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Abstract—We study a wireless network in which multiple users
stream delay-sensitive applications such as video conferencing
and video streaming. Existing spectrum sharing policies, which
determine when users access the spectrum and at what power
levels, are either constant (i.e. users transmit simultaneously,
at constant power levels) or weighted round-robin time-division
multiple access (TDMA) (i.e. users access the spectrum in
turn, one at a time). Due to multi-user interference, constant
policies have low spectrum efficiency. We show that round-robin
policies are inefficient for delay-sensitive applications because the
various “positions” (i.e. transmission opportunities) in a cycle are
not created equal: earlier transmission opportunities are more
desirable since they enable users to transmit with lower delays.
Specifically, we show that (weighted) round-robin TDMA policies
cannot simultaneously achieve high network performance and
low transmission delays. This problem is exacerbated when the
number of users is large.

We propose a novel framework for designing optimal TDMA
spectrum sharing policies for delay-sensitive applications, which
can guarantee their continuing QoS (CQoS), i.e. the desired
throughput (and the resulting transmission delay) starting from
every moment in time is guaranteed for each user. We prove
that the fulfillment of CQoS guarantees provides strict upper
bounds on the transmission delays incurred by the users. We
construct the optimal TDMA policy that maximizes the desired
network performance (e.g. max-min fairness or social welfare)
subject to the users’ CQoS guarantees. The key feature of
the proposed policy is that it is not cyclic as in (weighted)
round-robin policies. Instead, it adaptively determines which user
should transmit next, based on the users’ remaining amounts
of transmission opportunities needed to achieve the desired
performance. We also propose a low-complexity algorithm, which
is run by each user in a distributed manner, to construct the
optimal policy. Simulation results demonstrate that our proposed
policy significantly outperforms the optimal constant policy and
round-robin policies by up to 6 dB and 4 dB in peak signal-to-
noise ratio (PSNR) for video streaming.

I. INTRODUCTION

A variety of bandwidth-intensive and delay-sensitive appli-
cations, such as multimedia streaming, gaming, and telecon-
ferencing, are increasingly deployed over wireless networks.
Such applications impose huge challenges when deployed over
wireless networks, in which the users share the spectrum and
cause interference to each other. Hence, it is crucial to design
spectrum sharing policies that provide delay-sensitive users
with both high rates and low delays.

The spectrum sharing policies studied in earlier works [1]–
[5] require the users to transmit at constant power levels all
the time1. We call them constant (spectrum sharing) policies.

1Although some spectrum sharing policies go through a transient period of
adjusting the power levels before the convergence to the optimal power levels,
the users maintain constant power levels after the convergence.

Constant policies are inefficient in many spectrum sharing
scenarios with strong multi-user interference. Under strong
multi-user interference, increasing one user’s power level sig-
nificantly degrades the other users’ throughput, which results
in low spectrum efficiency.

The optimal way to share the spectrum should take into
account the users’ cross interference. Ideally, we should assign
the users to several (perhaps overlapping) subsets based on
their cross interference, such that the users in the same group
have low cross interference. Then the different subsets of
users can transmit in turn. However, the optimal assignment
of subsets requires knowledge about the cross channel gains
among the users, which is hard to get in a decentralized
spectrum sharing scenario. In addition, since the number of
subsets grows exponentially with the number of users, even
with the complete knowledge of cross channel gains, the com-
putational complexity of searching for the optimal partitioning
is prohibitively high. One way to manage interference while
limiting the informational and computational costs is to simply
let one user access the spectrum at one time, as in e.g. 802.11e
MAC wireless networks [6]. Such policies are commonly
known as time-division multiple access (TDMA) policies. Our
focus in this paper is on designing optimal TDMA policies for
delay-sensitive users.

All the existing TDMA policies are round-robin policies
or their variants (e.g. weighted round-robin policies) [6]–[9].
In round-robin policies, time slots are divided into cycles of
a fixed predetermined length, and each user transmits in fixed
predetermined positions within each cycle. The cyclic nature
of round-robin policies simplifies the implementation, but
imposes restrictions that render round-robin policies inefficient
for delay-sensitive applications. For delay-sensitive applica-
tion, not all the transmission opportunities (i.e. positions) in a
cycle are created equal: the earlier transmission opportunities
(TXOPs) are more desirable because they result in higher
chances to deliver packets on time, prior their delay deadlines
[6]–[10]. To ensure that the user’s rate and delay constraints
are met, round-robin policies need a long cycle, and a careful
sharing of TXOPs in a cycle. First, a long cycle is necessary.
Suppose that the cycle length is the shortest possible, namely
equal to the number of users (as in standard round-robin
policies). Then the user allocated to the last TXOP suffers
severely from delay. We can compensate this user for its delay
by having a longer cycle and allocating some of the extra
TXOPs to it. However, a long cycle results in an exponentially
increasing (in the cycle length) number of possible policies to
choose from. Second, a careful sharing of TXOPs is necessary
(see Fig. 1 for an illustration of the following discussion).
Suppose that the cycle length is twice the number of users,
and that each user gets two positions in a cycle. For fairness,
no user should get two advantageous (i.e. earlier) TXOPs. A
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low delay, but unfair for user 4:

fair, but high delay for user 1:

