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Energy-Efficient Nonstationary Spectrum Sharing
Yuanzhang Xiao and Mihaela van der Schaar, Fellow, IEEE

Abstract—We develop a novel design framework for energy-
efficient spectrum sharing among autonomous users who aim
to minimize their energy consumptions subject to minimum
throughput requirements. Most existing works proposed station-
ary spectrum sharing policies, in which users transmit at fixed
power levels. Since users transmit simultaneously under station-
ary policies, to fulfill minimum throughput requirements, they
need to transmit at high power levels to overcome interference. To
improve energy efficiency, we construct nonstationary spectrum
sharing policies, in which the users transmit at time-varying
power levels. Specifically, we focus on TDMA (time-division
multiple access) policies in which one user transmits at each time
(but not in a round-robin fashion). The proposed policy can be
implemented by each user running a low-complexity algorithm
in a decentralized manner. It achieves high energy efficiency even
when the users have erroneous and binary feedback about their
interference levels. Moreover, it can adapt to dynamic entry and
exit of users. The proposed policy is also deviation-proof, namely
autonomous users will find it in their self-interests to follow it.
Compared to existing policies, the proposed policy can achieve
an energy saving of up to 90% under a large number of users.

Index Terms—Repeated games, tntervention, power control,
flow control.

I. INTRODUCTION

A KEY challenge in wireless networks is determining
efficient solutions for autonomous users to share the

spectrum. In cognitive radio networks where the users are
differentiated as primary users (PUs) and secondary users
(SUs), we also require SUs to access the spectrum without
degrading PUs’ quality of service (QoS). To be more general,
we consider cognitive radio networks in this work, and design
spectrum sharing policies that achieve efficient spectrum usage
and protect PUs’ QoS. Our work can be easily applied to
wireless networks in which users are not differentiated as PUs
and SUs.

Spectrum sharing policies, which specify the PUs’ and
SUs’ transmission schedules and transmit power levels, are
essential to achieve spectrum and energy efficiency. Research
on designing spectrum sharing policies can be roughly divided
in two main categories. The research in the first category
formulates the spectrum sharing problem as a utility max-
imization problem subject to the users’ maximum transmit
power constraints [1]–[10][19]–[22][29]. Many works in this
category [1]–[7][19]–[22][29] define the utility function as
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an increasing function of the signal-to-interference-and-noise-
ratio (SINR), while neglecting to consider the energy con-
sumption of the resulting spectrum sharing policies. Some
other works in this category [8]–[10] define the utility function
as the ratio of throughput to transmit power, in order to
maximize the spectrum efficiency per energy consumption.
Research in the second category [11]–[18] formulates the
spectrum sharing problem as an energy consumption mini-
mization problem subject to the users’ minimum throughput
requirements. In this formulation, the users’ throughput re-
quirements can be explicitly specified. Hence, the spectrum
efficiency is guaranteed with the minimal energy consumption.
The work in this paper pertains to this second category of
research works.

One major limitation of existing works in the second
category [11]–[18] is that they restrict attention to a simple
class of spectrum sharing policies that require the users to
transmit at fixed power levels as long as the environment (e.g.
the number of users, the channel gains) does not change1.
We call this class of spectrum sharing policies stationary.
The stationary policies are not energy efficient, because due
to multi-user interference, the users need to transmit at high
power levels to fulfill the minimum throughput constraints. To
improve energy efficiency, we study nonstationary2 spectrum
sharing policies. Specifically, we focus on TDMA (time-
division multiple access) spectrum sharing policies, a class
of nonstationary policies in which the users transmit in a
TDMA fashion. TDMA policies can achieve high spectrum
efficiency that is not achievable under stationary policies, and
greatly improve the energy efficiency of the stationary policies,
because of the following two reasons. First, there is no multi-
user interference in TDMA policies. Second, TDMA policies
allow users to adaptively switch between transmission and
dormancy, depending on the average throughput they have
achieved, for the purpose of energy saving. Note that in the
optimal TDMA policies we propose, users usually do not
transmit in the simple round-robin fashion, because of the
heterogeneity in their minimum throughput requirements and
channel conditions (see Section IV for a motivating example
that shows the sub-optimality of round-robin TDMA policies).

Another limitation of existing works in the second category
[11]–[18] is the assumption that each user’s receiver can
perfectly estimate the local interference temperature (i.e. the

1Although some spectrum sharing policies [11]–[18] go through a transient
period of adjusting the power levels before converging to the optimal power
levels, the users maintain the fixed power levels after the convergence.

2We use “nonstationary”, instead of “dynamic”, to describe the proposed
policy, because “dynamic spectrum sharing” has been extensively used to
describe general spectrum sharing policies in cognitive radio, where SUs
access the channel opportunistically. In this sense, our policy is dynamic.
However, our nonstationary policy is different from other dynamic spectrum
sharing policies, in that the power levels are time-varying.
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interference and noise power level), and can accurately feed
it back to its transmitter. However, in practice, users cannot
perfectly estimate the interference temperature, and can only
send limited (quantized) feedback.

In this paper, we provide a novel design framework to
construct nonstationary spectrum sharing policies that achieve
PUs’ and SUs’ minimum throughput requirements with mini-
mal energy consumptions, even when the users have erroneous
and very limited (only binary) feedback about their local
interference temperatures. We first prove a key property of
the optimal TDMA spectrum sharing policy: each user should
choose the same power level whenever it transmits. This
property enables us to solve the policy design problem in
two tractable steps: first determine the optimal power levels
before run-time, and then determine the transmission schedule
at run-time. We then propose a low-complexity distributed
instantaneous throughput selection (ITS) algorithm for the
users to determine their optimal power levels before run-time,
and a low-complexity distributed longest-distance-first (LDF)
scheduling algorithm to determine the transmission schedule
at run-time. We prove that both algorithms converge linearly
independent of the number of users (i.e. the distance from
the optimal solution decreases exponentially, resulting in a
logarithmic convergence time). The proposed policy can also
adapt to the dynamic entry and exit of users without affecting
the convergence of existing users. Moreover, it is deviation-
proof, meaning that a user cannot improve its energy efficiency
over the proposed policy while still fulfilling the throughput
requirement. In this way, autonomous users will find it in their
self-interest to adopt the policy.

The rest of the paper is organized as follows. We give
detailed comparisons against existing works in Section II.
Section III describes the system model for spectrum shar-
ing. Section IV gives a motivating example to show the
performance gain achieved by nonstationary policies and the
necessity of deviation-proof policies. We formulate and solve
the policy design problem in Section V and Section VI,
respectively. Simulation results are presented in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORKS

In this section, we provide a comprehensive comparison
between the proposed scheme and existing works. Although
only some works [11]–[18] use the same problem formulation
as ours, we compare against a wide range of related works
[1]–[29] to highlight the technical novelty of our work, and
to illustrate that the works [1]–[10][19]–[29] proposed under
different problem formulations cannot be adapted to our
setting.

A. Stationary Spectrum Sharing Policies

Most existing works propose stationary spectrum sharing
policies. We compare against them in Table I. Note that
throughout this section, the feedback is the information on
interference and noise power levels sent from a user’s receiver
to its transmitter.

TABLE I
COMPARISONS AGAINST STATIONARY POLICIES.

Energy Feedback User Deviation
-efficient (Overhead) number -proof

[1]–[5] No Error-free, unquantized Fixed No
[6][7] No Error-free, unquantized (Large) Fixed Yes

[8]–[16] Yes Error-free, unquantized (Large) Fixed Yes
[17][18] Yes Error-free, unquantized (Large) Varying Yes

[19]–[21] No Error-free, unquantized (Large) Fixed Yes
Proposed Yes Erroneous, binary (One-bit) Varying Yes

TABLE II
COMPARISONS AGAINST NONSTATIONARY POLICIES.

