not update the
relevance score for CA j because it thinks that CA j may not
know much about its own content), exploration phase in which
CA i selects a matching action in Ki and updates its relevance
score based on the feedback of its user, and exploitation phase
in which CA i chooses the matching action with the highest
relevance score minus cost.

Since the CAs are cooperative, when another CA requests
content from CA i, CA i will choose content from its content
network with the highest estimated relevance score for the user
of the requesting CA. To maximize the number of likes minus
costs in exploitations, CA i must have an accurate estimate
of the relevance scores of other CAs. This task is not trivial
since CA i does not know the content network of other CAs. In
order to do this, CA i should smartly select which of its users’
feedbacks to use when estimating the relevance score of CA j.
The feedbacks should come from previous times at which CA
i has a very high confidence that the content of CA j matched
with its user is the one with the highest relevance score for the
context of CA i’s user. Thus, the training phase of CA i helps
other CAs build accurate estimates about the relevance scores
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DISCOM for CA i:
1: Input: H1(t), H2(t), H3(t), T , mT

2: Initialize: Partition X into hypercubes denoted by PT

3: Initialize: Set counters N i
p = 0, ∀p ∈ PT ,

N i
k,p = 0, ∀k ∈ Ki, p ∈ PT , N tr,i

j,p = 0,∀j ∈M−i, p ∈ PT

4: Initialize: Set relevance score estimates r̄ik,p = 0, ∀k ∈ Ki,
p ∈ PT

5: while t ≥ 1 do
6: Run DISCOMmax to find p = pi(t), to obtain a matching

action ai, and value of train flag
7: If ai ∈M−i ask CA ai for content and pass xi(t)
8: Receive CAi(t), the set of CAs who requested content

from CA i, and their contexts
9: if CAi(t) 6= ∅ then

10: Run DISCOMcoop to obtain the content to be selected
bi := {bi,j}j∈CAi(t) and hypercubes that the contexts
of the users in CAi(t) lie in pi := {pi,j}j∈CAi(t)

11: end if
12: if ai ∈ Ci then
13: Pay cost diai , obtain content ai
14: Show ai to the user, receive feedback r ∈ {0, 1}

drawn from Berai(xi(t))
a

15: else
16: Pay cost diai , obtain content bai,i from CA ai
17: Show bai,i to the user, receive feedback r ∈ {0, 1}

drawn from Berbai,i(xi(t))
18: end if
19: if train = 1 then
20: N tr,i

ai,p + +
21: else
22: r̄iai,p = (r̄iai,pN

i
ai,p + r)/(N i

ai,p + 1)
23: N i

p + +, N i
ai,p + +

24: end if
25: if CAi(t) 6= ∅ then
26: for j ∈ CAi(t) do
27: Send content bi,j to CA j’s user
28: Observe feedback r drawn from Berbi,j (xj(t))

29: r̄ibi,j ,pi,j =
r̄ibi,j ,pi,j

Nibi,j ,pi,j
+r

Ni
bi,j ,pi,j

+1

30: N i
pi,j + +, N i

bi,j ,pi,j
+ +

31: end for
32: end if
33: t = t+ 1
34: end while

aBerai (xi(t)) is the Bernoulli distribution with expected value
πai (xi(t))

Fig. 4. Pseudocode for DISCOM algorithm.

of their content, before CA i uses any feedback for content
coming from these CAs to form relevance score estimates
about them. In contrast, the exploration phase of CA i helps
it to build accurate estimates about the relevance score of its
matching actions.

At time t, the phase that CA i will be in is determined by
the amount of time it had explored, exploited or trained for
past users with contexts similar to the context of the current
user. For this CA i keeps counters and control functions which
are described below. Let N i

p(t) be the number of user arrivals
to CA i with contexts in p ∈ PT by time t (its own arrivals
and arrivals to other CAs who requested content from CA i)
except the training phases of CA i. For c ∈ Ci, let N i

c,p(t)
be the number of times content c is selected in response to a
user arriving to CA i with context in hypercube p by time t
(including times other CAs request content from CA i for their
users with contexts in set p). Other than these, CA i keeps two
counters for each other CA in each set in the partition, which
it uses to decide the phase it should be in. The first one, i.e.,

DISCOMmax (maximization part of DISCOM) for CA i:

1: train = 0
2: Find the hypercube in PT that xi(t) belongs to, i.e., pi(t)
3: Let p = pi(t)
4: Compute the set of under-explored matching actions Cue

i,p(t)
given in (4)

5: if Cue
i,p(t) 6= ∅ then

6: Select ai randomly from Cue
i,p(t)

7: else
8: Compute the set of training candidates Mct

i,p(t) given in
(5)

9: //Update the counters of training candidates
10: for j ∈Mut

i,p(t) do
11: Obtain N j

p from CA j, set N tr,i
j,p = N j

p −N i
j,p

12: end for
13: Compute the set of under-trained CAs Mut

i,p(t) given in
(6)

14: Compute the set of under-explored CAs Mue
i,p(t) given in

(7)
15: if Mut

i,p(t) 6= ∅ then
16: Select ai randomly from Mut

i,p(t), train = 1
17: else if Mue

i,p(t) 6= ∅ then
18: Select ai randomly from Mue

i,p(t)
19: else
20: Select ai randomly from arg maxk∈Ki r̄

i
k,p − dik

21: end if
22: end if

Fig. 5. Pseudocode for the maximization part of DISCOM algorithm.

DISCOMcoop (cooperation part of DISCOM) for CA i

1: for j ∈ CAi(t) do
2: Find the set in PT that xj(t) belongs to, i.e., pi,j
3: Compute the set of under-explored matching actions

Cue
i,pi,j

(t) given in (4)
4: if Cue

i,pi,j
(t) 6= ∅ then

5: Select bi,j randomly from Cue
i,pi,j

(t)
6: else
7: bi,j = arg maxc∈Ci r̄

i
c,pi,j

8: end if
9: end for

Fig. 6. Pseudocode for the cooperation part of DISCOM algorithm.

N tr,i
j,p (t), is an estimate on the number of user arrivals with

contexts in p to CA j from all CAs except the training phases
of CA j and exploration, exploitation phases of CA i. This
counter is only updated when CA i thinks that CA j should
be trained. The second one, i.e., N i

j,p(t), counts the number of
users of CA i with contexts in p for which content is requested
from CA j at exploration and exploitation phases of CA i by
time t.

At each time slot t, CA i first identifies pi(t). Then, it
chooses its phase at time t by giving highest priority to
exploration of content in its own content network, second
highest priority to training of the other CAs, third highest
priority to exploration of the other CAs, and lowest priority
to exploitation. The reason that exploration of own content
has a higher priority than training of other CAs is that it will
minimize the number of times CA i will be trained by other
CAs, which we describe below.

