
A Reinforcement Learning-based Data-Link Protocol for
Underwater Acoustic Communications

Valerio Di Valerio, Chiara Petrioli Loreto Pescosolido Mihaela Van Der Shaar
University of Rome “La Sapienza” University of Rome “La Sapienza” University of California Los Angeles

Dept. of Computer Science DIET Dept. Dept. of Electrical Engineering
{divalerio, petrioli}@di.uniroma1.it loreto.pescosolido@uniroma1.it mihaela@ee.ucla.edu

ABSTRACT
We consider an underwater acoustic link where a sender
transmits a flow of packets to a receiver through a chan-
nel with time varying quality. We address the problem of
scheduling packets transmission, forward error correction
(FEC) code selection, and channel probing to achieve the
best trade-off between energy consumption and latency. Un-
like previous works, which assume complete knowledge of the
statistics of the underwater acoustic environment, we make
the protocol learn the optimal behavior based on experi-
ence, without relying on any prior knowledge on the envi-
ronment. We design a Reinforcement-Learning (RL)-based
protocol which learns how to minimize a cost function which
is a combination of delay and energy consumption, at the
same time ensuring packet delivery. Starting from a basic
Q-learning strategy, we design two learning algorithms to
speed up learning time, and compare the performance of the
proposed solutions with the Q-learning-based strategy and
with an aggressive strategy which always transmits all the
packets in the buffer. The results show that the proposed
techniques outperform the aggressive policy and Q-learning,
and are successful in achieving good tradeoffs between en-
ergy consumption and packet delivery latency (PDL).

Keywords
Underwater communications, underwater networks, adap-
tive protocols, reinforcement learning

1. INTRODUCTION
Underwater acoustic channels are characterized by high

time variability [1] which demand for adaptive data-link
layer protocols, using more or less aggressive transmission
schemes and different FEC codes depending on the chan-
nel conditions. Most of the research efforts devoted so far
to the design of adaptive data link schemes for underwa-
ter sensor networks (UWSNs) have focused on adaptive or
rateless error correction codes [2, 3], or hybrid incremental
redundancy ARQ protocols [4]. In this work, we investigate

This work was partially supported by the EU FP7 project ICT-SUNRISE,
under grant no. 611449.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
WUWNET ’15, October 22-24 2015, Washington DC, USA
Copyright ACM 978-1-4503-4036-6/15/10 ...$15.00.

an alternative path consisting in the use of Reinforcement
Learning (RL) [5] to make the transmitter learn about the
channel behavior and adapt its transmission strategy accord-
ingly. While conventional approaches basically ”react”to the
channel behavior, e.g. by the incremental addition of redun-
dancy when packets are not correctly received, our strategy
does proactive adaptation by forecasting future changes.

Protocols based on RL have been proposed for wireless
communications [6]. For underwater communications, rout-
ing layer RL-based protocols have been proposed, e.g., in
[7,8]. However, to the best of our knowledge, there have not
been works proposing the use of RL techniques for UWSNs
at the data-link layer.

RL is an attractive technique for optimizing the data-
link layer of underwater acoustic channels as some of the
most significant channel variations take place with a suffi-
ciently low frequency to let the transmitter learn and exploit
effective scheduling policies tailored to each situation.Our
proposed protocol provides the transmitter with an optimal
policy on whether buffered packets should be transmitted
immediately or delayed, what should be the burst size, and
what the best FEC code to use for each transmission. The
overall objective is to deliver generated packets while mini-
mizing a cost function which combines energy consumption
and latency.

In an environment which can be considered stationary for
a limited amount of time (e.g., few hours), the RL must be
able to converge to the best policy in a much shorter period.
The main challenge in designing RL-based protocols is how
to reduce the learning time, thus being able to fast react
in case of link quality variability, without adding significant
overhead and loosing performance.