[22] [23] [24]–[26] Proposed
Energy No No No Yes-efficient
Power Yes No No Yescontrol
Users Heterogenous Homogenous Homogenous Heterogenous

Feedback Error-free Erroneous Error-free Erroneous
(Overhead) unquantized binary binary binary

(Large) (One-bit) (One-bit) (One-bit)
User Fixed Fixed Fixed Varyingnumber

Deviation- Yes No No Yesproof

B. Nonstationary Spectrum Sharing Policies

There have been some works that develop nonstationary
policies using repeated games [22], Markov decision processes
(MDPs) [23], and multi-art bandit [24]–[26]. We summarize
the major differences between the existing nonstationary poli-
cies and our proposed policy in Table II.

C. Comparison With Our Previous Work

Most related to this work is our previous work [29]. How-
ever, the design frameworks proposed in [29] and in this work
are significantly different because the design objectives are
different. In [29], we aimed to design TDMA spectrum sharing
policies that maximize the users’ total throughput without
considering energy efficiency. Under this design objective,
each user will transmit at the maximum power level in its
slot, as long as the interference temperature constraint is not
violated. Hence, what we optimized was only the transmission
schedule of the users. In this work, since we aim to minimize
the energy consumption subject to the minimum throughput
requirements, we need to optimize both the transmission
schedule and the users’ transmit power levels, which makes
the design problem more challenging. Moreover, this work
considers the scenario in which users enter and leave the
network, which is not considered in [29].

D. Comparison With Theoretical Frameworks

Our results on nonstationary policies build on the concept of
“self-generating sets” proposed in the game theory literature
[27]. Self-generating sets are used to analyze repeated games
with imperfect monitoring. For example, the Folk Theorem
in repeated games with imperfect monitoring in [28] builds
on the concept of self-generating sets. However, we cannot
apply this concept straightforwardly or in a way similar as
in [28] for the following reasons. The self-generating set is
defined as a fixed point of a set-valued mapping. The work
[27] defined the set-valued mapping, and proved an important
property of the fixed point of this set-valued mapping (i.e. the
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TABLE III
RELATED THEORETICAL FRAMEWORKS.

Constructive Feedback User number
[27] No N/A Fixed
[28] No Erroneous, high-granularity Fixed

Proposed Yes Erroneous, binary Varying

self-generating set): every payoff vector in the self-generating
set can be achieved at an equilibrium. However, although [27]
discovered this important property, it did not show how to
construct a self-generating set. Without constructing the self-
generating set, we do not know what payoff vectors can be
achieved at the equilibria or how to achieve them.

The concept of self-generating sets is applied in [28] to
prove the Folk theorem in repeated games with imperfect
monitoring. However, our work is fundamentally different
from [28] in two aspects. First, the results in [28] are not con-
structive: they focus on what payoff vectors can be achieved,
but not how to achieve them. In contrast, given a target
payoff vector, we explicitly construct the policy to achieve it.
Second, the results in [28] require a high-granularity feedback
signal, namely the cardinality of feedback signals should be
proportional to the number of power levels a user can choose.
In contrast, by exploiting the structure of the spectrum sharing
problem, we prove that binary feedback is sufficient to achieve
optimality in the considered scenarios.

In Table III, we summarize the key differences between our
work and [27][28].

III. SYSTEM MODEL

A. Model For Spectrum Sharing in Cognitive Radio Networks

We consider a cognitive radio network that consists of M
primary users and N secondary users transmitting in a single
frequency channel. The set of PUs and that of SUs are denoted
by M � {1, 2, . . . ,M} and N � {M + 1,M + 2, . . . ,M +
N}, respectively. A wireless network in which users are not
differentiated as PUs and SUs is a special case of our model
with M = 0. Each user3 has a transmitter and a receiver. The
channel gain from user i’s transmitter to user j’s receiver is
gij . Each user i chooses its power level pi from a compact set
Pi ⊆ R+. We assume that 0 ∈ Pi, namely user i can choose
not to transmit. The set of joint power profiles is denoted by
P =

∏M+N
i=1 Pi, and the joint power profile of all the users

is denoted by p = (p1, . . . , pM+N ) ∈ P . Let p−i be the
power profile of all the users other than user i. Each user i’s
throughput is a function of the joint power profile, namely
ri : P → R+. Since the users cannot jointly decode their
signals, each user i treats the interference from the other users
as noise, and obtains the following throughput at the power
profile p [1]–[21]:

ri(p) = log2

(
1 +

pigii∑
j∈M∪N ,j �=i pjgji + σ2

i

)
,

where σ2
i is the noise power at user i’s receiver.

We define user i’s local interference temperature Ii(p−i) as
the interference and noise power level at its receiver, namely

3We refer to a primary user or a secondary user as a user in general, and
will specify the type of users only when necessary.

Ii(p−i) �
∑

j �=i pjgji+σ2
i . Each user’s receiver measures the

interference temperature with errors and feedback the quan-
tized measurement to its transmitter. We assume that each user
i uses a unbiased estimator with an additive estimation error
to obtain the estimate Îi � Ii + εi, where εi is the estimation
error with zero mean, whose probability distribution function
fεi is known to user i. We also assume that each user i uses
the following simple two-level quantizer Qi:

Qi(Îi(p−i)) =

{
Īi, if Îi(p−i) > θi

Ii, otherwise
, (1)

where θi is user i’s quantization threshold, and Īi and Ii
are two reconstruction values. We assume that the quantizer
preserves the mean value of Îi(p−i) when there is no multi-
user interference. In other words, when p−i = 0 (i.e. when
Ii(p−i) = σ2

i ), the quantizer should satisfy

Eεi{Qi(Îi(p−i)|p−i=0)} = Eεi{Îi(p−i)|p−i=0} = σ2
i .

This property can be easily satisfied by setting

Īi =
∫
x−σ2

i ∈supp(fεi ), x≥θi
x · fεi(x− σ2

i )dx

Ii =
∫
x−σ2

i∈supp(fεi ), x<θi
x · fεi(x− σ2

i )dx
, (2)

where supp(fεi) is the support of the distribution function
fεi . In practice, it is easy to implement an unbiased estimator
and a simple two-level quantizer as in (1) and (2). As we will
show later, such an estimator and a quantizer are sufficient to
achieve the optimal performance.

Remark 1: Here is an intuition why an unbiased estimator
and the two-level quantizer in (1) and (2) are good enough
for us. For user i to achieve a minimum throughput ri, given
the feedback Qi(Îi), its transmit power level p̂i should be
p̂i = (2ri − 1) · Qi(Îi)/gii. In a TDMA policy, there is no
multi-user interference (i.e. p−i = 0) when user i transmits.
Hence, using an unbiased estimator and the quantizer in (1)
and (2), user i’s expected transmit power level is Eεi {p̂i} =
Eεi

{
(2ri − 1) ·Q(Îi)/gii

}
= (2ri − 1)Eεi{Q(Îi)}/gii =

(2ri − 1)σ2
i /gii, which is exactly the transmit power level

when user i perfectly knows the interference temperature σ2
i .

In contrast, under a non-TDMA policy, there is multi-user
interference. In this case, one user’s erroneous and quantized
feedback affects its own transmit power level, which in turn
affects the others’ transmit power levels through the interfer-
ence. Hence, an unbiased estimator and a simple two-level
quantizer in (1) and (2) may result in performance loss under
non-TDMA policies.