First, CA i identifies the set of under-explored content in
its content network:

Cue
i,p(t) := {c ∈ Ci : N i

c,p(t) ≤ H1(t)} (4)

where H1(t) is a deterministic, increasing function of t which
is called the control function. The value of this function will
affect the regret of DISCOM. For c ∈ Ci, the accuracy of
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relevance score estimates increase with H1(t), hence it should
be selected to balance the tradeoff between accuracy and
the number of explorations. If Cue

i,p(t) is non-empty, CA i
enters the exploration phase and randomly selects a content in
this set to explore. Otherwise, it identifies the set of training
candidates:

Mct
i,p(t) := {j ∈M−i : N tr,i

j,p (t) ≤ H2(t)} (5)

where H2(t) is a control function similar to H1(t). Accuracy
of other CA’s relevance score estimates of content in their own
networks increases with H2(t), hence it should be selected to
balance the possible reward gain of CA i due to this increase
with the reward loss of CA i due to the number of trainings. If
this set is non-empty, CA i asks the CAs j ∈Mct

i,p(t) to report
N j
p (t). Based in the reported values it recomputes N tr,i

j,p (t) as
N tr,i
j,p (t) = N j

p (t) − N i
j,p(t). Using the updated values, CA i

identifies the set of under-trained CAs:

Mut
i,p(t) := {j ∈M−i : N tr,i

j,p (t) ≤ H2(t)}. (6)

If this set is non-empty, CA i enters the training phase and
randomly selects a CA in this set to train it. WhenMct

i,p(t) or
Mut

i,p(t) is empty, this implies that there is no under-trained
CA, hence CA i checks if there is an under-explored matching
action. The set of CAs for which CA i does not have accurate
relevance scores is given by

Mue
i,p(t) := {j ∈M−i : N i

j,p(t) ≤ H3(t)} (7)

where H3(t) is also a control function similar to H1(t). If
this set is non-empty, CA i enters the exploration phase and
randomly selects a CA in this set to request content from to
explore it. Otherwise, CA i enters the exploitation phase in
which it selects the matching action with the highest estimated
relevance score minus cost for its user with context xi(t) ∈
p = pi(t), i.e.,

ai(t) ∈ arg max
k∈Ki

r̄ik,p(t)− dik (8)

where r̄ik,p(t) is the sample mean estimate of the relevance
score of CA i for matching action k at time t, which is
computed as follows. For j ∈ M−i, let E ij,p(t) be the set
of feedbacks collected by CA i at times it selected CA j
while CA i’s users’ contexts are in set p in its exploration
and exploitation phases by time t. For estimating the relevance
score of contents in its own content network, CA i can also
use the feedback obtained from other CAs’ users at times they
requested content from CA i. In order to take this into account,
for c ∈ Ci, let E ic,p(t) be the set of feedbacks observed by CA i
at times it selected its content c for its own users with contexts
in set p union the set of feedbacks observed by CA i when it
selected its content c for the users of other CAs with contexts
in set p who requests content from CA i by time t.

Therefore, sample mean relevance score of matching action
k ∈ Ki for users with contexts in set p for CA i is defined as
r̄ik,p(t) =

(∑
r∈Eik,p(t)

r
)
/|E ik,p(t)|, An important observation

is that computation of r̄ik,p(t) does not take into account the
matching costs. Let µ̂ik,p(t) := r̄ik,p(t)−dik be the estimated net
reward (relevance score minus cost) of matching action k for

L: Similarity constant. γ: Similarity exponent
T : Time horizon
mT : Slicing level of DISCOM
PT : DISCOM’s partition of X into (mT )d hypercubes
pi(t): Hypercube in PT that contains xi(t)
N i

p(t): Number of all user arrivals to CA i with contexts in
p ∈ PT by time t except the training phases of CA i
N i

c,p(t): Number of times content c is selected in response to
a user arriving to CA i with context in hypercube p by time t
N tr,i

j,p(t): Estimate of CA i on the number of user arrivals with
contexts in p to CA j from all CAs except the training phases
of CA j and exploration, exploitation phases of CA i
N i

j,p(t): Number of users of CA i with contexts in p for which
content is requested from CA j at exploration and exploitation
phases of CA i by time t
H1(t), H2(t), H3(t): Control functions of DISCOM
Cue
i,p(t): Set of under-explored content in Ci
Mct

i,p(t): Set of training candidates of CA i
Mut

i,p(t): Set of CAs under-trained by CA i
Mue

i,p(t): Set of CAs under-explored by CA i
r̄ik,p(t): Sample man relevance score of action k of CA i at time t
µ̂i
k,p(t) Estimated net reward of action k of CA i at time t

TABLE III
NOTATIONS USED IN DEFINITION OF DISCOM.

set p. Of note, when there is more than one maximizer of (8),
one of them is randomly selected. In order to run DISCOM,
CA i does not need to keep the sets E ik,p(t) in its memory.
r̄ik,p(t) can be computed by using only r̄ik,p(t − 1) and the
feedback at time t.

The cooperation part of DISCOM, i.e., DISCOMcoop oper-
ates as follows. Let CAi(t) be the set CAs who request content
from CA i at time t. For each j ∈ CAi(t), CA i first checks if
it has any under-explored content c for pj(t), i.e., c such that
N i
c,pj(t)

(t) ≤ H1(t). If so, it randomly selects one of its under-
explored content to match it with the user of CA j. Otherwise,
it exploits its content in Ci with the highest estimated relevance
score for CA j’s current user’s context, i.e.,

bi,j(t) ∈ arg max
c∈Ci

r̄ic,pj(t)(t). (9)

A summary of notations used in the description of DISCOM
is given in Table III. The following theorem provides a bound
on the regret of DISCOM.

Theorem 1: When DISCOM is run by all CAs with param-
eters H1(t) = t2γ/(3γ+d) log t, H2(t) = Cmaxt

2γ/(3γ+d) log t,
H3(t) = t2γ/(3γ+d) log t and mT =

⌈
T 1/(3γ+d)

⌉
,6 we have

Ri(T ) ≤ 4(M + Cmax + 1)β2

+ T
2γ+d
3γ+d

(
14Ldγ/2 + 12 + 4(|Ci|+M)MCmaxβ2

(2γ + d)/(3γ + d)

+2d+1Zi log T
)

+ T
d

3γ+d 2d+1(|Ci|+ 2(M − 1)),

i.e., Ri(T ) = Õ
(
MCmaxT

2γ+d
3γ+d

)
,7 where Zi = |Ci|+ (M −

1)(Cmax + 1).

6For a number r ∈ R, let dre be the smallest integer that is greater than
or equal to r.

7Õ(·) is the Big-O notation in which the terms with logarithmic growth
rates are hidden.
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Proof: The proof is given Appendix B.
For any d > 0 and γ > 0, the regret given in Theorem 1 is

sublinear in time (or number of user arrivals). This guarantees
that the regret per-user, i.e., the time averaged regret, converges
to 0 (limT→∞ E[Ri(T )]/T = 0). It is also observed that
the regret increases in the dimension d of the context. By
Assumption 1, a context is similar to another context if they
are similar in each dimension, hence number of hypercubes in
the partition PT increases with d.