Fig. 1. Two simple round-robin schedules with cycle length 8 for 4 users. The
first one has low delay of 4 for all 4 users, but unfair sharing of transmission
opportunities (TXOPs) (i.e. user 4 gets later TXOPs). The second one has a
fair sharing of TXOPs, but incurs high maximum delay of 7 for user 1.

possible fair sharing may ensure that the user who gets an
earlier TXOP is also allocated to a later TXOP (e.g. one user
should get the first and the last TXOPs in a cycle). However,
such a fair sharing is inefficient in terms of individual perfor-
mance: the user who gets the first and the last TXOPs in a cycle
will experience high delay between consecutive transmissions.
As we will illustrate in our motivating example (Section IV)
and by simulations (Section VII), round-robin policies cannot
simultaneously achieve high system performance (e.g. max-
min fairness) and fulfill the guarantees in terms of transmission
delays required by the delay-sensitive users. This becomes
even more difficult to do within reasonable computational
complexity when the number of users is large.

In this paper, we propose a framework for designing opti-
mal TDMA spectrum sharing policies for delay-sensitive ap-
plications. We define a novel quality-of-service (QoS) metric,
called continuing QoS (CQoS) guarantees. CQoS guarantees
require a user’s average throughput starting from every point in
time to be higher than a threshold. CQoS guarantees are stricter
requirements than conventional QoS guarantees which only
guarantee the average throughput starting from the beginning.
We will prove that fulfilling CQoS guarantees results in upper
bounds on transmission delays. We propose a systematic de-
sign methodology, which constructs the optimal TDMA policy
that maximizes the system performance (e.g. fairness) subject
to the users’ CQoS guarantees. The key feature of the proposed
policy is that it is not cyclic as in round-robin policies. Instead,
it adaptively determines which user should transmit according
to the users’ remaining amounts of TXOPs needed to achieve
the target throughput. We propose a low-complexity algorithm,
which can be run by each user in a distributed manner, to
construct the optimal policy. Simulation results show that our
proposed policy significantly outperforms the optimal constant
policy [1]–[5] and round-robin policies in peak signal-to-noise
ratio (PSNR) for video streaming, by up to 6 dB and 4 dB
respectively, .

Finally, we summarize the comparison of our work with
the existing works in Table I.

The rest of the paper is organized as follows. In Section II,
we describe the system model. Then in Section IV, we motivate
our proposed policy by showing the inefficiency of round-
robin policies through a motivating example. We formulate
the policy design problem in Section V, and solve it in
Section VI. Simulation results are presented in Section VII.
Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a wireless network with N users. The set
of users is denoted by N � {1, 2, . . . , N}. Each user has
a transmitter and a receiver. The channel gain from user i’s
transmitter to user j’s receiver is gij . Each user i chooses a

TABLE I. COMPARISON WITH RELATED WORKS.

Spectrum CQoS Delay System or individual
efficiency guarantee guarantee performance achieved

Constant
Low No Yes Neither

[1]–[5]

Round-robin
High No Yes

Either for small # of users
[6]–[9] Neither for large # of users

Proposed High No Yes Both

power level pi from a compact set P̂i. We assume that 0 ∈ P̂i,
namely user i can choose not to transmit. We also assume that
the users need to comply with some interference temperature
constraints (ITCs) measured at K locations in the network.
Depending on different scenarios, the ITCs can be imposed
by primary users in a cognitive radio network or the base
station in a femtocell network. The channel gain from user
i’s transmitter to the kth location is gi0k . Each user i knows
the channel gain {gi0k}Kk=1 to each measurement location and
the interference temperature limit {Ik}Kk=1 at each location.
Hence, each user i’s set of admissible power levels is

Pi = {pi ∈ P̂i : gi0k · pi ≤ Ik, ∀k = 1, . . . ,K}. (1)

For convenience, we also define user i’s maximum admissible
power level as Pmax

i � maxpi∈Pi
pi.