Since each user i adopts a two-level quantizer, its feedback
from the receiver to the transmitter is binary. Then we can
further reduce the feedback overhead as follows. Each user
i’s receiver informs its transmitter of the two reconstruction
values Īi and Ii only once, at the beginning, after which the
receiver sends a signal, probably in the form of a simple probe,
only when the estimated interference temperature Îi exceeds
the quantization threshold θi. The event of receiving or not
receiving the probing signal, which is sent only when Îi > θi,
is enough to indicate user i’s transmitter which one of the
two reconstruction values it should choose. Since the probing
signal indicates high interference temperature, we call it the
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distress signal as in [12],[18]. With some abuse of definition,
we denote user i’s distress signal as yi ∈ Y = {0, 1} with
yi = 1 representing the event that user i’s distress signal is sent
(i.e. Îi > θi). We write ρi(yi|p) as the conditional probability
distribution of user i’s distress signal yi given power profile
p, which is calculated as

ρi(yi = 1|p) = ∫
x>θi−Ii(p−i)

fεi(x)dx.

B. Spectrum Sharing Policies

The system is time slotted at t = 0, 1, 2, . . .. At the
beginning of time slot t, each user i chooses its transmit power
pti, and achieves the throughput ri(pt). At the end of time slot
t, each user j who transmits (ptj > 0) sends its distress signal
ytj = 1 if the estimate Îj exceeds the threshold θj . We define
y ∈ Y as the system distress signal, indicating whether there
exists a user who has sent its distress signal, namely y = 1
if there exists j such that pj > 0 and yj = 1, and y = 0
otherwise. The conditional distribution is denoted ρ(y|p),
which is calculated as ρ(y = 0|p) = Πj:pj>0ρj(yj = 0|p).
Note that the system distress signal is not a physical signal
sent in the system, but rather a logical signal summarizing the
status of the system. From now on, we refer to the system
distress signal simply as the distress signal.

Each user i determines the transmit power level pti based on
the history of distress signals. The history of distress signals
is ht = {y0; . . . ; yt−1} ∈ Y t for t ≥ 1, and h0 = ∅ for
t = 0. Then each user i’s strategy πi is a mapping from
the set of all the possible histories to its action set, namely
πi : ∪∞t=0Y

t → Pi. The spectrum sharing policy, denoted by
π = (π1, . . . , πM+N ), is the joint strategy profile of all the
users. Hence, user i’s transmit power level at time slot t is
determined by pti = πi(h

t), and the users’ joint power profile
is determined by pt = π(ht).

We classify all the spectrum sharing policies into two
categories, stationary and nonstationary policies. As in [33,
pp. 22] and [34, Sec. 5.5.2], stationary policies always choose
the same action under the same state, while nonstationary
policies may choose different actions under the same state.
In our model, the state can be considered as the system
parameters (e.g. the number of users, the channel conditions,
etc.). Hence, a spectrum sharing policy π is stationary if and
only if for all i ∈ N , for all t ≥ 0, and for all ht ∈ Y t,
we have πi(h

t) = pstati , where pstati ∈ Pi is a constant. A
spectrum sharing policy is nonstationary if it is not stationary.
In this paper, we restrict our attention to a special class
of nonstationary polices, namely TDMA policies (with fixed
transmit power levels). A spectrum sharing policy π is a
TDMA policy if at most one user transmits in each time slot.
TDMA policies are optimal when the interference among the
users is strong [31], which is often the case when the number
of users is large. We will illustrate how TDMA policies
outperform stationary policies through a simple example in
Section IV and through extensive simulations in Section VII.

Remark 2: In the formal definition of a nonstationary pol-
icy, it seems that each user needs to keep track of the history of
all the past distress signals at each time slot. However, as we
will see from the longest-distance-first scheduling algorithm

that implements the proposed policy, each user only needs a
finite memory.

C. Definition of Spectrum and Energy Efficiency

We characterize the spectrum and energy efficiency of
a spectrum sharing policy by the users’ discounted aver-
age throughput and discounted average energy consumption,
respectively. Each user discounts its future throughput and
energy consumption because of its delay-sensitive application
(e.g. video streaming) [19]–[22][29]. A user running a more
delay-sensitive application discounts more (with a lower dis-
count factor). Assuming as in [19]–[22][29] that all the users
have the same discount factor δ ∈ [0, 1), user i’s average
throughput is

Ui(π) = Eh0,h1,... {(1 − δ)
∑∞

t=0 δ
t · ui(π(h

t))} .
Similarly, user i’s average energy consumption is the expected
discounted average transmit power per time slot, written as

Pi(π) = Eh0,h1,... {(1− δ)
∑∞

t=0 δ
t · πi(h

t))} .
Each user i aims to minimize its average energy consump-

tion Pi(π) while fulfilling a minimum throughput requirement
Rmin

i . From one user’s perspective, it has the incentive to
deviate from a given spectrum sharing policy, if by doing so it
can fulfill the minimum throughput requirement with a lower
average energy consumption. Hence, we can define deviation-
proof policies as follows.

Definition 1: A spectrum sharing policy π is deviation-
proof if for all i ∈M∪N , we have

πi = argmin
π′
i

Pi(π
′
i,π−i), subject to Ri(π

′
i,π−i) ≥ Rmin

i ,

where π−i is the strategy profile of all the users except i.

IV. MOTIVATION FOR OPTIMAL NONSTATIONARY TDMA
POLICIES

Before formally describing the design framework, we pro-
vide a motivating example to show the advantage of the
proposed optimal nonstationary TDMA policy, compared to
the stationary policy and round-robin policies, in terms of
both the energy efficiency and the computational complexity.
Consider a simple network with three symmetric SUs. They
have the same direct channel gain of gii = 1, the same
cross channel gain of gij = 0.25, the same noise power
σ2
i = 5 mW, the same minimum throughput requirement of

Rmin
i = 1.5 bits/s/Hz, and the same discount factor of δ = 0.6.

A. Energy Efficiency

We illustrate the policies and their performances in Ta-
ble IV. The power levels are the transmit power levels of
the 3 users whenever they transmit. In the optimal constant
policy, users 1,2,3 all transmit all the time, at the same power
level of 186 mW. In TDMA policies, whether round-robin or
the proposed optimal policy, users do not all transmit all the
time. For round-robin policies, we compute the optimal policy
given the cycle length by determining the optimal (in terms of
average long-term energy consumption across users) order of
transmission in a cycle and the corresponding power levels. In
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TABLE IV
ILLUSTRATION AND PERFORMANCE OF POLICIES.

Policies Power levels Transmission schedule Average
(mW) (first 12 time slots) energy

Optimal stationary (186,186,186) simultaneous transmission 186 mW[11]–[18]
Optimal round-robin (33,144,1432) 123 123 123 123 108 mW(cycle length L = 3)
Optimal round-robin (43,212,249) 1233 1233 1233 48 mW(cycle length L = 4)

Optimal nonstationary (108,108,108) 1233 2321 3231 36 mW(proposed)

the optimal round-robin policy with cycle of length 3, user 1
transmits first at a low power level (33 mW), user 2 transmits
after user 1 at a higher power level (133 mW) to compensate
for having to wait for transmission and user 3 transmits last
at a still higher power level (1432 mW) to compensate for
having to wait still longer. In the cycle of length 4, again user 1
transmits at the lowest power level, user 2 transmits at a middle
power level, and user 3 transmits at the highest power level,
but the last two power levels are closer together (than in the
cycle of length 3) because user 3 transmits more often. In the
optimal nonstationary policy, the users all transmit at the same
constant power level (108 mW) whenever they transmit; this
works because the order in which they transmit is constantly
changing. In the last column of Table 1, the discounted average
energy per user per time slot is calculated. Notice that the cycle
of length 3 is slightly more efficient than the constant policy,
the cycle of length 4 is much more efficient, but the optimal
nonstationary policy is more efficient still. Indeed, the optimal
policy achieves 80%, 67% and 25% energy savings compared
to the optimal constant policy, the optimal round-robin policy
with cycle of 3 and with cycle of 4, respectively. Importantly,
the energy savings are even more significant when the number
of users is large (see Sec. VII).