In our analysis of the regret of DISCOM we assumed that
T is fixed and given as an input to the algorithm. DISCOM
can be made to run independently of the final time T by
using a standard method called the doubling trick (see, e.g.,
[10]). The idea is to divide time into rounds with geometrically
increasing lengths and run a new instance of DISCOM at each
round. For instance, consider rounds τ ∈ {1, 2, . . .}, where
each round has length 2τ . Run a new instance of DISCOM
at the beginning of each round with time parameter 2τ . This
modified version will also have Õ

(
T (2γ+d)/(3γ+d)

)
regret.

Maximizing the satisfaction of an individual user is as im-
portant as maximizing the overall satisfaction of all users. The
next corollary shows that by using DISCOM, CAs guarantee
that their users will almost always be provided with the best
content available within the entire content network.

Corollary 1: Assume that DISCOM is run with the set
of parameters given in Theorem 1. When DISCOM is in
exploitation phase for CA i, we have

P(µiai(t)(xi(t)) < µik∗i (xi(t))
(xi(t))− δT )

≤ 2|Ki|
t2

+
2|Ki|MCmaxβ2

tγ/(3γ+d)
.

where δT = (6Ldγ/2 + 6)T−γ/(3γ+d).
Proof: The proof is given Appendix C.

Remark 1: (Differential Services) Maximizing the perfor-
mance for an individual user is particularly important for
providing differential services based on the types of the users.
For instance, a CA may want to provide higher quality
recommendations to a subscriber (high type user) who has
paid for the subscription compared to a non-subscriber (low
type user). To do this, the CA can exploit the best content for
the subscribed user, while perform exploration on a different
user that is not subscribed.

V. REGRET WHEN FEEDBACK IS MISSING

When analyzing the performance of DISCOM, we assumed
that the users always provide a feedback: like or dislike.
However, in most of the online content aggregation platforms
user feedback is not always available. In this section we
consider the effect of missing feedback on the performance
of the proposed algorithm. We assume that each user gives a
feedback with probability pr (which is unknown to the CAs).
If the user at time t does not give feedback, we assume that
DISCOM does not update its counters. This will result in
a larger number of trainings and explorations compared to
the case when feedback is always available. The following
theorem gives an upper bound on the regret of DISCOM for
this case.

Theorem 2: Let the DISCOM algorithm run with parame-
ters H1(t) = t2γ/(3γ+d) log t, H2(t) = Cmaxt

2γ/(3γ+d) log t,
H3(t) = t2γ/(3γ+d) log t, and mT =

⌈
T 1/(3γ+d)

⌉
. Then, if a

user reveals its feedback with probability pr, we have for CA
i,

Ri(T ) ≤ 4(M + Cmax + 1)β2

+ T
2γ+d
3γ+d

(
14Ldγ/2 + 12 + 4(|Ci|+M)MCmaxβ2

(2γ + d)/(3γ + d)

+
2d+1Zi
pr

log T

)
+ T

d
3γ+d 2d+1 |Ci|+ 2(M − 1)

pr
,

i.e., Ri(T ) = Õ
(
MCmaxT

2γ+d
3γ+d /pr

)
, where Zi = |Ci| +

(M − 1)(Cmax + 1), βa :=
∑∞
t=1 1/ta.

Proof: The proof is given Appendix D.
From Theorem 2, we see that missing feedback does not

change the time order of the regret. However, the regret is
scaled with 1/pr, which is the expected number of users
required for a single feedback.

VI. LEARNING UNDER DYNAMIC USER AND CONTENT
CHARACTERISTICS

When the user and content characteristics change over time,
the relevance score of content c for a user with context x
changes over time. In this section, we assume that the follow-
ing relation holds between the probabilities that a content will
be liked with users with similar contexts at two different times
t and t′.

Assumption 2: For each c ∈ C, there exists L > 0, γ > 0
such that for all x, x′ ∈ X , we have

|πc,t(x)− πc,t′(x′)| ≤ L (||x− x′||)γ + |t− t′|/Ts

where 1/Ts > 0 is the speed of the change in user and content
characteristics. We call Ts the stability parameter.

Assumption 2 captures the temporal dynamics of content
matching which is absent in Assumption 1. Such temporal
variations are often referred to as concept drift [30], [31].
When there is concept drift, a learner should also consider
which past information to take into account when learning, in
addition to how to combine the past information to learn the
best matching strategy.

The following modification of DISCOM will deal with
dynamically changing user and content characteristics by using
a time window of past observations in estimating the relevance
scores. The modified algorithm is called DISCOM with time
window (DISCOM-W). This algorithm groups the time slots
into rounds ζ = 1, 2, . . . each having a fixed length of 2τh time
slots, where τh is an integer called the half window length.
Some of the time slots in these rounds overlap with each
other as given in Fig. 7. The idea is to keep separate control
functions and counters for each round, and calculate the
sample mean relevance scores for groups of similar contexts
based only on the observations that are made during the time
window of that round. We call η = 1 the initialization round.
The control functions for the initialization round of DISCOM-
W is the same as the control functions H1(t), H2(t) and H3(t)
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of DISCOM whose values are given in Theorem 1. For the
other rounds ζ > 1, the control functions depend on τh and
are given as

Hτh
1 (t) = Hτh

3 (t) = (t mod τh + 1)z log(t mod τh + 1)

and

Hτh
2 (t) = Cmax(t mod τh + 1)z log(t mod τh + 1)

for some 0 < z < 1. Each round η is divided into two sub-
rounds. Except the initialization round, i.e., η = 1, the first
sub-round is called the passive sub-round, while the second
sub-round is called the active sub-round. For the initialization
round both sub-rounds are active sub-rounds. In order to
reduce the number of trainings and explorations, DISCOM-
W has an overlapping round structure as shown in Fig. 7.
For each round except the initialization round, passive sub-
rounds of round η, overlaps with the active sub-round of round
η − 1. DISCOM-W operates in the same way as DISCOM in
each round. DISCOM-W can be viewed as an algorithm which
generates a new instance of DISCOM at the beginning of each
round, with the modified control functions. DISCOM-W runs
two different instances of DISCOM at each round. One of
these instances is the active instance based on which content
matchings are performed, and the other one is the passive
instance which learns through the content matchings made by
the active instance.