Remark 1: Our system model is general enough to model
many wireless communication networks. It can model wireless
ad hoc networks where N users transmit in the unlicensed
spectrum (e.g. the 2.4 GHz frequency band) without ITCs
(K = 0). It can also model the uplink (the receivers are co-
located) and the downlink (the transmitters are co-located) of a
cellular network with possible ITCs imposed by base stations
in nearby cells. It can also model cognitive radio networks (or
femtocell networks) with N secondary users (or femtocells)
sharing the spectrum with K primary users (or K = 1 base
station) imposing ITCs at their receivers.

We denote the joint power profile of all the users by
p = (p1, . . . , pN ). Since the users cannot jointly decode their
messages and can only treat other users’ interference as noise,
each user i’s instantaneous throughput under the joint power
profile p is [1]–[5]

ri(p) = log2

(
1 + pigii∑

j∈N ,j �=i pjgji+σi

)
, (2)

where σi is the noise power at user i’s receiver. We write each
user i’s maximum throughput as rmax

i � log2 (1 + pigii/σi),
which is achieved when user i transmits at the maximum power
level and the other users do not transmit.

The system is time slotted at t = 0, 1, . . .. We assume
that the users are synchronized as in [1]–[5] (e.g. by using a
global clock from the global positioning system (GPS)). We
write each user i’s transmission policy as πi : N+ → Pi,
where πi(t) is user i’s transmit power level at time t. The
spectrum sharing policy is then the collection of all the users’
transmission policies, denoted by π = (π1, . . . , πN ). In a
constant policy, we have π(t) = pconst for all t ∈ N+. In
a TDMA policy, we have ‖π(t)‖0 = 1, where ‖ · ‖0 is the
�-0 norm that represents the number of nonzero elements in a
vector.

Remark 2: In this paper, we will focus on TDMA policies.
In other words, we do not consider constant policies, and



some non-constant policies that are not TDMA. Constant
policies are known to be inferior to TDMA polices when the
multi-user interference is strong. However, non-constant, non-
TDMA policies may achieve better performance than TDMA
policies, by allowing the subset of users with weak mutual
interference to transmit simultaneously. However, determining
the optimal subsets requires knowledge about the cross channel
gains among the users, which is hard to get in a decentralized
spectrum sharing scenario. In addition, since the number of
subsets grows exponentially with the number of users, a
naive exhaustive searching for the optimal partitioning has
prohibitively high complexity. Hence, as in [6]–[9], we will
focus on the design of TDMA policies in this paper.

Each user i’s (discounted) average throughput is defined as

Ri(π) = (1− δ)
∑∞

t=0 δ
t · ri(π(t)), (3)

where δ ∈ [0, 1) is the discount factor that models the
delay-sensitivity of a user [5][10]. A more delay-sensitive
user discounts the future throughput more (i.e. has a smaller
discount factor), because it has more urgency to transmit.
We use the discounted average throughput instead of the
average throughput, because for delay-sensitive applications,
the packets need to be transmitted as soon as possible to avoid
missing their deadlines [10]. In [9], we also studied the case
where the users have different discount factors but have no
CQoS constraints. Extensions to the case with heterogeneous
discounting and CQoS constraints are interesting future work.

III. CONTINUING QOS GUARANTEES

The widely-used QoS guarantee [1]–[10] is that the average
throughput is above some guaranteed fraction γavg

i of the
maximum possible throughput rmax

i , namely2

Ri(π) ≥ γavg
i · rmax

i . (4)

The above QoS guarantee does not provide sufficient guar-
antees for TDMA policies: even if a user’s average throughput
(starting from the beginning) Ri(π) is high, it may get a
extremely low throughput starting from certain point in time,
because it may not get sufficient TXOPs after certain point.3

Such an intuition will be illustrated in the motivating example
in Section IV. In this paper, we propose continuing QoS
guarantees, which ensure that at every point in time, a user’s
future throughput is guaranteed to be above some desired min-
imum requirement. Such continuing guarantees are important
for delay-sensitive users. We formally define continuing QoS
guarantees as follows.

First, we define the continuation throughput at time t as

Rt
i(π) = (1− δ)

∑∞
τ=0 δ

τ−t · ri(π(τ)), (5)

which is the discounted average throughput starting from time
t. Note that R0

i (π) = Ri(π). Then, the continuing QoS
guarantees can be written as

CQoS: Rt
i(π) ≥ γcont

i · rmax
i , ∀t = 0, 1, . . . . (6)

2In the case of constant policies [1]–[5], such QoS guarantee reduces to the
requirement on the instantaneous throughput, namely ri(p

const) ≥ γavg
i ·

rmax
i , because the users choose the same power profile at any time.