B. Computational Complexity

Remarkably, not only is the proposed optimal nonstationary
policy much more efficient than round-robin policies, it is
much easier to compute. To get a hint of why this is so,
note that in a round-robin policy, the user’s performance is
determined not only by the number of slots in a cycle but
also by the positions of the slots since users are discounting
their future throughput (due to delay sensitivity). For a given
number of users M+N and a given cycle length L, the number
of nontrivial round-robin schedules (the ones in which each
user gets at least one slot) is greater than (M +N)L−(M+N).
So searching among these schedules will be totally impractical
even if L is moderately larger than M +N - but in order to
achieve efficiency close to the optimal non-stationary policy,
the cycle length L must be much larger than M + N . For
instance, for the 3-user case above, achieving energy efficiency
within 10% of the optimal nonstationary policy requires that
the cycle length L be at least 8, and so requires searching
among the thousands (5796) of different nontrivial schedules
of cycle length 8 and finding power levels for each user.
Even this small problem is computationally intensive. For
a moderate number of users - say 10 - and a cycle length
of 20 - this means searching more than ten billion (i.e.
1010) schedules and finding power levels for each user - a

completely intractable problem. However, we will propose a
simple algorithm to compute the optimal nonstationary policy
- both the schedule and the power levels - whose complexity
grows only linearly with the number of users.

V. THE DESIGN PROBLEM FORMULATION

Our goal is to construct a deviation-proof TDMA pol-
icy that fulfills all the users’ minimum throughput require-
ments and optimizes a certain energy efficiency criterion.
The energy efficiency criterion can be represented by a func-
tion defined on all the users’ average energy consumptions,
E(P1(π), . . . , PM+N (π)). Note, importantly, that the energy
efficiency criterion can also reflect the priority of the PUs
over the SUs. For example, the energy efficiency criterion can
be the weighted sum of all the users’ energy consumptions,
i.e. E(P1(π), . . . , PM+N (π)) =

∑
i∈M∪N wi · Pi(π) with

wi ≥ 0 and
∑

i∈M∪N wi = 1. Each user i’s weight wi

indicates the importance of this user. We can set higher
weights for PUs and lower weights for SUs.

Given each user i’s minimum throughput requirement Rmin
i ,

we can formally define the policy design problem as

min
π

E(P1(π), . . . , PM+N (π)) (3)

s.t. π is a deviation− proof TDMA policy,

Ri(π) ≥ Rmin
i , ∀i ∈ M∪N .

In the above problem formulation, the usual constraints on
the interferences caused by SUs to PUs are satisfied by
restricting to TDMA policies, in which there is no multi-user
interference.

VI. A DESIGN FRAMEWORK FOR SPECTRUM AND

ENERGY EFFICIENT POLICIES

We first outline the procedure to solve the policy design
problem (3). Then we show in detail how to solve the design
problem, and discuss implementation issues. Finally, we adapt
the proposed policy to the dynamic entry and exit of users.

A. Outline of The Design Framework

The protocol design problem (3) is difficult to solve directly,
because the decision variable π is the spectrum sharing policy,
which is a mapping from the set of all histories to the set
of actions. We first unravel an important property of the
optimal TDMA policy, namely each user should adopt the
same power level whenever it transmits (see Lemma 1). This
greatly reduces the dimension of the decision variable; now
we only need to find the single transmit power level (or
equivalently, the instantaneous throughput) of each user and
the transmission schedule. We propose a three-step design
framework, illustrated in Fig. 1, to solve the design problem.
First, we characterization of the set of feasible instantaneous
throughput vectors under which the users can fulfill their
throughput requirements (see Theorem 1). Based on this, we
then reformulate the original problem (3) into a problem
of finding the optimal instantaneous throughput vector, and
propose a distributed instantaneous throughput selection (ITS)
algorithm to solve the reformulated problem (see Theorem 2).
Finally, given the optimal instantaneous throughput vector, we
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Fig. 1. The design framework to solve the policy design problem.

propose a longest-distance-first (LDF) scheduling algorithm
to determine the transmission schedule, which results in the
optimal TDMA policy that solves the design problem (3) (see
Theorem 3). We illustrate the design framework in Fig. 1.

B. Solving The Policy Design Problem

We first prove a key property of the optimal energy-efficient
TDMA protocol: each user should choose the same power
level whenever it transmits.

Lemma 1: The optimal solution π∗ to the design problem
(3) must satisfy that each user i chooses the same power level
whenever it transmits, namely π∗

i (t1) = π∗
i (t2) for all t1 and

t2 such that π∗
i (t1) > 0 and π∗

i (t2) > 0.
Proof: See Appendix A.

Lemma 1 greatly simplifies the design problem: now we
only need to find a single optimal power level p∗i for each user
i to choose whenever it transmits, instead of solving for its
optimal power levels in all its transmissions. In the following,
we first find the optimal power levels {p∗i }i∈M∪N during the
users’ transmissions (which is equivalent to finding each user
i’s optimal instantaneous throughput, r∗i � log2

(
1 +

giip
∗
i

σ2
i

)
).

Then given {p∗i }i∈M∪N (or {r∗i }i∈M∪N ), we find the trans-
mission schedule that achieves the minimum throughput re-
quirements.

1) Step 1 – Characterizing feasible instantaneous through-
put vectors: Now we formulate the problem of finding the
users’ optimal instantaneous throughput {r∗i }i∈M∪N . First,
the structure of the optimal TDMA protocol discovered in
Lemma 1 enables us to establish the following relationship
between the average throughput and the average energy con-
sumption:

Pi(πi)

Ri(π)
=

(1− δ)
∑∞

t=0 δ
t1{πi(t)>0}ptdma

i

(1− δ)
∑∞

t=0 δ
t1{πi(t)>0} log2

(
1 +

giiptdma
i

σ2
i

)
=

ptdma
i

log2

(
1 +

giiptdma
i

σ2
i

) =
σ2
i

gii
· 2

rtdma
i − 1

rtdma
i

, (4)

where 1{·} is the indicator function, ptdma
i is user i’s power

level when it transmits in the TDMA protocol, and rtdma
i is

the corresponding instantaneous throughput. We can see from
(4) that given rtdma

i , the average energy consumption Pi(πi)
is proportional to the average throughput Ri(π). Hence, to
minimize the energy consumption, we should let Ri(π) =
Rmin

i for all i. Then based on (4), we can rewrite the ob-
jective function E(P1(π1), . . . , PM+N (πM+N )) of the design

problem (3) as a function of the instantaneous throughput
{rtdma

i }i∈M∪N :

E

(
σ2
1

g11
2r

tdma
1 −1
rtdma
1

Rmin
1 , . . . ,

σ2
M+N

gM+NM+N

2
rtdma
M+N−1
rtdma
M+N

Rmin
M+N

)
.

An instantaneous throughput vector {rtdma
i }i∈M∪N is fea-

sible, if there exists a TDMA protocol π that has the in-
stantaneous throughput {rtdma

i }i∈M∪N and can achieve the
minimum average throughput {Rmin

i }i∈M∪N . Before char-
acterizing the feasible instantaneous throughput vectors, we
write p̃i = (ptdma

i (rtdma
i ),p−i = 0) as the joint power

profile when user i transmits in a TDMA policy. Now we
state Theorem 1.