Let the instance of DISCOM that is run by DISCOM-W
at round η be DISCOMη . The hypercubes of DISCOMη are
formed in a way similar to DISCOM’s. The input time horizon
is taken as Ts which is the stability parameter given in As-
sumption 2, and the slicing parameter mTs is set accordingly.
DISCOMη uses the partition of X into (mTs)

d hypercubes
denoted by PTs . When all CAs are using DISCOM-W, the
matching action selection of CA i only depends on the history
of content matchings and feedback observations at round η. If
time t is in the active sub-round of round η, matching action of
CA i ∈M is taken according to DISCOMη . As a result of the
content matching, sample mean relevance scores and counters
of both DISCOMη and DISCOMη+1 are updated. Else if time
t is in the passive sub-round of round η, matching action of
CA i ∈ M is taken according to DISCOMη−1 (see Fig. 7).
As a result of this, sample mean relevance scores and counters
of both DISCOMη−1 and DISCOMη are updated.

At the start of a round η, the relevance score estimates and
counters for DISCOMη are equal to zero. However, due to the
two sub-round structure, when the active sub-round of round
η starts, CA i already has some observations for the context
and actions taken in the passive sub-round of that round, hence
depending on the arrivals and actions in the passive sub-round,
the CA may even start the active sub-round by exploiting,
whereas it should have always spent some time in training
and exploration if it starts an active sub-round without any
past observations (cold start problem).

In this section, due to the concept drift, even though the
context of a past user can be similar to the context of the
current user, their relevance scores for a content c can be
very different. Hence DISCOM-W assumes that a past user

Fig. 7. Operation of DISCOM-W showing the round structure and the
different instances of DISCOM running for each round.

is similar to the current user only if it arrived in the current
round. Since round length is fixed, it is impossible to have
sublinear number of similar context observations for every
t. Thus, achieving sublinear regret under concept drift is not
possible. Therefore, in this section we focus on the average
regret which is given by

Ravg
i (T ) :=

1

T

T∑
t=1

(
πk∗i (xi(t))(xi(t))− d

i
k∗i (xi(t))

)
− 1

T
E

[
T∑
t=1

(
I(yi(t) = L)− diai(t)

)]
.

The following theorem bounds the average regret of
DISCOM-W.

Theorem 3: When DISCOM-W is run with parameters

Hτh
1 (t) = Hτh

3 (t) = (t mod τh + 1)
2γ

3γ+d log(t mod τh + 1)

Hτh
2 (t) = Cmax(t mod τh + 1)

2γ
3γ+d log(t mod τh + 1)

mTs = dT
1

3γ+d
s e and τh = bT (3γ+d)/(4γ+d)

s c,8 where Ts is the
stability parameter which is given in Assumption 2, the time
averaged regret of CA i by time T is

Ravg
i (T ) = Õ

(
T
−γ

4γ+d
s

)
for any T > 0. Hence DISCOM-W is ε = Õ

(
T
−γ

4γ+d
s

)
approximately optimal in terms of the average reward.

Proof: The proof is given Appendix E.
From the result of this theorem we see that the average

regret decays as the stability parameter Ts increases. This is
because, DISCOM-W will use a longer time window (round)
when Ts is large, and thus can get more observations to esti-
mate the sample mean relevance scores of the matching actions
in that round, which will result in better estimates hence
smaller number of suboptimal matching action selections.
Moreover, the average number of trainings and explorations
required decrease with the round length.

8For a number b, bbc denotes the largest integer that is smaller than or
equal to b.
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VII. NUMERICAL RESULTS

In this section we provide numerical results for our proposed
algorithms DISCOM and DISCOM-W on real-world datasets.

A. Datasets

For all the datasets below, for a CA the cost of choosing a
content within the content network and the cost of choosing
another CA is set to 0. Hence, the only factor that affects the
total reward is the users’ ratings for the contents.

Yahoo! Today Module (YTM) [5]: The dataset contains
news article webpage recommendations of Yahoo! Front Page.
Each instance is composed of (i) ID of the recommended
content, (ii) the user’s context (2-dimensional vector), (iii) the
user’s click information. The user’s click information for a
webpage/content is associated with the relevance score of that
content. It is equal to 1 if the user clicked on the recommended
webpage and 0 else. The dataset contains T = 70000 instances
and 40 different types of content. We generate 4 CAs and
assign 10 of the 40 types of content to each CA’s content
network. Each CA has direct access to content in its own
network, while it can also access to the content in other CAs’
content network by requesting content from these CAs. Users
are divided into four groups according to their contexts and
each group is randomly assigned to one of the CAs. Hence,
the user arrival processes to different CA’s are different. The
performance of a CA is evaluated in terms of the average
number of clicks, i.e., click through rate (CTR), of the contents
that are matched with its users.

Music Dataset (MD): The dataset contains contextual in-
formation and ratings (like/dislike) of music genres (classical,
rock, pop, rap) collected from 413 students at UCLA. We
generate 2 CAs each specialized in two of the four music
genres. Users among the 413 users randomly arrive to each
CA. A CA either recommends a music content that is in its
content network or asks another CA, specialized in another
music genre, to provide a music item. As a result, the rating
of the user for the genre of the provided music content is
revealed to the CA. The performance of a CA is evaluated in
terms of the average number of likes it gets for the contents
that are matched with its users.

Yahoo! Today Module (YTM) with Drift (YTMD): This
dataset is generated from YTM to simulate the scenario where
the user ratings for a particular content changes over time.
After every 10000 instances, 20 contents are randomly selected
and user clicks for these contents are set to 0 (no click) for
the next 10000 instances. For instance, this can represent a
scenario where some news articles lose their popularity a day
after they become available while some other news articles
related to ongoing events will stay popular for several days.

B. Learning Algorithms

While DISCOM and DISCOM-W are the first distributed
algorithms to perform content aggregation (see Table I), we
compare their performance with distributed versions of the
centralized algorithms proposed in [5], [10], [19], [22]. In the
distributed implementation of these centralized algorithms, we
assume that each CA runs an independent instance of these

algorithms. For instance, when implementing a centralized
algorithm A on the distributed system of CAs, we assume that
each CA i runs its own instance of A denoted by Ai. When
CA i selects CA j as a matching action in Ki by using its
algorithm Ai, CA j will select the content for CA i using
its algorithm Aj with CA i’s user’s context on the set of
contents Cj . In our numerical results, each algorithm is run
for different values of its input parameters. The results are
shown for the parameter values for which the corresponding
algorithm performs the best.

DISCOM: Our algorithm given in Fig. 4 with control
functions H1(t), H2(t) and H3(t) divided by 10 for MD, and
by 20 for YTM and YTMD to reduce the number of trainings
and explorations.9

DISCOM-W: Our algorithm given in Fig. 7 which is the
time-windowed version of DISCOM with control functions
H1(t), H2(t) and H3(t) divided by 20 to reduce the number
of trainings and explorations.

As we mentioned in Remark 1, both DISCOM and
DISCOM-W can provide differential services to its users. In
this case both algorithms always exploit for the users with high
type (subscribers) and if necessary can train and explore for the
users with low type (non-subscribers). Hence, the performance
of DISCOM and DISCOM-W for differential services is equal
to their performance for the set of high type users.