In this work we start developing a Q-learning-based pro-
tocol tailored to the considered system model. Then we in-
troduce enhancements on the Q-learning algorithm, tailored
to the considered problem and based on Virtual Experience
and State-action aggregation, showing that the performance
of the proposed algorithms outperform the basic Q-learning
and an aggressive strategy always transmitting packets in
the buffer in terms of learning time, energy consumption,
and Packet Delivery Latency (PDL).

The rest of this paper is organized as follows: in Sec-
tion 2 we define our system model. In Section 3 we cast the
problem as Markov Decision Process and introduce the def-
initions required to devise the RL solutions. In Section 4 we
describe the proposed protocols. In Section 5 we evaluate
their performance by means of simulations, comparing them
with the Q-learning based protocol. Finally in Section 6 we
conclude the paper pointing at future research directions.

2. SYSTEM MODEL
We consider an underwater communication link between a

transmitter and a receiver. The transmitter generates traffic
according to a Poisson process with average interarrival time
λ and constant packet payload size K.

We model the channel as a Binary Symmetric Channel
(BSC) with time-varying Bit Error Probability (BEP) and
statistically independent bit errors.

We consider time as divided in epochs of duration T , and
assume that during each epoch the BEP is constant, whereas
it may vary across consecutive epochs. We indicate with t
the epoch index and with b[t] the time varying BEP. The
only assumption we need for devising our proposed protocol
is that b[t] is time correlated, i.e., the value of the channel at
a given time provides an indication of the value it takes at a
different time, and that correlation vanishes as the difference
of the two time instants increases.

The transmitter stores a queue of incoming packets into a
buffer of finite size M , and keeps a running estimate of the
channel BEP, which we indicate with b̂[t]. The running BEP
estimate is obtained and updated according to a procedure
described in the following. Particularly, the estimation is
not performed in every epoch, but only in selected epochs
resulting from the policy described in the following section,
i.e., b̂[t] does not refer to the actual BEP state in epoch t but
to the BEP value of a past epoch of age δ[t]. In other words,

b̂[t] is an estimate of b(t − δ[t]). Clearly, δ[t] increases by 1
in each epoch in which the channel is not probed, whereas
it is reset to zero when a BEP estimation is performed. We
assume that there is a limit Tmax to the age (measured

in number of epochs) of the running estimate b̂[t], i.e., the
transmitter must update the estimate at most Tmax epochs
after the last one, i.e., δ[t] ∈ T , with T = {0, . . . , Tmax}.

The channel estimate b̂ is obtained as follows: the trans-
mitter sends a channel probing packet of np bits which is
known to the receiver; the receiver counts the number of bit
errors and sends back to the transmitter the ratio between
such number of errors and np. This value is further quan-
tized, mapping it to a value in the set B = {b1, . . . , bnb}.
This quantized BEP value is the one used by the transmit-
ter to run our proposed scheduling protocol, i.e., b̂[t] ∈ B.

The transmitter can encode data onto packets selecting a
FEC code from a set of available codes C = {c1, . . . , cF }.
Each code in the set is characterized by a different coding
rate, i.e., it adds more or less redundancy, thus allowing
the transmitter to trade off energy and packet transmission
time with error performance. We indicate with rc and τc
the number of redundancy bits and the transmission time
of a packet encoded with FEC code c ∈ C. Accordingly, the
coded packet size when using code c is K + rc.

In each epoch, the transmitter sends a certain number of
packets (selected on the basis of the transmission scheduling
policy devised in Section 3). The receiver acknowledges the
received packets. If a packet is not acknowledged within a
pre-defined time interval, the receiver re-enqueues it at the
bottom of the buffer.

The goal of our proposed strategy is to let the transmitter
”learn” a transmission scheduling policy by which it can de-
cide, in each epoch, (i) if to execute a BEP estimation, (ii)
if and how many packets to transmit during the epoch and
(iii) with which FEC code. The goal of the policy is to ob-
tain good performance in terms of energy consumption while
keeping a limited packet delivery latency (PDL), defined as

the time difference between the time a packet incomes to the
transmitter and the time it is correctly received.