Theorem 1: An instantaneous throughput vector
{rtdma

i }i∈M∪N is feasible for the minimum throughput
requirements {Rmin

i }i∈M∪N , if the following conditions are
satisfied:

• Condition 1: the discount factor δ satisfies δ ≥ δ �
1/
(
1 +

1−∑
i∈M∪N μ

i

M+N−1+
∑

i∈M∪N
∑

j �=i(−ρ(y=1|p̃i)/bij)

)
, where

bij = suppj∈Pj,pj �=p̃i
j

ρ(y=1|p̃i)−ρ(y=1|pj ,p̃
i
−j)

rj(pj ,p̃i
−j)/r̄j

, and μ
i
�

maxj �=i
1−ρ(y=1|p̃i)

−bij
.

• Condition 2:
∑

i
Rmin

i

rtdma
i

= 1, and rtdma
i ≤ Rmin

i /μ
i
.

Proof: See Appendix B.
The problem of finding the optimal instantaneous through-

put {r∗i }i∈M∪N can then be formulated as

min
{rtdma

i }i∈M∪N
E

({
σ2
i

gii
2r

tdma
i −1
rtdma
i

Rmin
i

}
i∈M∪N

)
s.t.

∑
i∈M∪N Rmin

i /rtdma
i = 1, (5)

0 < rtdma
i ≤ r̄i � Rmin

i /μ
i
, ∀i ∈ M∪N .

2) Step 2 – Select the optimal instantaneous throughput
vector: We solve the above optimization problem (5) for the
optimal instantaneous throughput vector {r∗i }i∈M∪N using
the distributed ITS algorithm, which is proved to converge
in logarithmic time in Theorem 2.

The ITS algorithm essentially solves the following equation
(derived from the KKT condition) in a distributed fashion:

∂E
∂Pi
|
Pi=

σ2
i
Rmin

i
gii

2
r∗
i −1
r∗
i

(
2r

∗
i − 1− r∗i · 2r

∗
i ln 2

) σ2
i

gii
= −λ,(6)

where λ is the Lagrangian multiplier for the constraint∑
iR

min
i /rtdma

i = 1 in (5), and should be chosen such that∑
iR

min
i /r∗i = 1. The term ∂E

∂Pi
in (6) is the derivative

of the energy efficiency criterion E(·) with respect to user
i’s average energy consumption. If the energy efficiency
criterion is the weighted sum of all the users’ energy con-
sumptions, we have ∂E

∂Pi
|
Pi=

σ2
i
Rmin

i
gii

2
r∗
i −1
r∗
i

= wi, ∀r∗i . If the

energy efficiency criterion is the weighted proportional fair-
ness −∑i∈M∪N wi log(Pi), we have ∂E

∂Pi
|
Pi=

σ2
i
Rmin

i
gii

2
r∗
i −1
r∗
i

=

−wi
gii

σ2
i R

min
i
· r∗i
2r

∗
i −1

. Each user i selects the term ∂E
∂Pi

in the
ITS algorithm based on the energy efficiency criterion chosen
by the protocol designer.

Theorem 2: The problem (5) of finding the optimal instan-
taneous throughput vector can be converted into a convex
optimization problem, whose solution {r∗i }i∈M∪N can be
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Algorithm 1 Instantaneous Throughput Selection (ITS) algo-
rithm run by user i.

Require: Minimum throughput requirement Rmin
i , precision

e
1: Set λ = 0, λ̄ = 1, λ = λ̄.
2: Solve (6) for r∗i , set r∗i ← min{r∗i , r̄i}
3: Broadcast Rmin

i /r∗i , and receive Rmin
j /r∗j for all j 
= i

4: while
∑

j∈M∪N Rmin
j /r∗j > 1 do

5: λ̄← 2 · λ̄, λ← λ̄
6: Solve (6) for r∗i , set r∗i ← min{r∗i , r̄i}
7: Broadcast Rmin

i /r∗i , and receive Rmin
j /r∗j for all j 
= i

8: end while
9: while

∣∣∣∑j∈M∪N Rmin
j /r∗j − 1

∣∣∣ > e do

10: λ← λ+λ̄
2

11: Solve (6) for r∗i , set r∗i ← min{r∗i , r̄i}
12: Broadcast Rmin

i /r∗i , and receive Rmin
j /r∗j for all j 
= i

13: if
∑

j∈M∪N Rmin
j /r∗j < 1 then

14: λ̄← λ
15: else
16: λ← λ
17: end if
18: end while
19: Normalize r∗i ← r∗i /

(∑
j∈M∪N Rmin

j /r∗j
)

found by each user running the distributed ITS algorithm. The
algorithm converges linearly4 at rate 1

2 .
Proof: See Appendix C.

3) Step 3 – Construct the optimal deviation-proof policy:
Given the optimal instantaneous throughput vector, each user
i runs the longest-distance-first scheduling algorithm in a
decentralized manner. On one hand, the transmission schedule
can be viewed as a simple “largest-distance-first” scheduling,
namely the user farthest away from its throughput requirement
transmits. On the other hand, it is nontrivial to define the
“distance” from its throughput requirement. As we will prove
later, user j’s distance from its throughput requirement can

be defined as dj(t) =
r′j(t)−μ

j

1−r′j(t)+
∑

k �=j(−ρ(y=1|p̃j)/bjk)
, where

r′j(t) is the future throughput to achieve starting from time slot
t normalized by r∗j . The normalized future throughput r′j(t)
can be also interpreted the future transmission opportunity. If
user j transmitted all the time in the future, it would have
an average throughput r∗j . If it transmits in a fraction r′j(t)
of time after time t, it has an average future throughput of
r′j(t) · r∗j .

Theorem 3 proves the desirable properties of the LDF
scheduling algorithm.

Theorem 3: If each user i ∈ M ∪ N runs the LDF
scheduling algorithm, then we have

• each user i can achieve its minimum throughput require-
ment Rmin

i with an energy consumption Pi that mini-
mizes the energy efficiency criterion E(P1, . . . , PM+N );

• if a user does not follow the algorithm, it will either fail to

4Following [32, Sec. 9.3.1], we define linear convergence as follows.
Suppose that the sequence {xk} converges to x. We say that this sequence

converges linearly at rate c, if we have limk→∞
|xk+1−x|
|xk−x| = c.

Algorithm 2 The Longest-Distance-First (LDF) scheduling
run by user i.

Require: {Rmin
j /r	j }j∈M∪N , r∗i

Initialization: Set t = 0, r′j(0) = Rmin
j /r∗j for all j ∈

M∪N
repeat

Calculates the distance from the optimal operating point

dj(t) =
r′j(t)−μ

j

1−r′j(t)
ρ(y = 1|p̃j), ∀j

Find the user with the largest distance i∗ �
argmaxj∈M∪N dj(t)
if i = i∗ then

Transmit at power level ptdma
i (r∗i )

end if
Updates r′j(t+ 1) for all j ∈ M∪N as follows:
if No Distress Signal Received At Time Slot t then
r′i∗(t+1) = 1

δ ·r′i∗(t)−(1δ −1)·(1+
∑

j �=i∗
ρ(y=1|p̃i∗ )

−bi∗j
)

r′j(t+ 1) = 1
δ · r′j(t) + (1δ − 1) · ρ(y=1|p̃i∗ )

−bi∗j
, ∀j 
= i∗

else
r′i∗(t+1) = 1

δ ·r′i∗(t)−(1δ −1)·(1−
∑

j �=i∗
ρ(y=0|p̃i∗ )

−bi∗j
)

r′j(t+ 1) = 1
δ · r′j(t)− (1δ − 1) · ρ(y=0|p̃i∗ )

−bi∗j
, ∀j 
= i∗

end if
t← t+ 1

until ∅

achieve the minimum throughput requirement, or achieve
it with a higher energy consumption;

• the distance between each user i’s average throughput at
time t and its throughput requirement decreases exponen-
tially with time, namely

|(1− δ)
∑t

τ=0 δ
τ · rτi −Rmin

i | ≤ r∗i · δt+1. (7)

Proof: See Appendix D.
Theorems 2 and 3 establish the convergence results of

our proposed scheme. Theorem 2 proves that the process of
finding the optimal instantaneous throughput vector converges
in logarithmic time, and Theorem 3 proves that the LDF
scheduling achieves the minimum throughput requirements in
logarithmic time. Hence, the overall convergence speed is fast.