LinUCB [5], [22]: This algorithm computes an index for
each matching action by assuming that the relevance score
of a matching action for a user is a linear combination of the
contexts of the user. Then for each user it selects the matching
action with the highest index.

Hybrid-ε [19]: This algorithm forms context-dependent
sample mean rewards for the matching actions by considering
the history of observations and decisions for groups of contexts
that are similar to each other. For user t it either explores a
random matching action with probability εt or exploits the best
matching action with probability 1−εt, where εt is decreasing
in t.

Contextual zooming (CZ) [10]: This algorithm adaptively
creates balls over the joint action and context space, calculates
an index for each ball based on the history of selections of that
ball, and at each time step selects a matching action according
to the ball with the highest index that contains the current
context.

C. Yahoo! Today Module Simulations

In YTM each instance (user) has two contexts (x1, x2) ∈
[0, 1]2. We simulate the algorithms in Section VII-B for three
different context sets in which the learning algorithms only
decide based on (i) the first context x1, (ii) the second context
x2, and (iii) both contexts (x1, x2) of the users. The mT

parameter of DISCOM for these simulations is set to the
optimal value found in Theorem 1 (for γ = 1) which is
dT 1/4e for simulations with a single context and dT 1/5e for
simulations with both contexts. DISCOM is run for numerous
z values ranging from 1/4 to 1/2. Table IV compares the

9The number of trainings and explorations required in the regret bounds
are the worst-case numbers. In reality, good performance is achieved with a
much smaller number of trainings and explorations.
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Context DISCOM DISCOM LinUCB Hybrid-ε CZ
(diff. serv.)

x1 6.37 7.30 6.31 5.92 4.29
x2 6.14 6.45 4.72 6.14 4.39

(x1, x2) 5.93 6.61 5.65 6.15 4.24

TABLE IV
COMPARISON OF THE CTR×102 ACHIEVED BY CA 1 FOR DISCOM AND

OTHER LEARNING ALGORITHMS FOR YTM.
z 1/4 1/3 1/2

CTR×102 5.13 5.29 6.14
CTR×102 in exploitations 5.14 5.34 6.45

Exploit % 98.9 97.7 90.2
Explore % 0.5 0.6 1.9

Train % 0.7 1.7 7.9

TABLE V
THE CTR, TRAINING, EXPLORATION AND EXPLOITATION PERCENTAGES

OF CA 1 USING DISCOM WITH CONTEXT x2 FOR YTM.

performance of DISCOM, LinUCB, Hybrid-ε and CZ. All of
the algorithms are evaluated at the parameter values in which
they perform the best. As seen from the table the CTR for
DISCOM with differential services is 16%, 5% and 7% higher
than the best of LinUCB, Hybrid-ε and CZ for contexts x1,
x2 and (x1, x2), respectively.

Table V compares the performance of DISCOM, the per-
centage of training, exploration and exploitation phases for
different control functions (different z parameters) for sim-
ulations with context x2. As expected, the percentage of
trainings and explorations increase with the control function.
As z increases matching actions are explored with a higher
accuracy, and hence the average exploitation reward (CTR)
increases.

D. Music Dataset Simulations

Table VI compares the performance of DISCOM, LinUCB,
Hybrid-ε and CZ for the music dataset. The parameter values
used for DISCOM for the result in Table VI are z = 1/8
and mT = 4. From the results is is observed that DISCOM
achieves 10% improvement over LinUCB, 5% improvement
over Hybrid-ε, and 28% improvement over CZ in terms of
the average number of likes achieved for the users of CA 1.
Moreover, the average number of likes received by DISCOM
for the high type users (differential services) is even higher,
which is 13%, 8% and 32% higher than LinUCB, HE and CZ,
respectively.

E. Yahoo! Today Module with Drift Simulations

Table VII compares the performance of DISCOM-W with
half window length (τh = 2500) and mT = 10, DISCOM
(with mT set equal to dT 1/4e simulations with a single context
dimension and dT 1/5e for the simulation with two context
dimensions), LinUCB, Hybrid-ε and CZ. For the results in
the table, the z parameter value of DISCOM and DISCOM-
W are set to the z value in which they achieve the highest
number of clicks. Similarly, LinUCB, Hybrid-ε and CZ are

Algorithm DISCOM DISCOM LinUCB Hybrid-ε CZ
(diff. serv.)

Avg. num. 0.717 0.736 0.652 0.683 0.559
of likes

TABLE VI
COMPARISON AMONG DISCOM AND OTHER LEARNING ALGORITHMS

FOR MD.

Contexts DISCOM-W DISCOM LinUCB Hybrid-ε CZ
used (diff. serv.) (diff. serv.)
x1 6.3 5.5 5.1 3.0 2.4
x2 5.1 4.2 4.2 4.6 2.4

(x1, x2) 6.9 3.8 4.6 4.1 2.3

TABLE VII
THE CTR×102 OF DISCOM-W AND DISCOM FOR DIFFERENTIAL
SERVICES, AND THE CTR OF OTHER LEARNING ALGORITHMS FOR

YTMD.

also evaluated at their best parameter values. The results show
the performance of DISCOM and DISCOM-W for differential
services. DISCOM-W performs the best in this dataset in terms
of the average number of clicks, with about 23%, 11.3% and
51.6% improvement over the best of LinUCB, Hybrid-ε and
CZ, for types of contexts x1, x2, and (x1, x2), respectively.

VIII. CONCLUSION

In this paper we considered novel online learning algo-
rithms for content matching by a distributed set of CAs. We
have characterized the relation between the user and content
characteristics in terms of a relevance score, and proposed
online learning algorithms that learns to match each user
with the content with the highest relevance score. When the
user and content characteristics are static, the best matching
between content and each type of user can be learned perfectly,
i.e., the average regret due to suboptimal matching goes to
zero. When the user and content characteristics are dynamic,
depending on the rate of the change, an approximately optimal
matching between content and each user type can be learned.
In addition to our theoretical results, we have validated the
concept of distributed content matching on real-world datasets.
An interesting future research direction is to investigate the
interaction between different CAs when they compete for the
same pool of users. Should a CA send a content that has a
high chance of being liked by another CA’s user to increase
its immediate reward, or should it send a content that has a
high chance of being disliked by the other CA’s user to divert
that user from using that CA and switch to it instead.

APPENDIX A
A BOUND ON DIVERGENT SERIES

For p > 0, p 6= 1,
T∑
t=1

t−p ≤ 1 + (T 1−p − 1)/(1− p).

Proof: See [32].