3. MDP PROBLEM FORMULATION
We formulate the optimal transmission scheduling prob-

lem as a discrete time Markov Decision Process (MDP). In
the following subsection we describe the state space, the ac-
tions/decisions space, the state transition dynamics and the
selected cost function.

3.1 State
We define the state s[t] in epoch t as the tuple composed

by the running channel estimate b̂[t], its age δ[t], and the
number of packets in the buffer at the beginning of epoch t,
which we indicate with M [t], i.e. :

s[t] = (b̂[t],M [t], δ[t]),with b̂[t] ∈ B,M [t] ∈M, δ[t] ∈ T , (1)

where M = {0, . . . ,M}.

3.2 Actions/Decisions
At the beginning of each epoch, the transmitter may de-

cide among a set of possible actions: (i) Transmit m packets
encoded with FEC code c (and hence packet size K + rc),
withm ∈ {0, . . . ,mmax,c}, wheremmax,c = min (Mt, bT/τcc)
is the maximum number of packets encoded with code c
which can be transmitted in an epoch, or (ii) Transmit a
channel probing packet of fixed size np to obtain a new BEP

estimate b̂.
More formally, for a state s = (b̂,M, δ) the set of available

actions A(s) can be defined as:

A(s) =


{ap} , if δ = Tmax

{ap} ∪ {am,c|m ∈ {0, . . . ,mmax,c}, c ∈ C} ,
otherwise.

(2)

3.3 Transitions
State transitions are determined by the action taken and

the packet arrival process. Given the current state s =
(b̂,M, δ) and an action a, the next state s′ = (b̂′,M ′, δ′)
is determined as follows:

• b̂′ =

{
b̂new if a = ap

b̂ otherwise
, where b̂new is the new ob-

served BEP;

• M ′ = M − ms + l, where 0 ≤ ms ≤ m is the num-
ber of successfully transmitted packets (out of the m
transmitted) and l the number of new arrived packets;

• δ′ =

{
0 if a = ap

δ + 1 otherwise
.

3.4 Costs
To each pair state-action (s, a) we associate a cost function

c(s, a), defined as a weighted function of costs associated to
the delay and the energy consumption. The value of the cost
function is computed at the end of each epoch and associated
to the state-action pair of the epoch.

We propose to use the following cost function:

c(s, a) =

{
w1cf (s, a) + w2co(s, a) + w3cd(s, a), a = am,c

cmsr, a = ap

(3)
where cf (s, a) = mf/m is the cost associated to packet

transmission failures, co(s, a) =
rc−minc′ rc′

maxc′ rc′−minc′ rc′
the cost

associated to the code overhead, cd(s, a) = (Mt − ms)/M

the cost associated to packet delivery latency1. We observe
that, as a by-product, since cd(s, a) tends to reduce the
buffer occupation, it also allows to reduce the packet drop-
ping probability, as elicited in the experimental evaluation.
Finally, cmsr = np/(K + rc)/M is the cost associated to the
transmission of the channel probing packet2, where rc is the
number of redundancy bits added on average by the avail-
able codes (i.e. rc = 1

F

∑F
c=1 rc). The weights w1, w2, w3

satisfy w1 + w2 + w3 = 1 and each cost component is nor-
malized in the closed interval [0, 1].

4. RL-BASED SOLUTIONS
4.1 Preliminaries

A policy is a function π (s) which associates to each state
s an action a, which in our problem corresponds to compute
how many packets to send in each epoch, select the FEC
code with which packets are error-protected, and whether
to send a BEP probing packet. According to our MDP for-
mulation, we are interested in determining the policy which
minimizes the expected discounted cost over an infinite hori-
zon with discounting factor 0 ≤ γ < 1, defined as:

V π(s) = Eπs

{∑∞

t=0
γtc(st, at)

∣∣∣s0 = s
}
, (4)

where c(s, a) is the expected immediate cost associated to
state s and decision a. The discount factor models the pref-
erence for immediate costs. In particular, γ close to 1 leads
to “far-sighted” evaluation while γ close to 0 leads to “my-
opic” evaluation, in which immediate cost minimization is
strongly preferred.