Note that our convergence results are very different from the
convergence results in some recent works on power control in
cognitive radio [4] and wireless networks [5]. These works
[4][5] belong to the stationary spectrum sharing policies,
namely they aim to find the optimal fixed power levels of
the users that maximize the network utility. The convergence
results in [4][5] differ from our results in two important ways.
First, since our work studies nonstationary spectrum sharing
with time-varying power levels, we need to determine not only
the optimal power levels of the users, but also the transmission
schedule of the users. We prove that the average throughput
obtained by adopting the proposed LDF scheduling converges
linearly. Such a result does not appear in [4][5]. Second, the
techniques used in proving the convergence to the optimal
power levels are different. In [4][5], the algorithms are akin
to the celebrated distributed power control algorithm [11], and
hence the proofs use and extend the “standard interference
function” argument. Such an argument is not used in our
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work since there is no interference among the users under
the proposed TDMA spectrum sharing policy.

C. Implementation

We discuss the total overhead of information exchange and
feedback and the computational complexity of the proposed
scheme.

1) Overhead of initial information exchange and feedback:
In Table V, we compare the overhead of information exchange
and feedback of the proposed framework with the energy
efficient spectrum sharing policies proposed in [11]–[17] and
[18] for wireless networks and cognitive radio networks,
respectively. Before run-time, the information exchange in the
proposed framework comes from the ITS algorithm ((M +
N)·O(log2(1/e)) with e being the performance loss tolerance)
and the exchange of bij for the LDF scheduling. The exchange
of bij is for deviation-proofness. However, in the run time,
the feedback overhead of the proposed policy is significantly
lower than that of [11]–[18]. Specifically, in [11]–[18], each
user i’s receiver needs to feedback the interference temperature
I−i in each time slot. Hence, the total amount of feedback
in [11]–[18] grows linearly with time. In conclusion, our
proposed framework has a much lower total overhead than
[11]–[18].

2) Computational complexity: The implementation of the
proposed policy includes the ITS algorithm before run-time
and the LDF scheduling at run-time. First, both the ITS
algorithm and the LDF scheduling converge fast in logarithmic
time as proved in Theorems 2 and 3. Second, each iteration in
the ITS algorithm involves solving the equation (6), which can
be done efficiently using the Newton method. Each iteration
in the LDF scheduling involves computing M + N indices
{dj(t)}j∈M∪N and M+N normalized values {r′j(t)}j∈M∪N ,
all of which are determined by analytical expressions. Finally,
although the original definition of the policy requires each
user to memorize the entire history of distress signals, in the
LDF scheduling, each user only needs to know the current
distress signal yt and memorize M + N normalized values
{r′j(t)}j∈M∪N . In conclusion, the overall computational com-
plexity of each user in implementing the proposed policy is
small.

D. Users Entering and Leaving the Network

We adapt the protocol to the scenario where users enter and
leave the network. We divide time into epochs, where a new
epoch begins when users enter or leave. The system starts at
epoch 0, and we denote the optimal instantaneous throughput
in epoch 0 by r

(0)
i . When new users enter or existing users

leave at t1, each of them broadcasts a “ENTER” or “EXIT”
signal, respectively. Upon receiving such a signal, the users run
the ITS algorithm again to determine the optimal instantaneous
throughput in epoch 1, r(1)i . Note that for each existing user i,
the input to the ITS algorithm is the continuation throughput
at t1, namely γi(t1); while for each new user j, the input
should be its minimum throughput Rmin

j . Then they run the
LDF scheduling with the new instantaneous throughput, until
a new epoch begins when the “ENTER” or “EXIT” signals

0

ITS

1 t

LDF

ENTER signal received,
because users enter at t1

t1

LDF

EXIT signal received,
because users leave at t2

t2

ITS LDFITS

epoch 0 epoch 1 epoch 2

Fig. 2. The proposed protocol implemented by user i when it receives
“ENTER” signal at t1 and “EXIT” signal at t2.

are broadcast by some users at t2. We illustrate how to adapt
the protocol in Fig. 2.

One nice property of the proposed protocol is that, the
convergence of the LDF scheduling is not affected by users
coming or leaving.

Theorem 4: In the proposed spectrum sharing protocol,
each user’s average throughput converges to the minimum
throughput requirement in logarithmic time, even with users
entering and leaving the network.

Proof: See Appendix E.
Note that we can also deal with the changes of system

parameters (e.g. the channel gains) in the same way as we
deal with the dynamic entry and exit of users. Specifically,
whenever a user observes a change in the system parameters,
it can broadcast a signal that triggers the users to run the ITS
algorithm and the LDF scheduling again. The convergence
result in Theorem 4 also applies to this case.

In some works [17] for energy efficient power control in
wireless networks, the locally stable asymptotic convergence
of the proposed algorithm is proved. The locally stable asymp-
totic convergence guarantees that slight perturbation from the
equilibrium (induced by, for example, an incoming user) will
not make the algorithm diverge. However, the convergence
result in Theorem 4 are different from that in [17]. Specifically,
we study the convergence of not only the transmit power
levels, but also the transmission schedule, which is not studied
in [17]. More importantly, the influence of dynamic entry
and exit of users on the convergence and stability is quite
different in our work as compared to [17]. Since our proposed
policy is TDMA, there is no interference among the users.
Hence, an incoming user will not interfere with the existing
users when they transmit. In other words, the influence of
incoming users is not through the interference as in [17],
but through acquiring the transmission opportunities of the
existing users. We show that under such perturbation (in terms
of transmission opportunities), the proposed LDF scheduling
still converges to the target throughput at the same rate.

VII. PERFORMANCE EVALUATION

In this section, we demonstrate the performance gain of our
spectrum sharing policy over existing policies, and validate our
theoretical analysis through numerical results. Throughout this
section, we use the following system parameters by default
unless we change some of them explicitly. The noise powers
at all the users’ receivers are 0.05 W. For simplicity, we
assume that the direct channel gains have the same distribution
gii ∼ CN (0, 1), ∀i, and the cross channel gains have the same
distribution gij ∼ CN (0, 0.25), ∀i 
= j. The users have the
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TABLE V
COMPARISON OF THE TOTAL OVERHEAD OF INITIAL INFORMATION EXCHANGE AND FEEDBACK.

Information exchange before run-time Feedback at run-time

[11]–[17] N/A Each user i: I−i each time slot
Amount: M + N reals per time slot

[18] Spectrum coordinator to each user: degradation of its minimum throughput requirement Each user i: I−i each time slot, distress signal if necessary
Amount: M + N reals Amount: M +N reals per time slot, distress signal if necessary

Proposed Each user i broadcasts to other users: ρ(y = 1|p̃i) and {bji}j �=i once, and Rmin
i /r∗i

at each iteration of the ITS algorithm; Each user i’s receiver to its transmitter: Īi, Ii

distress signal if necessary

Amount: (M + N)2 + (M + N) · O(log2(1/e)) reals Amount: distress signal if necessary
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Fig. 3. Energy efficiency of the stationary, round-robin, and proposed policies
under different numbers of users.

same minimum throughput requirement of 1 bits/s/Hz. The
discount factor is 0.95. The interference temperature threshold
is θ = 1 W. The measurement error ε is Gaussian distributed
with zeros mean and variance 0.1. The energy efficiency
criterion is the average energy consumption across users.