APPENDIX B
PROOF OF THEOREM 1

A. Necessary Definitions and Notations

Let βa :=
∑∞
t=1 1/ta, and let log(.) denote logarithm in

base e. For each hypercube p ∈ PT let πc,p := supx∈p πc(x),
πc,p := infx∈p πc(x), for c ∈ C, and µik,p := supx∈p µ

i
k(x),

µi
k,p

:= infx∈p µ
i
k(x), for k ∈ Ki. Let x∗p be the context

at the center (center of symmetry) of the hypercube p. We
define the optimal matching action of CA i for hypercube
p as k∗i (p) := arg maxk∈Ki µ

i
k(x∗p). When the hypercube p



13

is clear from the context, we will simply denote the optimal
matching action for hypercube p with k∗i . Let

Lip(t) :=
{
k ∈ Ki : µi

k∗i (p),p
− µik,p > (4Ldγ/2 + 6)t−z/2

}
be the set of suboptimal matching actions of CA i at time t
in hypercube p. Also related to this let

Cjp(t) :=
{
c ∈ Cj : πc∗j (p),p − πc,p > (4Ldγ/2 + 6)t−z/2

}
be the set of suboptimal contents of CA j at time t in
hypercube p, where c∗j (p) = arg maxc∈Cj πc(x

∗
p). Also when

the hypercube p is clear from the context we will just use c∗j .
The contents in Cjp(t) are the ones that CA j should not select
when called by another CA. The regret given in (3) can be
written as a sum of three components:

Ri(T ) = E[Rei (T )] + E[Rsi (T )] + E[Rni (T )]

where Rei (T ) is the regret due to trainings and explorations by
time T , Rsi (T ) is the regret due to suboptimal matching action
selections in exploitations by time T and Rni (T ) is the regret
due to near optimal matching action selections in exploitations
by time T , which are all random variables.

B. Bounding the Regret in Training, Exploration and Exploita-
tion phases.

In the following lemmas we will bound each of these terms
separately. The following lemma bounds E[Rei (T )].

Lemma 1: Consider all CAs running DISCOM with param-
eters H1(t) = tz log t, H2(t) = Cmaxt

z log t, H3(t) = tz log t
and mT = dTκe, where 0 < z < 1 and 0 < κ < 1/d. Then,
we have

E[Rei (T )] ≤ 2d+1(|Ci|+ (M − 1)(Cmax + 1))T z+κd log T

+ 2d+1(|Ci|+ 2(M − 1))Tκd.

Proof: Since time slot t is a training or an exploration
slot for CA i if and only if

Mut
i,pi(t)

(t) ∪Mue
i,pi(t)

(t) ∪ Cue
i,pi(t)

(t) 6= ∅

up to time T , there can be at most dT z log T e exploration
slots in which a content c ∈ Ci is matched with the user of
CA i, dCmaxT

z log T e training slots in which CA i selects CA
j ∈M−i, dT z log T e exploration slots in which CA i selects
CA j ∈M−i. Result follows from summing these terms and
the fact that (mT )d ≤ 2dTκd for any T ≥ 1. The additional
factor of 2 comes from the fact that the realized regret at any
time slot can be at most 2.

For any k ∈ Ki and p ∈ PT , the sample mean r̄ik,p(t) of
the relevance score of matching action k represents a random
variable which is the average of the independent samples in set
E ik,p(t). Since these samples are not identically distributed, in
order to facilitate our analysis of the regret, we generate two
different artificial i.i.d. processes to bound the probabilities
related to µ̂ik,p(t) = r̄ik,p(t)− dik, k ∈ Ki. The first one is the
best process for CA i in which the net reward of the matching
action k for a user with context in p is sampled from an i.i.d.
Bernoulli process with mean µik,p, the other one is the worst
process for CA i in which this net reward is sampled from

an i.i.d. Bernoulli process with mean µi
k,p

. Let µ̂b,i
k,p(z) denote

the sample mean of the z samples from the best process and
µ̂w,i
k,p(z) denote the sample mean of the z samples from the

worst process for CA i. We will bound the terms E[Rni (T )]
and E[Rsi (T )] by using these artificial processes along with
the similarity information given in Assumption 1.

Let Ξij,p(t) be the event that a suboptimal content c ∈ Cj
is selected by CA j ∈ M−i, when it is called by CA i for
a context in set p for the tth time in the exploitation phases
of CA i. Let Xi

j,p(t) denote the random variable which is
the number of times CA j selects a suboptimal content when
called by CA i in exploitation slots of CA i when the context
is in set p ∈ PT by time t. Clearly, we have

Xi
j,p(t) =

|Eij,p(t)|∑
t′=1

I(Ξij,p(t
′))

where I(·) is the indicator function which is equal to 1 if the
event inside is true and 0 otherwise. The following lemma
bounds E[Rsi (T )].

Lemma 2: Consider all CAs running DISCOM with param-
eters H1(t) = tz log t, H2(t) = Cmaxt

z log t, H3(t) = tz log t
and mT = dTκe, where 0 < z < 1 and κ = z/(2γ). Then,
we have

E[Rei (T )] ≤ 4(|Ci|+M)β2

+ 4(|Ci|+M)MCmaxβ2
T 1−z/2

1− z/2
.

Proof: Consider time t. For simplicity of notation let p =
pi(t). Let

Wi(t) := {Mut
i,pi(t)

(t) ∪Mue
i,pi(t)

(t) ∪ Cue
i,pi(t)

(t) = ∅}

be the event that CA i exploits at time t.
First, we will bound the probability that CA i selects a

suboptimal matching action in an exploitation slot. Then, using
this we will bound the expected number of times a suboptimal
matching action is selected by CA i in exploitation slots. Note
that every time a suboptimal matching action is selected by
CA i, since µik(x) = πik(x) − dik ∈ [−1, 1] for all k ∈ Ki,
the realized (hence expected) loss is bounded above by 2.
Therefore 2 times the expected number of times a suboptimal
matching action is chosen in an exploitation slot bounds the
regret due to suboptimal matching actions in exploitation slots.
Let Vik(t) be the event that matching action k ∈ Ki is chosen
at time t by CA i. We have

Rsi (T ) ≤ 2

T∑
t=1

∑
k∈Li

pi(t)
(t)

I(Vik(t),Wi(t)).

Taking the expectation

E[Rsi (T )] ≤ 2

T∑
t=1

∑
k∈Li

pi(t)
(t)

P(Vik(t),Wi(t)). (10)

Let Bij,p(t) be the event that at most tφ samples in E ij,p(t)
are collected from suboptimal content of CA j. Let Bi(t) :=⋂
j∈M−i B

i
j,pi(t)

(t). For a setA, letAc denote the complement
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of that set. For any k ∈ Ki, we have

P
(
Vik,p(t),Wi(t)

)
≤ P

(
µ̂ik,p(t) ≥ µik,p +Ht,Wi(t),Bi(t)

)
+ P

(
µ̂ik∗i ,p(t) ≤ µ

i
k∗i ,p
−Ht,Wi(t),Bi(t)

)
+ P(Bi(t)c)

+ P
(
µ̂ik,p(t) ≥ µ̂ik∗i ,p(t), µ̂

i
k,p(t) < µik,p +Ht,

µ̂ik∗i ,p(t) > µi
k∗i ,p
−Ht,Wi(t),Bi(t)

)
(11)

for some Ht > 0. We have for any suboptimal matching action
k ∈ Lip(t),

P
(
µ̂ik,p(t) ≥ µ̂ik∗i ,p(t), µ̂

i
k,p(t) < µik,p +Ht,

µ̂ik∗i ,p(t) > µi
k∗i ,p
−Ht,Wi(t),Bik,p(t)

)
≤ P

(
µ̂b,i
k,p(|E

i
k,p(t)|) ≥ µ̂

w,i
k∗i ,p

(|E ik∗i ,p(t)|)− t
φ−z,

µ̂b,i
k,p(|E

i
k,p(t)|) < µik,p + L

(√
d/mT

)γ
+Ht + tφ−z,

µ̂w,i
k∗i ,p

(|E ik∗i ,p(t)|) > µi
k∗i ,p
− L

(√
d/mT

)γ
−Ht, Wi(t)

)
.