3Constant policies do not have such a problem. If they fulfill the average
throughput requirements, the throughput will be high enough starting from
every point in time. However, it is difficult for them to fulfill the average
throughput requirement in the first place, due to multi-user interference.
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Fig. 2. Relationship of delay and CQoS guarantees of user i. The solid
curve with square data points is the amount of data transmitted; each jump
in the curve corresponds to a transmission. The two straight lines through the
origin are the amount of data transmitted as if the throughput was R0

i and
γcont
i ·rmax

i , respectively. At each time t, if the continuation throughput Rt
i is

higher, the user needs to transmit more after time t. Hence, the corresponding
delay di(t) is lower.

To differentiate from CQoS, we will call the commonly-used
QoS guarantee in (4) as average QoS (AQoS) guarantee in the
rest of this paper. We can see that the CQoS guarantee contains
the requirement for the average throughput Ri(π). Hence, we
will assume that γcont

i < γavg
i . Otherwise, the AQoS guarantee

is redundant.

A byproduct of the CQoS guarantees is that once they are
satisfied, we can also provide upper bounds on the transmission
delays of each user. First, we define user i’s transmission delay
at any time t as

Transmission Delay: dti(π) � minτ>t {τ − t : πi(τ) > 0} .
In words, the transmission delay dti(π) is the minimum wait
time until the next transmission. An upper bound on the
transmission delays are critical for delay-sensitive applications.
As we will prove in Theorem 3, each user’s CQoS guarantee
leads to an upper bound on its maximum delay supt d

t
i(π). We

also illustrate the relationship of delay and CQoS guarantees
in Fig. 2. We can see that the delay is determined by the
difference between the traffic arrival rate and the guaranteed
rate (i.e. CQoS). A higher CQoS results in lower delay.

IV. A MOTIVATING EXAMPLE

We provide a motivating example to illustrate the im-
portance and impact of the CQoS guarantees, and to show
the advantage of the proposed optimal TDMA policy over
round-robin TDMA policies, in terms of both the performance
and the computational complexity. Consider a simple network
with four symmetric users. They have the same maximum
throughput normalized to 1 bits/s/Hz (i.e. rmax

i = 1, ∀i), and
the same discount factor of δ = 0.83. The system performance
metric is the max-min fairness (i.e. the minimum of all the
users’ throughput).

A. CQoS Guarantees and System Performance

We first illustrate the tradeoff between CQoS guarantees
and the system performance. Intuitively, CQoS guarantees
require that a user has sufficiently many transmission opportu-
nities every once in a while. In other words, the transmission



TABLE II. ROUND-ROBIN TDMA POLICIES CANNOT ACHIEVE BOTH

GOOD PERFORMANCE AND GOOD CQOS.

Cycle length L = 4 L = 5 L = 6 L = 7
Rates (bits/s/Hz) 0.18 0.19 0.20 0.23

CQoS (bits/s/Hz) 0.18 0.13 0.10 0.07

TABLE III. PERFORMANCE LOSS AND COMPLEXITY OF ROUND-ROBIN

TDMA POLICIES, UNDER CQOS GUARANTEES γcont
i = 0.1.

Cycle length L = 4 L = 5 L = 6 L = 7 Proposed

Worst user’s rate 0.18 0.19 0.20 0.23 0.25

CQoS guarantee fulfilled fulfilled fulfilled violated fulfilled

Performance loss
40% 32% 25% N/A –

(compared to proposed)

# of policies 24 240 1560 8400 –

delay at any point in time should be small. For example, for
round-robin TDMA policies with cycle length L = 8, the one
that maximizes CQoS guarantees (or minimizes transmission
delay) has a cycle of 1234 1234. It is not difficult to see that,
any other policies (we consider the policy with a cycle of
4321 4321 as the same since the users are symmetric) with
L = 8 will have a maximum transmission delay higher than 4,
and will have a worse CQoS. However, the policy with cycle
1234 1234 is not fair: user 4 always transmits at later positions
in the cycle, and hence will experience a very low average
rate. The policy that achieves the best max-min fairness (i.e.
the worst user’s rate is maximized) has a cycle of 1234 4321,
because user 4 will get two positions in the middle of the cycle.
However, such a policy has a worst-case transmission delay of
7 (for user 1). In other words, user 1 has a low CQoS (e.g.
its throughput starting from time slot 2 is very low, because it
needs to wait until time slot 8 to transmit).