A. Comparisons Against Existing Policies

First, assuming that the population is fixed, we compare the
proposed policy against the optimal stationary policy in [11]–
[18], and the optimal round-robin policy with cycle length
L = M + N (i.e. each user gets one slot in a cycle). We
compare the energy efficiency of the policies as the number
of users increase in Fig. 3. Each data point plotted is the
average of 1000 channel realizations. First, we can see that
the stationary policy becomes infeasible when the number of
users is more than 4. In contrast, the round-robin and proposed
policies remain feasible when the number of users increases.
Second, the proposed policy achieves significant energy saving
compared to the round-robin policy, especially when the
number of users is large. Specifically, it achieves 50% and 90%
energy saving compared to the round-robin policy when the
number of users is 11 and 15, respectively. These are exactly
the deployment scenarios where improvements in spectrum
and energy efficiency are much needed.

B. Adapting to Users Entering and Leaving the Network

We demonstrate how the proposed policy can seamlessly
adapt to the entry and exit of PUs/SUs. We consider a network
with 10 PUs and 2 SUs initially. The PUs’ minimum through-
put requirements range from 0.2 bits/s/Hz to 0.38 bits/s/Hz
with 0.02 bits/s/Hz increments, namely PU n has a minimum
throughput requirement of 0.2 + (n − 1) ∗ 0.02 bits/s/Hz.
The SUs’ have the same minimum throughput requirement
of 0.1 bits/s/Hz. We show the dynamics of average energy
consumptions and throughput of several PUs and all the SUs
in Fig. 4 and Fig. 5, respectively.

In the first 100 time slots, we can see that all the users
quickly achieve the minimum throughput requirements at
around t = 50. PUs have different energy consumptions
because of their different minimum throughput requirements.
The two SUs converge to the same average energy con-
sumption and average throughput. There are SUs leaving
(t = 100) and entering (t = 150, 250), and a PU entering
(t = 200). We can see that during the entire process,
the PUs/SUs that are initially in the system maintain the
same throughput and energy consumption. The new PU (PU
11) has a higher energy consumption, because of its higher
minimum throughput requirement (0.4 bits/s/Hz), and because
of the limited transmission opportunities left for it. SU 3,
however, does not need a higher energy consumption because
it occupies the time slots originally assigned to SU 2, who
left the network at t = 100. But SU 4 does need a higher
energy consumption, because there are more SUs and less
transmission opportunities in the network after t = 250.

VIII. CONCLUSION

In this paper, we proposed nonstationary spectrum sharing
policies that allow the PUs and SUs to transmit in a TDMA
fashion. The proposed policy can achieve high spectrum
efficiency that is not achievable by existing policies, and is
more energy efficient than existing policies under the same
minimum throughput requirements. The proposed policy can
achieve high spectrum and energy efficiency even when the
users have erroneous and binary feedback of the interference
temperature. We extend the policy to the case with users
entering and leaving the network, while still maintaining the
spectrum and energy efficiency of the existing users. The pro-
posed policy is amenable to decentralized implementation and
is deviation-proof. Simulation results demonstrate significant
performance gains over state-of-the-art policies. Interesting
future research directions include how to design the optimal
policy when the feedback is finer than binary and when the
users have different delay sensitivities (i.e. different discount
factors).

APPENDIX A
PROOF OF LEMMA 1

Suppose that in the optimal TDMA protocol π∗, there
exists a user i and two time slots t1 
= t2, such that
0 < π∗

i (t1) < π∗
i (t2) (note that we do not assume t1 < t2

or t1 > t2). We will find another protocol π′ that fulfills the
same minimum throughput requirements with lower energy
consumptions, which contradicts the fact that π∗ is optimal.

We construct the protocol π′ as follows. The transmission
strategies of the users other than user i remain the same,
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Fig. 5. Dynamics of average throughput under the same dynamics of the
entry and exit of users as in Fig. 4.

namely π′
−i = π∗

−i. For user i, the transmission remains
the same for the time slots other than t1 and t2, namely
π′
i(t) = π∗

i (t), ∀t 
= t1, t2. Then we increase user i’s power
level at t1 by ε1 > 0, i.e. π′

i(t1) = π∗
i (t1) + ε1, and decrease

its power level at t2 by ε2 > 0, i.e. π′
i(t2) = π∗

i (t2)− ε2. To
maintain user i’s average throughput, ε1 and ε2 should satisfy

δt1 log2

(
1 +

giip
∗
i (t1)

σ2
i

)
+ δt2 log2

(
1 +

giip
∗
i (t2)

σ2
i

)
= δt1 log2

[
1+

gii(p
∗
i (t1)+ε1)

σ2
i

]
+δt2 log2

[
1+

gii(p
∗
i (t2)−ε2)

σ2
i

]
.

Given ε1, we can calculate ε2 as a function of ε1, ε2(ε1). Then
the decrease in average energy consumption by switching to
protocol π′ can be calculated as Δ(ε1) = −δt1ε1+ δt2ε2(ε1).
Taking the derivative of Δ(ε1) with respect to ε1, we have

∂Δ
∂ε1

= δt1
[

σ2
i +giip

∗
i (t2)

σ2
i +gii(p∗

i (t1)+ε1)

(
σ2
i +giip

∗
i (t1)

σ2
i +gii(p∗

i (t1)+ε1)

)δt1−t2

− 1

]
.

Since p∗i (t2) > p∗i (t1), we have ∂Δ
∂ε1

> 0 when ε1 = 0. Since

∂Δ
∂ε1

is continuous in ε1 when ε1 ≥ 0, we can find a small
enough ζ > 0, such that ∂Δ

∂ε1
> 0 for all ε1 ∈ [0, ζ]. Hence,

the decrease Δ(ε1) in user i’s average energy consumption by
switching to π′ is positive for any ε1 ∈ [0, ζ]. This contradicts
with the fact that π∗ is optimal, which proves the lemma.

APPENDIX B
PROOF OF THEOREM 1

Due to space limitation, we present the proof of a simplified
version of Theorem 1 in the special case when the users are
not self-interested. This proof will illustrate the main idea of
the complete proof. Please refer to [30, Appendix B] for the
complete proof of Theorem 1.

Specifically, we prove the following lemma on the feasible
instantaneous throughput when the users are obedient. The
lemma is a special case of Theorem 1 by setting b+ij = −∞
for all i, j.

Lemma 2: When the users are obedient, an instantaneous
throughput vector {rtdma

i }i∈M∪N is feasible for the minimum
throughput requirements {Rmin

i }i∈M∪N , if

• the discount factor δ satisfies δ ≥ 1− 1
M+N ,

•
∑

i∈M∪N Rmin
i /rtdma

i = 1.

Proof: As in dynamic programming, we can decompose
each user i’s discounted average throughput into the current
throughput and the continuation throughput as follows:

Ri(π) = (1 − δ)
∑∞

t=0 δ
t · (1{πi(t)>0} · rtdma

i )

=
(1 − δ) · (

1{πi(0)>0} · rtdma
i

)︸ ︷︷ ︸
the current throughput at t=0

+ δ · [(1− δ)
∑∞

t=1 δ
t−1 · (1{πi(t)>0} · rtdma

i )
]︸ ︷︷ ︸

the continuation throughput starting from t=1

.

We can see that the continuation throughput starting from t =
1 is the discounted average throughput as if the system starts
from t = 1. In general, we can define user i’s continuation
throughput starting from t as γi(t) � (1 − δ)

∑∞
τ=t δ

τ−t ·
(1{πi(τ)>0} · rtdma

i ). Then the decomposition at time t can be
written as γi(t) = (1− δ) · (1{πi(t)>0} · rtdma

i ) + δ · γi(t+1).
Write the continuation throughput vector as γ = (γ1, . . . , γN ).