An MDP can be solved via standard techniques, e.g., value
iteration, LP formulation, etc [10]. However, computing the
optimal policy is computationally expensive and requires a
full a priori knowledge of system parameters such as the
transition probabilities and the value of the cost functions
for each-state action pair. This type of information, in prac-
tice, can hardly be assumed to be available a priori. Hence,
this approach is unfeasible for the considered scenario. This
motivates us to seek for RL-based techniques. These tech-
niques are powerful because they are model-free techniques
which learn the cost value function by experience, without
requiring any knowledge of the transition probabilities.

4.2 Q-Learning
The Q-Learning algorithm is a simple algorithm that can

be used to learn the optimal policy. It directly estimates the
action-value function Qπ

∗
(s, a) without any a priori knowl-

edge about the system parameters. The knowledge of the
Q-function is fundamental since it directly results into the
associated policy. Indeed, the optimal policy can be simply
computed as π∗(s) = arg mina∈A(s)Q

π∗(s, a), ∀s ∈ S [10].
The core of the Q-Learning is a simple update step per-

formed when the system transits from state st to state st+1.

1Latency is inherent in this expression in the form of the
number of packets that are present in the buffer at the be-
ginning of epoch t and are not delivered, either because they
are not sent in the epoch or because their transmission fails
at the receiver. In any case, all such packets will incur an
additional delay of one epoch. This number is then normal-
ized to the maximum theoretical value it can achieve, i.e. M
(all packets in a full buffer successfully transmitted).
2For consistency with cd(s, a), cmsr is defined as the number
of data packets corresponding to the probing packet length
np. However, since the length of data packets is not uniquely
defined (it depends on the chosen FEC), we have used the
average amount of redundancy r.

It is based on the experience tuple σt = (s[t], a[t], c[t], s[t +
1]), where a[t] and c[t] are the performed action and the cost
per time unit when the system was in state s[t]. The update
step is defined as follows [5]:

Qt+1(s[t], a[t]) = (1− αt)Qt(s[t], a[t]) (5)

+ αt
(
c(s[t], a[t]) + γmin

a′
Qt(s[t+ 1], a′)

)
where a′ is the greedy action in state s[t + 1], i.e., the ac-
tion which minimizes the current estimate of the action-
value function; αt ∈ [0, 1] is a time-varying learning rate
parameter; and, Q0(s, a) can be initialized arbitrarily for all
(s, a) ∈ S ×A.
Q-Learning uses a sample average of the action value func-

tion to approximate Qπ
∗
(s, a). Particularly, Qt(s, a) con-

verges to Qπ
∗
(s, a) with probability 1, for i→∞, if:

• αt satisfies the stochastic approximation conditions∑∞
t=0 α

t =∞ and
∑∞
t=0(αt)2 = 0;

• the instantaneous cost and transition probability func-
tions are stationary;

• all of the state-action pairs are visited infinitely often.

Using Q-Learning, it is not obvious what is the best action to
take in each state during the learning process. At any time
the player can select the greedy action (the action with the
lowest estimated action-value function Qt(s, a)). When the
player chooses the greedy action, he exploits the experience
information base. If the player selects one of the non-greedy
actions, he is exploring, i.e., he is improving the running
estimates of the non-greedy actions-value functions Qt(s, a).
Exploitation is the best way to minimize the expected cost
on a single round, while exploration lets the player refine
his experience information base and achieve a lower cost on
the long run. Learning the best actions while at the same
time minimizing the sum of paid costs requires to carefully
trade-off between exploitation and exploration.