We illustrate the tradeoff between the CQoS guarantees and
the system performance (i.e. max-min fairness) for round-robin
TDMA policies in Table II. We can see that with the increase
of the cycle length, round-robin TDMA policies achieve better
performance, but will have worse CQoS guarantees.

In Table III, we illustrate the performance loss of round-
robin TDMA policies compared to the proposed optimal
TDMA policy. We find the optimal round-robin policies of
different cycle lengths subject to a CQoS guarantee of 0.1
bits/s/Hz. The proposed policy achieves the optimal fairness
(i.e. 0.25 bits/s/Hz for all 4 users), and outperforms round-
robin policies by at least 20%.

B. Computational Complexity

Remarkably, not only is the proposed optimal policy much
more efficient than round-robin policies, it is much easier to
compute. To get a hint of why this is so, note that in a round-
robin policy, the user’s performance is determined not only by
the number of slots in a cycle but also by the positions of the
slots since users are discounting their future throughput (due
to delay sensitivity). For a given number of users N and a
given cycle length L, the number of non-trivial round-robin
schedules4 is greater than NL−N . So searching among these
schedules will be totally impractical even if L is moderately
larger than N - but in order to achieve efficiency close to
the optimal policy, the cycle length L must be much larger

4Non-trivial schedules are the ones in which each user gets at least one
time slot in a cycle.

than N . For instance, for the 4-user case above, achieving
energy efficiency within 10% of the optimal policy requires
that the cycle length be at least 7, and requires searching
among the thousands (8400) of different nontrivial schedules
of cycle length 7. Even this small problem is computationally
intensive. For a moderate number of users - say 10 - and a cycle
length of 20 - we need to search more than ten billion (i.e.
1010) schedules, which is completely intractable. However, we
will propose a simple algorithm to compute the optimal policy
whose complexity grows linearly with the number of users.

We will compare the complexity formally in Section VI-
C and Table IV. Throughout this paper, we discuss the
complexity of designing round-robin policies (e.g. how many
policies to search), instead of the complexity of implementing
them. It is easy to implement round-robin policies; however,
it is computationally complex to determine the optimal policy
before the implementation.

V. FORMULATION OF THE POLICY DESIGN PROBLEM

We aim to design a TDMA spectrum sharing policy π that
maximizes the system performance, defined as a function of
the users’ throughput, W (R1(π), . . . , R1(π)). We assume that
W (·) is increasing and strictly concave in each argument Ri.
Such a definition of system performance is general enough to
include the objective functions adopted in most existing works
[1]–[10] as special cases. One example of system performance,
which will be used in our simulations, is the (normalized) max-

min fairness defined as W (R1(π), . . . , R1(π)) = mini
Ri(π)
rmax
i

.

In addition, we will impose the AQoS and CQoS guarantees.
To sum up, we can formally define the policy design problem
as follows

Design Problem: max
π

W (R1(π), . . . , R1(π)) (7)

s.t. AQoS: Ri(π) ≥ γavg
i · rmax

i , ∀i,
CQoS: Rt

i(π) ≥ γcont
i · rmax

i , ∀i, t.
For the policy design problem (7) to be feasible, we require
that

∑
i∈N γavg

i ≤ 1.

VI. SOLVING THE POLICY DESIGN PROBLEM

In this section, we solve the policy design problem (7).
Our proposed solution (illustrated in Fig. 3) has two phases: an
offline phase implemented before run-time, which determines
the optimal operating point (i.e. each user’s target average
throughput), and a low-complexity online phase implemented
at run-time, which determines the transmission schedule that
achieves the optimal operating point while fulfilling AQoS and
CQoS guarantees.

A. Offline Phase – The Optimal Operating Point

Before run-time, the users solve the following problem in
a distributed manner to determine the optimal operating point:

r� = argmaxr≥0 W (r1, . . . , rN ) (8)

s.t.
∑

i∈N ri/r
max
i = 1,

ri ≥ γavg
i · rmax

i , ∀i.

In (8), the linear equality
∑

i∈N ri/r
max
i = 1 comes

from the requirement that the policy is TDMA. Intuitively,



it ensures that the total fraction of all the users’ transmission
opportunities sum up to 1. Note that the CQoS guarantees are
not present in (8). They will be taken care of in our scheduling
policy described in the next subsection.

Algorithm 1 The Optimal Operating Point Selection (OOPS)
algorithm run by user i.

