Appendix: Multi-directional Recurrent Neural Networks: A Novel Method for Estimating Missing Data

Jinsung Yoon¹ William R. Zame² Mihaela van der Schaar¹³⁴

1. Configurations of the Experiments

TT 1 1 1	a c .:	C (1) T	• .
Table I	(ontrouration	is of the H	vneriments
Table 1.	Comguiado	is of the L	Aperments

Method	Configurations	
	Model :Multi-Directional Recurrent Neural Networks	
	Initialization: Xavier Initialization [13]	
	Optimization: Adam [*] Optimization [14] (learning rate = 0.05)	
M-RNN	Batch size = 100 , Iterations = 1000	
	Depth: 2	
	Constraint 1: The matrix parameters are diagonals for the interpolation part.	
	Constraint 2: The diagonal part of the matrix is zero for the imputation part.	

]

¹Department of Electrical Engineering, University of California, Los Angeles, California, USA. ²Departments of Economics and Mathematics, University of California, Los Angeles, California, USA. ³Man Institute, University of Oxford, Oxford, United Kingdom. ⁴Alan Turing Institute, London, United Kingdom. Correspondence to: Jinsung Yoon <jsyoon0823@g.ucla.edu>.

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright 2017 by the author(s).