For k ∈ Lip(t), when

2L
(√

d/mT

)γ
+ 2Ht + 2tφ−z ≤ (4Ldγ/2 + 6)t−z/2 (12)

the three inequalities given below

µ
k∗i ,p
− µik,p > (4Ldγ/2 + 6)t−z/2

µ̂b,i
k,p(|E

i
k,p(t)|) < µik,p + L

(√
d/mT

)γ
+Ht + tφ−z

µ̂w,i
k∗i ,p

(|E ik,p(t)|) > µi
k∗i ,p
− L

(√
d/mT

)γ
−Ht

together imply that µ̂b,i
k,p(|E ik,p(t)|) < µ̂w,i

k∗i ,p
(|E ik,p(t)|)− tφ−z ,

which implies that

P
(
µ̂ik,p(t) ≥ µ̂ik∗i ,p(t), µ̂

i
k,p(t) < µik,p +Ht,

µ̂ik∗i ,p(t) > µi
k∗i ,p
−Ht,Wi(t),Bik,p(t)

)
= 0. (13)

Let Ht = 2tφ−z + Ldγ/2m−γT . A sufficient condition that
implies (12) is

4Ldγ/2t−κγ + 6tφ−z ≤ (4Ldγ/2 + 6)t−z/2 (14)

which holds for all t ≥ 1 when φ = z/2 and κγ ≥ z/2. Using
a Chernoff-Hoeffding bound, for any k ∈ Lipi(t)(t), since on
the event Wi(t), |E ik,pi(t)(t)| ≥ t

z log t, we have

P
(
µ̂ik,p(t) ≥ µik,p +Ht,Wi(t),Bi(t)

)
≤ t−2 (15)

and

P
(
µ̂ik∗i ,p(t) ≤ µ

i
k∗i ,p
−Ht,Wi(t),Bi(t)

)
≤ t−2. (16)

Since {Bij,p(t)c,Wi(t)} = {Xi
j,p(t) ≥ tφ}, by applying the

Markov inequality, we have

P(Bij,p(t)c,Wi(t)) ≤ E[Xi
j,p(t)]t

−φ.

Since

Xi
j,p(t) =

|Eij,p(t)|∑
t′=1

I(Ξij,p(t
′))

and

P
(
Ξij,p(t)

)
≤

∑
m∈Cjp(t)

P
(
r̄jm,p(t) ≥ r̄

j
c∗j ,p

(t)
)

≤
∑

m∈Cjp(t)

(
P
(
r̄jm,p(t) ≥ πm,p +Ht,Wi(t)

)
+P

(
r̄jc∗j ,p

(t) ≤ πc∗j ,p −Ht,Wi(t)
)

+ P
(
r̄jm,p(t) ≥ r̄

j
c∗j ,p

(t),

r̄jm,p(t) < πm,p +Ht, r̄
j
c∗j ,p

(t) > πc∗j ,p −Ht,Wi(t)
))

.

When (14) holds, the last probability in the sum above is equal
to zero while the first two probabilities are upper bounded by
e−2(Ht)

2tz log t. Thus, we have

P
(
Ξij,p(t)

)
≤

∑
m∈Cjp(t)

2e−2(Ht)
2tz log t ≤ 2|Cj |t−2.

This implies that

E[Xi
j,p(t)] ≤

∞∑
t′=1

P(Ξij,p(t
′)) ≤ 2|Cj |

∞∑
t′=1

(t′)−2.

Therefore, by the Markov inequality and union bound we get

P(Bij,pi(t)(t)
c,Wi(t)) = P(Xi

j,pi(t)
(t) ≥ tφ)

≤ 2|Cj |β2t−z/2

and

P(Bi(t)c,Wi(t)) ≤ 2MCmaxβ2t
−z/2. (17)

Then, using (13), (15), (16) and (17), we have

P
(
Vik(t),Wi(t)

)
≤ 2t−2 + 2MCmaxβ2t

−z/2,

for any k ∈ Lipi(t)(t), and By (10), and by the result of
Appendix A, we get the stated bound for E[Rsi (T )].

The next lemma bounds E[Rni (T )].
Lemma 3: Consider all CAs running DISCOM with param-

eters H1(t) = tz log t, H2(t) = Cmaxt
z log t, H3(t) = tz log t

and mT = dTκe, where 0 < z < 1 and κ = z/(2γ). Then,
we have

E[Rni (T )] ≤ (14Ldγ/2 + 12)

1− z/2
T 1−z/2 + 4Cmaxβ2.

Proof: At any time t, for any k ∈ Ki−Lip(t) and x ∈ p,
we have

µik∗i (x)
(x)− µik(x) ≤ (7Ldγ/2 + 6)t−z/2.

Similarly, for any j ∈M, c ∈ Cj −Cjp(t) and x ∈ p, we have

πc∗j (x)(x)− πc(x) ≤ (7Ldγ/2 + 6)t−z/2.

Due to the above inequalities, if a near optimal action in
Ci∩(Ki−Lip(t)) is chosen by CA i at time t, the contribution
to the regret is at most (7Ldγ/2 + 6)t−z/2. If a near optimal
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CA j ∈M−i∩(Ki−Lip(t)) is called by CA i at time t, and if
CA j selects one of its near optimal contents in Cj−Cjp(t), then
the contribution to the regret is at most 2(7Ldγ/2 + 6)t−z/2.
Moreover since we are in an exploitation step, the near-optimal
CA j that is chosen can choose one of its suboptimal contents
in Cjp(t) with probability at most 2Cmaxt

−2, which will result
in an expected regret of at most 4Cmaxt

−2.
Therefore, the total regret due to near optimal choices of

CA i by time T is upper bounded by

(14Ldγ/2 + 12)

T∑
t=1

t−z/2 + 4Cmax

T∑
t=1

t−2

≤ (14Ldγ/2 + 12)

1− z/2
T 1−z/2 + 4Cmaxβ2.

by using the result in Appendix A.
Next, we give the proof ot Theorem 1 by combining the

results of the above lemmas.