Require: AQoS γavg
i , precision ε

1: Set λ = 0, λ̄ = 1, λ = λ̄.
2: Solve ∂W

∂ri
= − λ

rmax
i

for r∗i , set r∗i ← max{r∗i , γavg
i ·

rmax
i }

3: Broadcast r∗i /r
max
i , and receive r∗j /r

max
j from users j 	= i

4: while
∑

j∈N r∗j /r
max
j > 1 do

5: λ̄ ← 2 · λ̄, λ ← λ̄
6: Solve ∂W

∂ri
= − λ

rmax
i

for r∗i , set r∗i ← max{r∗i , γavg
i ·

rmax
i }

7: Broadcast r∗i /r
max
i , and receive r∗j /r

max
j from users

j 	= i
8: end while
9: while

∣∣∣∑j∈N r∗j /r
max
j − 1

∣∣∣ > ε do

10: λ ← λ+λ̄
2

11: Solve ∂W
∂ri

= − λ
rmax
i

for r∗i , set r∗i ← max{r∗i , γavg
i ·

rmax
i }

12: Broadcast r∗i /r
max
i , and receive r∗j /r

max
j from users

j 	= i
13: if

∑
j∈N r∗j /r

max
j < 1 then

14: λ̄ ← λ
15: else
16: λ ← λ
17: end if
18: end while
19: Normalize r∗i ← r∗i /

(∑
j∈N r∗j /r

max
j

)

We propose a distributed optimal operating point selection
(OOPS) algorithm (described in Algorithm 1) to solve (8).

We can prove that the distributed Algorithm 1 converges
to the optimal operating point linearly5 at rate 1

2 .

Theorem 1: The optimal operating point r� that solves
(8) can be found by each user running the distributed OOPS
algorithm (Algorithm 1), which converges linearly at rate 1

2 .

Proof: See [12, Appendix A].

B. Online Phase – The Optimal Transmission Schedule

After finding the optimal operating point r�, we need to de-
termine the transmission schedule that achieves it. Importantly,
the transmission schedule should fulfill the CQoS guarantees,
which is the major challenge of our solution. We propose
a distributed online longest-distance-first (LDF) scheduling
algorithm (described in Algorithm 2).

Algorithm 2 has a nice interpretation of longest distance
first scheduling. At each time slot t, the user with the largest
“distance to target” (i.e. αj(t) in Algorithm 2) transmits in this

5Following [11, Sec. 9.3.1], we define linear convergence as follows.
Suppose that the sequence {xk} converges to x. We say that this sequence

converges linearly at rate c, if we have limk→∞
|xk+1−x|
|xk−x| = c.

OOPS algorithm

Input: system performance metricW(R1,…,RN)

LDF scheduling

AQoS

optimal operating point

Output: optimal scheduling (with transmission
delay guarantees) π

CQoS

Fig. 3. Illustration of our proposed design framework. The operations in
blue and in red are done by the policy designer and the decentralized users,
respectively.

Algorithm 2 The Longest-Distance-First (LDF) scheduling
algorithm run by user i.

Require: normalized operating points {r�j /rmax
j }j∈N , dis-

count factor δ
Initialization: t = 0, “distances” αj(0) = r�j /r

max
j , ∀j ∈

N
repeat

Find the user with the largest distance

i∗ � min

{
argmax

j∈N
αj(t)

}

if i = i∗ then
Transmit at power level Pmax

i
end if
Updates distances αj(t+ 1) for all j ∈ N as follows:

αi∗(t+1) = αi∗ (t)
δ − ( 1δ −1), r′j(t+1) =

αj(t)
δ , ∀j 	= i∗

t ← t+ 1
until ∅

time slot6. The algorithm updates the distances in the “correct”
way, such that the optimal operating points are achieved.
Theorem 2 proves the desirable properties of the proposed LDF
scheduling algorithm.

Theorem 2: For any discount factor δ ≥ N−1
N−∑

j∈N γcont
j

,

if each user i ∈ N runs the distributed LDF scheduling
algorithm, we have

• each user i’s average throughput up to time t con-
verges to its optimal operating point linearly at rate δ,
namely |(1− δ)

∑t
τ=0 δ

τ · rτi − r�i | ≤ rmax
i · δt+1;

• each user i fulfills its CQoS guarantee, namely
Rt

i(π) ≥ γcont
i · rmax

i , ∀t = 0, 1, 2, . . .

Proof: See [12, Appendix B].

Remark 3: Although the CQoS guarantees do not directly
appear in Algorithm 2, they impose a constraint on the discount
factor δ used in Algorithm 2. Theorem 2 proves that the
algorithm, given a proper input of discount factor (namely
δ ≥ N−1

N−∑
j∈N γcont

j
), will construct a policy that fulfill the

CQoS guarantees.