Definition 2 (Self-generating set): A set of throughput vec-
tors R is a self-generating set, if for any throughput vector
γ ∈ R, there exists a i∗ ∈ N and a continuation throughput
vector γ′ ∈ R such that for all i ∈ N , we have γi =
(1 − δ) · (1{i=i∗} · rtdma

i ) + δ · γ′
i.

An important property of the self-generating set, proved in
[27], is that any throughput vector in R can be achieved by
a TDMA protocol. This is because for any throughput vector
γ ∈ R, we can schedule a user i∗ to transmit in the current
time slot, and the resulting continuation throughput vector γ′

starting from the next time slot can be decomposed (by a
user to transmit and the following continuation throughput
vector) again. We can do the above decomposition iteratively
to determine the transmission schedule.

Consider the following set of throughput vectors R ={
γ :
∑

i∈M∪N
γi

rtdma
i

= 1, γi ≥ 0, ∀i
}

. We derive the condi-
tion on the discount factor δ such that R is self-generating.
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For a given vector γ ∈ R, if we let user i to transmit, the
continuation throughput vector γ′ is

γ′
i =

γi

δ − 1−δ
δ · rtdma

i , and γ′
j =

γj

δ , ∀j 
= i. (8)

To ensure γ′ ∈ R, the discount factor must satisfy δ ≥ 1 −
γi

rtdma
i

. Hence, to ensure that any γ ∈ R can be decomposed,
the discount factor must satisfy

δ ≥ maxγ∈Rmini∈M∪N
{
1− γi/r

tdma
i

}
= 1− 1

M+N ,(9)

where the optimal solution is achieved when γi =
1

M+N rtdma
i , ∀i.

APPENDIX C
PROOF OF THEOREM 2

We first convert the optimization problem (5) into a convex
optimization problem. Defining xi = 1

rtdma
i

, the objective
function can be rewritten as

E

({
σ2
i R

min
i

gii
· (2 1

xi − 1) · xi

}
i∈M∪N

)
.

Based on our assumption, E(·) is convex and increasing in

each argument σ2
i R

min
i

gii
· (2 1

xi − 1) · xi. According to the
composition rule [32, Sec. 3.2.4], E(·) is a convex function

of (x1, . . . , xM+N ) if σ2
i R

min
i

gii
· (2 1

xi − 1) · xi is convex in xi,
which can be proved easily by taking the second derivative of
(2

1
xi −1) ·xi with respect to xi. Hence, the objective function

is a convex function of (x1, . . . , xM+N ). It is not difficult
to see that the constraints in (5) can be rewritten as linear
constraints

∑
i∈M∪N Rmin

i · xi = 1 and xi ≥ 1
r̄i

. As a result,
the following optimization problem with decision variables
(x1, . . . , xM+N )

min
(x1,...,xM+N)

E

({
σ2
i R

min
i

gii
· (2 1

xi − 1) · xi

}
i∈M∪N

)
s.t.

∑
iR

min
i · xi = 1, xi ≥ 1/r̄i, ∀i , (10)

is a convex optimization problem.
We solve (10) by looking at the KKT conditions. Write λ as

the Lagrangian multiplier of the constraint
∑

i∈M∪N Rmin
i ·

xi = 1, and μi ≥ 0 as the Lagrangian multiplier of the
inequality xi ≥ 1

r̄i
. The optimal (x∗

1, . . . , x
∗
M+N ) and the

optimal λ∗ and μ∗
i should satisfy the KKT conditions:

∂E
∂xi
|xi=x∗

i
− μ∗

i = −λ∗Rmin
i (11)

with μ∗
i = 0 when x∗

i > 1
r̄i

, due to the complementary slack-
ness condition. Hence, the problem (10) can be solved by find-
ing the optimal λ∗, such that the solutions (x∗

1, . . . , x
∗
M+N )

to the equations (11) satisfy the equality
∑

i∈N Rmin
i ·xi = 1.

Equivalently, we can find the optimal λ∗ such that the optimal
instantaneous throughput (r∗1 , . . . , r

∗
M+N ) satisfy

∂E
∂x∗

i
|x∗

i=
1
r∗
i

− μ∗
i = −λ∗Rmin

i , with μ∗
i = 0 if r∗i < r̄i, (12)

and
∑

i∈M∪N Rmin
i /r∗i = 1.

Since the first-order derivative ∂E
∂x∗

i
is monotone in xi

(because the second-order derivative is always positive), we
can find the optimal λ∗ using the bisection method, which
converges linearly with rate 1

2 .

APPENDIX D
PROOF OF THEOREM 3

Due to space limitation, we present the proof of a simplified
version of Theorem 3 in the special case when the users are
not self-interested. Please refer to [30, Appendix C] for the
complete proof of Theorem 3.

This proof is closely related to the proof of Theorem 1.
Recall that for each continuation throughput vector γ(t) at
time t, if we choose user i to transmit, we can calculate
the resulting continuation throughput vector γ(t+ 1) at time
t + 1 as in (8). The proof ofTheorem 1 ensures that as
long as we choose the user to transmit at time t based on
i = argminj∈M∪N {1− γj(t)/r

∗
i } (see (9)), the continuation

throughput vector γ(t+1) at time t+1 will also be achievable.
The LDF scheduling schedules the transmission exactly in this
way in each time slot. By setting the continuation throughput
at time 0 as γi(0) = Rmin

i , each user i can achieve the average
throughput Rmin

i . Since the instantaneous throughput is the
optimal one, r∗i , the energy efficiency criterion is minimized.

Note that Rmin
i = (1− δ)

∑∞
τ=0 δ

τ · (1πi(τ)>0 · r∗i ) = (1−
δ)
∑t

τ=0 δ
τ · (1πi(τ)>0 · r∗i ) + (1− δ)

∑∞
τ=t+1 δ

τ · (1πi(τ)>0 ·
r∗i ). Since 0 ≤ (1 − δ)

∑∞
τ=t+1 δ

τ · (1πi(τ)>0 · r∗i ) ≤ (1 −
δ)
∑∞

τ=t+1 δ
τ · r∗i = δt+1 · r∗i , we have |(1 − δ)

∑t
τ=0 δ

τ ·
(1πi(τ)>0 · r∗i )−Rmin

i | ≤ r∗i · δt+1.

APPENDIX E
PROOF OF THEOREM 4

For a user i, consider the distance between its average
throughput at time t and its minimum throughput Rmin

i .
Suppose that each time slot τ is in the kτ th epoch (time slot
t is in the 
th epoch), and that the beginning of the kth epoch
is tk with t0 = 0. Then the distance is∣∣∣(1 − δ)

∑t
τ=0 δ

τ (1πi(τ)>0 · r(kτ )
i )−Rmin

i

∣∣∣
=

∣∣∣[(1 − δ)
∑t1−1

τ=t0
δτ (1πi(τ)>0 · r(0)i )−Rmin

i

]
+ (1− δ)

∑t
τ=t1

δτ (1πi(τ)>0 · r(kτ )
i )

∣∣∣
=

∣∣∣(1 − δ)
∑t

τ=t1
δτ (1πi(τ)>0 · r(kτ )

i )− γi(t1)
∣∣∣

=
∣∣∣(1 − δ)

∑t
τ=t�

δτ (1πi(τ)>0 · r(�)i )− γi(t�)
∣∣∣ .

Since γi(t�) is the input to the LDF scheduling at the
beginning of the 
th epoch, from Theorem 3, we have∣∣∣(1− δ)

∑t
τ=t�

δτ (1πi(τ)>0 · r(�)i )− γi(t�)
∣∣∣ ≤ r

(�)
i · δt+1.

Hence, the distance between the average throughput and
the minimum throughput requirement decreases exponentially
with time even with users entering and leaving.
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