A common approach to trade-off between exploitation and
exploration is to use the ε-greedy heuristic. The idea is to
switch, every once in a while, from selecting the greedy ac-
tion by performing one of the non-greedy ones. More for-
mally, the player acts greedily with probability 1 − ε and
non-greedily with probability ε, choosing the non-greedy ac-
tion randomly from a uniform distribution. On the long
run, this allows to update the estimated cost for all actions
and re-think wrong approaches that seemed effective. We
choose, among others, an ε-greedy strategy because, despite
its simplicity, it still represents the best in terms of practi-
cally useful algorithms.

The major drawback of the Q-learning algorithm is that
it only updates one state-action couple at a time resulting
in low convergence rate and poor runtime performances, es-
pecially when the cardinality of the state space is large and
there are many actions for each state. In the following we
propose two methods for improving the convergence rate.
The two methods are based on Virtual Experience and State-
Action Aggregation [10].

4.3 Virtual Experience
The Virtual Experience method (VE) allows to update

multiple state-action couples in each decision epoch in order
to improve learning and runtime performances. The basic
idea is that, whenever we send a given number of packets,

we can use the information about the number of packets
correctly received to emulate the outcome of different actions
in possibly different states. Particularly, we use

PERrc = mf/m. (6)
as an estimation of the PER at epoch t. The knowledge of
PERrc allows us to perform virtual experience, i.e., to com-
pute the outcomes m′s and m′f of multiple state-action cou-
ple (s′, a′), as if these actions were actually performed. This
information, along with the number l of newly arrived pack-
ets, is all we need to compute the virtual cost c(s′[t], a′[t])
and the virtual next state s′t+1 (see 3) and to update the
relative entry of the Q-function using the Q-learning algo-
rithm. In particular, we can perform virtual experience for
each state-action couple (s′, a′) so that:

• the last measured BEP b̂′ and the number of decision
epochs since the last BEP probing δ′ equal the ones in
state s, i.e., only the buffer length differs;

• the amount of redundancy bits specified by a′ is so
that r′c = rc.

These are essential features to ensure that the BEP dynam-
ics is consistently taken into account. More formally, we can
compute m′s and m′f as follows:

• ∀s′ ∈ S : b̂′ = b̂ and δ′ = δ, ∀a′ ∈ A(s′) : r′c = rc →
m′f = PERrcm

′, m′s = m′ −m′f .
The same arguments can be used to perform virtual ex-

perience also in case of the test action ap. In that case,
the outcome of the measurement and the number of pack-
ets arrived in the meantime are all is needed to compute
c(s′[t], a′[t]) and s′[t + 1], and to update the value of the
Q-function.

4.4 State-Action aggregation
The State-Action Aggregation method (S-AA) is based

on the idea that reducing the cardinality of both the state
space and the action set helps speeding-up the learning pro-
cess. This is a challenging task, because there is a trade-off
between the state space cardinality and the amount of in-
formation stored in the model, and a coarser grain model
could negatively affect system runtime performances. The
approach we propose in this work is simple and effective.

As a first step, we reduce the number of actions available
in each state. Instead of allowing to transmit any possible
amount of packets, we allow only the possibility to transmit,
during an epoch, a pre-defined fraction of the number of
packets in the buffer, i.e., a quarter, a third, half the buffer
length, and so on. An option of particular interest, due to
its simplicity, is the one in which the only possibility is to
send all the packets in the buffer. For a state s = (b̂,M, δ),
the action space is hence given by:

A(s) =

{
{ap} if δ = Tmax

{ap} ∪ {aM,c | c ∈ C} otherwise.
(7)

As we can see, the only choice regards the FEC code, i.e.,
the amount of packet redundancy.

The second and equally important step is to reduce the
cardinality of the state space. Since learning the BEP dy-
namics is a key element to minimize energy consumption, we
keep the BEP and the BEP estimate age state components
(b̂ and δ) untouched, and reduce the state space cardinality
acting on the buffer component. We propose a hard aggre-
gation approach in which several states sm corresponding to
different buffer lengths m (but with the same value of b̂ and
δ) are aggregated in a single state. In practice, the buffer

is divided in ξ slots3 of equal length β = dM/ξe and each
state sm is mapped to slot i = dm/βe, to form an aggre-
gated state si. In the next section we will show that we can
achieve very good results simply setting ξ = 1.