6Ties can be broken arbitrarily. In Algorithm 2, we choose the user with the
smallest index. Specifically, when argmaxj∈N αj(t) returns a set of indices,
we choose the minimum one.



TABLE IV. COMPARISON OF COMPUTATIONAL COMPLEXITY.

Policy Computational complexity

Constant policies [1]–[5] NP-hard to find the optimal pconst

Round-robin TDMA (cycle length L)
Offline: ≥ NL−N policies to search

Online: 0

Proposed
Offline: N · O(log2 1/ε)

Online: O(N)

Theorems 1 and 2 establish the convergence results of our
proposed scheme. Theorem 1 proves that the process of finding
the optimal operating points converges in logarithmic time,
and Theorem 2 proves that the LDF scheduling achieves the
optimal operating points in logarithmic time. Hence, the overall
convergence speed is fast. Moreover, Theorem 2 ensures that
the CQoS guarantees are fulfilled.

As we have discussed before, a byproduct of the CQoS
guarantees is the upper bounds on the transmission delays,
which are provided in Theorem 3

Theorem 3: For any discount factor δ ≥ N−1
N−∑

j∈N γcont
j

,

if each user i ∈ N runs the distributed LDF scheduling
algorithm, we have

• each user i’s maximum transmission delay is upper
bounded, namely

sup
t≥0

dti(π) ≤
log γcont

i

log δ
;

• at each time t, each user i’s transmission delay is
upper bounded, namely

dti(π) ≤
logαi(t)

log δ
,

where αi(t) is user i’s distance from target at time t
calculated in Algorithm 2.

Proof: See [12, Appendix C].

Theorem 3 gives us the upper bound of the maximum trans-
mission delay, as well as finer upper bounds of transmission
delays at each time t based on the user’s distances from target
αi(t) (calculated in Algorithm 2). Note that the upper bound
on the maximum delay, namely log γcont

i / log δ, is decreasing
in the CQoS, because we have γcont

i < 1 and δ < 1.

C. Computational Complexity and Message Exchange

We compare the computational complexity of the existing
solutions and our proposed solution, and discuss the amount
of message exchange in our solution.

1) Computational Complexity: For constant policies, find-
ing the optimal power profile pconst is NP-hard in general [1].
This is due to the nonconvexity of the problem: the throughput
function is not jointly concave in the power profile because of
the interference. For round-robin TDMA policies, the number
of policies to search is lower bounded by NL−N . To ensure a
good performance, the cycle length needs to be large, which
means that the number of policies grows exponentially with
the number of users N . Hence, it may take a long time to
find the optimal round-robin TDMA policy before run-time,
although they are easy to implement at run-time. In contrast,
in our proposed solution, the OOPS algorithm converges in

logarithmic time before run-time, and the complexity of the
online LDF scheduling is low (i.e. each user only needs to
update the distances based on simple analytical formula).

2) Message Exchange: In our proposed solution, the mes-
sage exchange happens only before run-time. The total amount
of message exchange (i.e. the broadcast of r∗i /r

max
i ) is

N ·O(log2 1/ε). There is no message exchange at run-time.

VII. SIMULATION RESULTS

We demonstrate the performance gain of our proposed
TDMA policy over existing policies. Throughout this section,
we use the following system parameters. The noise powers at
all the users’ receivers are normalized as 0 dB. The maximum
transmit powers of all the users are 20 dB. Without loss of
generality, we normalize the direct channel gains to 1, namely
gii = 1, ∀i, and generate the cross channel gains randomly
according to the distribution gij ∼ CN (0, 0.5), ∀i 	= j. The
system performance is measured by the (normalized) max-min
fairness mini Ri/r

max
i , namely we aim to maximize the worst

user’s (normalized) throughput. At the optimal max-min fair-
ness, each user’s normalized average throughput Ri(π)/r

max
i

cannot exceed 1
N . Hence, we let each user’s AQoS guarantee

to be within 10% of its maximum normalized throughput,
namely γavg

i = 0.9
N , ∀i. In most simulations, we will vary

the CQoS guarantees (which are equal cross users). Given
each CQoS guarantee, we choose the minimum discount factor
specified by Theorem 2, namely δ = N−1

N(1−γcont
i )

. In other

words, we evaluate the performance of the most delay-sensitive
applications.