C. Proof of Theorem 1

The highest orders of regret that come from Lemmas 1,
2 and 3 are Õ(Tκd+z), O(T 1−z/2), O(T 1−z/2). We need
to optimize them with respect to the constraint Regret is
minimized when κd + z = 1 − z/2, which is attained by
z = 2γ/(3γ + d). Result follows from summing the bounds
in Lemmas 1, 2 and 3.

APPENDIX C
PROOF OF COROLLARY 1

From the proof of Lemma 2, for z = 2γ/(3γ+d), we have

P
(
Vik(t),Wi(t)

)
≤ 2t−2 + 2MCmaxβ2t

−γ/(3γ+d)

for k ∈ Lipi(t)(t). This implies that

P
(
ai(t) ∈ Lipi(t)(t),W

i(t)
)

≤
∑

k∈Li
pi(t)

(t)

P
(
Vik(t),Wi(t)

)
≤ 2|Ki|

t2
+

2|Ki|MCmaxβ2
tγ/(3γ+d)

.

The difference between the expected reward of an action
within a hypercube from its expected reward at the center
of the hypercube is at most Ldγ/2/(mT )γ . Since mT =
dT 1/(3γ+d)e, ai(t) ∈ Ki − Lipi(t)(t) implies that

µiai(t)(xi(t)) ≥ µ
i
k∗i (xi(t))

(xi(t))− (6Ldγ/2 + 6)T−γ/(3γ+d).

APPENDIX D
PROOF OF THEOREM 2

In order for time t to be an exploitation slot for CA i it is
required that Mut

i,pi(t)
(t)∪Mue

i,pi(t)
(t)∪ Cue

i,pi(t)
(t) = ∅. Since

the counters of DISCOM are updated only when feedback
is received, and since the control functions are the same
as the ones that are used in the setting where feedback
is always available, the regret due to suboptimal and near
optimal matching actions by time t with missing feedback
will not be any greater than the regret due to suboptimal

and near optimal matching actions for the case when the
users always provide feedback. Therefore, the bounds given
in Lemmas 2 and 3 will also hold for the case with missing
feedback. Only the regret due to trainings and explorations
increases, since more trainings and explorations are needed
before the counters exceed the values of the control functions
such that the relevance score estimates are accurate enough
to exploit. Consider any p ∈ PT . From the definition of
DISCOM, the number of exploration slots in which content
c ∈ Ci is matched with CA i’s user and the user’s feedback
is observed is at most dT 2γ/(3γ+d)e. The number of training
slots in which CA i requested content from CA j ∈ M−i
and received the feedback about this content from its user is
at most

⌈
CmaxT

2γ/(3γ+d) log T
⌉
. The number of exploration

slots in which CA i selected CA j ∈ M−i is at most⌈
T 2γ/(3γ+d) log T

⌉
.

Let τexp(T ) be the random variable which denotes the
smallest time step for which for each c ∈ Ci there are
dT 2γ/(3γ+d)e feedback observations, for each j ∈M−i there
are

⌈
CmaxT

2γ/(3γ+d) log T
⌉

feedback observations for the
trainings and

⌈
T 2γ/(3γ+d) log T

⌉
feedback observations for

the explorations. Then, E[τexp(T )] is the expected number
of training plus exploration slots by time T . Let Yexp(t)
be the random variable which denotes the number of time
slots in which the feedback is not provided by the users
of CA i till CA i received t feedbacks from its users. Let
Ai(T ) = ZiT

2γ/(3γ+d) log T + (|Ci|+ 2(M − 1)). We have

E[τexp(T )] = E[Yexp(Ai(T ))] +Ai(T ).

Yexp(Ai(T )) is a negative binomial random variable with
probability of observing no feedback at any time t equals to
1− pr. Therefore,

E[Yexp(Ai(T ))] = (1− pr)Ai(T )/pr.

Using this, we get

E[τexp(T )] = Ai(T )/pr.

The regret bound follows from substituting this into the proof
of Theorem 1.

APPENDIX E
PROOF OF THEOREM 3

The basic idea is to choose τh in a way that the regret
due to variation of relevance scores over time and the regret
due to variation of estimated relevance scores due to the
limited number of observations during each round is balanced.
Majority of the steps of this proof is similar to the proof of
Theorem 1 hence some of the steps are omitted.

Consider a round η of length 2τh. Denote the set of time
slots in round η by [η]. For any c ∈ C let

π̄c,p,η := sup
x∈p,t∈[η]

πc,t(x),

πc,p,η := inf
x∈p,t∈[η]

πc,t(x).

For any k ∈ Ki let

µ̄ik,p,η := sup
x∈p,t∈[η]

µik,t(x),
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µi
k,p,η

:= inf
x∈p,t∈[η]

µik,t(x),

where µik,t(x) is defined as the time-varying version of µik(x)
given in (1) under Assumption 2. For CA i, the set of
suboptimal matching actions is given as

Lip,η(t) :=
{
k ∈ Ki : µi

k∗i (p),p,η
− µ̄ik,p,η

> (4Ldγ/2 + 6)(t mod τh + 1)−z/2 +
4τh
Ts

}
,

where k∗i (p) is the matching action with the highest net reward
for the context at the center of p at the time slot in the middle
of round η.

Consider the regret due to explorations and trainings for
DISCOMη incurred over times when it is in the active sub-
phase (over τh time slots). Similar to the proof of Lemma 1 it
can be shown that the regret due to trainings and explorations
is

E[Rei (τh)] = Õ
(
τz+κdh

)
.

Similar to the proof of Lemma 2, it can be shown that the
regret due to suboptimal matching action selections is

E[Rsi (τh)] = O
(
τ
1−z/2
h

)
when κ = z/(2γ). Since the definition of a sub-optimal
matching action is different for dynamic user and content
characteristics, the regret due to near optimal matching actions
in Ki−Lip,η(t) is different from Lemma 3. At time t which is
in round η, since a near optimal matching action’s contribution
to the one-step regret is at most

(8Ldγ/2 + 12)(t mod τh + 1)−z/2 + 4τh/Ts

summing over all time slots in a round η, we have

E[Rni (τh)] = O
(
τ
1−z/2
h

)
+O

(
τ2h
Ts

)
.

Clearly we have E[Rsi (τh)] ≤ E[Rei (τh)]. Let τh = bTφs c for
some φ > 0. Then we have

E[Rei (τh)]

τh
= Õ

(
Tφz+φκd−φs

)
,

and
E[Rni (τh)]

τh
= O

(
T−φz/2s

)
+O

(
Tφ−1s

)
.

The sum (E[Rei (τh)] + E[Rsi (τh)] + E[Rni (τh)])/τh is mini-
mized by setting z = 2γ/(3γ + d) and φ = 1/(1 + z/2).

Hence, τh = bT
3γ+d
4γ+d
s c the order of the time averaged regret is

equal to Õ
(
T
−γ

4γ+d
s

)
.
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