5. PERFORMANCE EVALUATION
In this Section we evaluate and compare the performance

of the two proposed techniques and the Q-learning based
one. The selected set of error correction codes is gener-
ated starting with the rate 1/2 convolutional code used in
the Janus standard [9] and then applying puncturing to ob-
tain a rate 2/3. To generate the channel trace we used a
discrete-time Markov Chain4 with BEP values in the inter-
val [10−3, 10−1]. The other system parameters are listed in
the following table:

Parameter symbol value/range

Buffer size Mmax 100 packets
Maximum number of
packets that can be
transmitted in an epoch

mmax 100 packets

BEP probing packet size np 1000 bits
Payload size K 400 bits

Redundancy bits K
K+rc

1
2
, 3
4

Maximum time to refresh
BEP estimate

Tmax 15 epochs

Incoming packets arrival
rate

λ 2 pack-
ets/epoch

Epoch duration T 50 seconds
Discount factor γ 0,9
Aggregation factor ξ 1
Bit rate 1200 bps
Transimt power 3,3 Watts

The selected bit rate and transmit power values are set to
values common in commercial modems.

Fig. 1 shows the evolution of the cost function during
the simulation time. This kind of plots are useful in assess-
ing the performance of a learning method from the point
of view of (i) effectiveness in achieving a policy that has
good performance in terms of cost minimisation, and (ii)
doing it in a reasonable time, so that the technique is able
to adapt to a variation in the long-term channel behavior
without loosing performance due excessively long transient
regimes. The plots show the average of the cost evolution
over ten realizations with different initial conditions. It can
be seen that QL takes a time longer than the simulation
length to converge to the optimal policy. Conversely, both
S-AA and VE guarantee a fast convergence to their best se-
lected policy. With our simulation setup, S-AA achieves the
minimum value of the cost function, although VE achieves
a close value. The important aspects of these performance
are that (i) both the proposed techniques achieve a close to
optimal value of the experienced cost; (ii) they converge or-
der of magnitudes faster than Q-learning, which makes them
suitable for use in scenarios where the environment changes
on a time scale in the order of hours; (iii) although S-AA
has a coarser state-action space, it performs slightly better
than VE. This reflects a typical tradeoff, where learning on
a coarser state-action space can yield better performance

3We assume M to be an integer multiple of ξ.
4Note that this is only done to have a trace over which the
algorithms can run, there is no loss of generality in this
choice.

0 1000 2000 3000 4000
0

0.1

0.2

0.3

number of epochs

c
o
s
t

Q -l e arning

State aggregati on

Vi rtual Exp

Figure 1: Cost evolution over time.

0 0.2 0.4 0.6 0.8 1
0.92

0.94

0.96

0.98

1

1.02

de lay we ight

P
D
R

Q -l e arning

State aggregati on

Vi rtual Exp

Figure 2: Packet Delivery Rate.

than learning over a finer state-action space, which requires
to explore more state-action pairs. Finally, it is worth men-
tioning that both techniques entail a limited average value of
the energy used for channel probing, corresponding to 12%
of the total energy.

Fig. 2 shows the packet delivery ratio as a function of the
weight assigned to delay in the cost function. VE and S-
AA virtually guarantee the delivery of all packets for all the
weights, except for the case in which the delay is assigned a
zero weight. However, QL drops around 1% of the packets.
This is due to the fact that the learning rate is so slow
that the optimal policy is not achieved during the simulation
runs: the transmitter doesn’t learn the way to stabilize the
buffer, i.e. to keep latency limited.