A. Performance Under Different CQoS Guarantees

We first fix the number of users to be N = 4, and increase
the CQoS guarantees from 0.1 to 0.22. Note that the AQoS
guarantee under N = 4 is 0.225. Hence, a CQoS guarantee
of 0.22 is close to the AQoS guarantee. In Fig. 4, we show
the optimal max-min fairness (i.e. mini Ri/r

max
i ) achieved by

different policies. We can see that under all CQoS guarantees,
our proposed policy can achieve the optimal max-min fairness
of 0.25. In contrast, the optimal constant policy achieves at
least 50% away from the optimal max-min fairness when
the CQoS guarantee is small, and becomes infeasible when
the CQoS guarantee exceeds 0.13. For round-robin policies,
we search all the policies up to cycle length 9 (there are
186480 non-trivial policies with cycle length 9) and choose the
optimal one under each CQoS guarantee. We can see that the
performance of round-robin policies decreases to 20% away
from the optimal performance before it becomes infeasible at
CQoS of 0.19.

Next, we investigate the maximum number of users that can
be supported by each policy under different CQoS guarantees.
We increase the CQoS guarantees from 0.05 to 0.20. Note that
theoretically, the maximum number of users that can possibly
be supported is 
 1

γcont
i

� (because we need N · γcont
i ≤ 1).

In Fig. 5, we can see that the maximum numbers of users
supported by our proposed policy are the same as the theo-
retical upper bounds at most of the time. At certain CQoS
guarantees (e.g. γcont

i = 0.05), the theoretical upper bound
(e.g. 20 users when γcont

i = 0.05) can be achieved only when
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Fig. 4. Comparison of the max-min fairness achieved by different policies
under different CQoS guarantees.
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Fig. 5. Comparison of the maximum number of users that can be supported
by different policies under different CQoS guarantees.

the discount factor is 1. However, since we consider delay-
sensitive applications (i.e. δ < 1), we can support slightly
fewer users (e.g. 19 users when γcont

i = 0.05). In contrast, the
other two polices can support much fewer users. At a CQoS
guarantee of 0.05, we roughly double the number of users
accommodated, compared to the other two policies. In other
words, we can utilize the spectrum much more efficiently while
fulfilling CQoS guarantees.

B. Performance for Video Transmission

Finally, we evaluate the performance of different polices for
wireless video transmission. In the performance evaluation, we
use the PSNR, which is commonly-used as performance metric
for video quality. In the experiment, We consider a network
with 4 users, and use the classic “Foreman” and “Coastguard”
video sequences. In Table V (for “Foreman” video sequence)
and Table VI (for “Coastguard” video sequence), we show
the worst-case PSNR achieved by different policies under
different CQoS guarantees. We can see that our proposed
policy improves the PSNR of the constant policy and the
round-robin policy by up to 6 dB and 4 dB, respectively.
Moreover, when the CQoS guarantees increase, the other two
policies become infeasible.

VIII. CONCLUSION

In this paper, we studied spectrum sharing among users
with delay-sensitive applications. We proposed a novel perfor-
mance metric, namely continuing QoS guarantees, to ensure
the performance of delay-sensitive applications. We designed
the optimal TDMA policy that maximizes the system perfor-
mance subject to the CQoS guarantees, and proposed low-

TABLE V. IMPROVEMENT OF PSNR IN “FOREMAN” SEQUENCE OVER

CONSTANT AND ROUND-ROBIN POLICIES UNDER DIFFERENT CQOS
GUARANTEES.

CQoS guarantee 0.12 0.15 0.18 0.20

Constant 31 dB infeasible infeasible infeasible

Round-robin 37 dB 35 dB 34 dB infeasible

Proposed 38 dB 38 dB 38 dB 38 dB

Improvement over Constant 6 dB – – –

Improvement over Round-robin 1 dB 3 dB 4 dB –

TABLE VI. IMPROVEMENT OF PSNR IN “COASTGUARD” SEQUENCE

OVER CONSTANT AND ROUND-ROBIN POLICIES UNDER DIFFERENT CQOS
GUARANTEES.

CQoS guarantee 0.12 0.15 0.18 0.20

Constant 29 dB infeasible infeasible infeasible

Round-robin 34 dB 32 dB 32 dB infeasible

Proposed 36 dB 36 dB 36 dB 36 dB

Improvement over Constant 6 dB – – –

Improvement over Round-robin 1 dB 3 dB 4 dB –

complexity distributed algorithms for the users to construct the
optimal policy. Our proposed policy significantly outperforms
existing constant policies and round-robin policies, in terms of
the system performance (e.g. max-min fairness), the number of
users accommodated while fulfilling their QoS guarantees, as
well as the computational complexity of designing the optimal
policies. When applied to video streaming, our proposed policy
can achieve performance improvement of up to 6 dB and 4 dB,
compared to constant policies and round-robin policies.
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