Fig. 3 shows bidimensional performance planes in which
vertical axis represent PDL and horizontal axix energy con-
sumption. Each point of the scattered plots represents a
distinct value of the delay weight in the cost function. VE
and S-AA outperform QL in terms of delay performance,
delivering packets within 50 seconds or faster. Their en-
ergy vs. latency performance also well matches the applica-
tion requirements: as the weights associated to the different
costs change the protocol behavior also changes, compromis-
ing between energy and latency as requested. The figures
also show the performance of an aggressive policy where the
transmitter always attempts to transmit all the packets in
the buffer, using always the rate 1/2 code and the rate 3/4
code, and without any channel probing. The RL-based tech-
niques result in comparable latency but significantly lower
energy consumption, despite the energy used for channel
probing.

6. CONCLUSION
We have introduced two RL-based techniques for UWSNs

Data-Link packets transmission scheduling and channel prob-
ing. The results of our work show that RL is a promising
tool for optimizing the performance of Data-Link protocols
in scenarios characterized by uncertain time-variability of
the transmission conditions.

3.5 4 4.5 5

x 10
−3

0

100

200

300

Energy per bit (J)

D
el
a
y
(s
)

Q−learning

"always transmit" policy,
FEC coding rate = 3/4

"always transmit" policy,
FEC coding rate = 3/4

3.5 4 4.5 5

x 10
−3

0

100

200

300

Energy per bit (J)

D
el
a
y
(s
)

Virtual Experience

"always transmit" policy,
FEC coding rate = 3/4

"always transmit" policy,
FEC coding rate = 3/4

3.5 4 4.5 5

x 10
−3

0

100

200

300

Energy per bit (J)

D
el
a
y
(s
)

State aggregation

"always transmit" policy,
FEC coding rate = 3/4

"always transmit" policy,
FEC coding rate = 3/4

Figure 3: Energy consumption and PDL.

7. REFERENCES
[1] M. Chitre and K. Pelekanakis. ”Channel variability

measurements in an underwater acoustic network.”
Underwater Communications and Networking
(UComms), 2014. IEEE, 2014.

[2] P. Casari, M. Rossi, M. Zorzi, Towards optimal
broadcasting policies for HARQ based on fountain
codes in underwater networks, in: Proc. IEEE/IFIP
WONS, 2008.

[3] . Tomasi et al., Redundancy allocation in time-varying
channels with long propagation delays, Ad Hoc Netw.
(2015), http://dx.doi.org/10.1016/j.adhoc.2015.01.009

[4] B. Tomasi et al., Cross-layer analysis via Markov
models of incremental redundancy hybrid ARQ over
underwater acoustic channels, in press, Ad Hoc Netw.
(2014), http://dx.doi.org/10.1016/j.adhoc.2014.07.013

[5] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. Cambridge: MIT press, 1998.

[6] N. Mastronarde and M. van der Schaar. ”Joint
physical-layer and system-level power management for
delay-sensitive wireless communications.” IEEE Trans.
Mob. Comp. 12.4 (2013): 694-709.

[7] T. Hu and Y. Fei, QELAR: A
Machine-Learning-Based Adaptive Routing Protocol
for Energy-Efficient and Lifetime-Extended
Underwater Sensor Networks, IEEE Trans. Mob.
Comp, Vol. 9, No. 6, pp. 796–808, JUNE 2010.

[8] R. Plate, C. Wakayama, Utilizing kinematics and
selective sweeping in reinforcement learning-based
routing algorithms for underwater networks, in press,
Ad Hoc Netw. (2014),
http://dx.doi.org/10.1016/j.adhoc.2014.09.012.

[9] B. Tomasi, et al. ”On modeling JANUS packet errors
over a shallow water acoustic channel using Markov
and hidden Markov models.” Proc. 2010 IEEE
Military Communications Conference (MILCOM
2010), San Jose, Ca, USA, Oct. 31 - Nov. 3, 2010.

[10] M. L. Puterman, ”Markov decision processes: discrete
stochastic dynamic programming”, Wiley, 2019.

