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Abstract— We develop a novel design framework for
decentralized resource sharing among self-interested users, who
adjust their resource usage levels to minimize the costs of
resource usage (e.g. energy consumption or payment) while
fulfilling minimum payoff (e.g. throughput) requirements. We
model the users’ interaction as a repeated resource sharing game
with imperfect monitoring, which captures the following features
of the considered interaction. First, the users are decentralized
and self-interested, i.e. they aim to minimize their own costs
based on their locally available information and will not
“blindly” follow the prescribed resource sharing rules unless it
is in their self-interests to do so. Second, the users coexist in the
system for some time and interact with each other repeatedly.
Finally, the players receive a binary feedback informing them
about the imperfectly measured interference/congestion level.

The key feature of our proposed policy is that it is
nonstationary, namely the users choose time-varying resource
usage levels. This is in contrast with all existing policies,
which are stationary and dictate users to choose constant
resource usage levels. The proposed nonstationary policy is
also deviation-proof, in that the self-interested users find it
in their self-interests to comply with the policy, and it can
be constructed by a low-complexity online algorithm that is
run by each user in a distributed fashion. Moreover, our
proposed policy only requires the users to have imperfect binary
feedback, as opposed to existing solutions based on repeated
game models which require a large amount of feedback. The
proposed design framework applies to many resource sharing
systems, such as power control, medium access control (MAC),
and flow control. As a motivating example, we investigate
the performance improvement of our nonstationary policy
over state-of-the-art policies in power control, and show that
significant performance gain (up to 90% energy saving) can be
achieved.

I. INTRODUCTION

Resource sharing systems are ubiquitous. Examples

of such systems range from classic resource sharing

problems such as power control [1][7][12]–[15], medium

access control [8], flow control [9]–[11], workload and

task scheduling etc., to emerging new problems such as

resource allocation in cloud data centers and demand-side

management in smart grids.

In this paper, we model the resource sharing systems as

repeated resource sharing games with imperfect monitoring,

which characterize the following important features of such

systems:

• Decentralized and self-interested users. The users are

decentralized and self-interested. Hence, we model their

interaction as a game.

1The authors are with the Electrical Engineering Department, UCLA,
Los Angeles, CA 90095, USA. Email: {yxiao,mihaela}@ee.ucla.edu

• Repeated interaction. The users stay in the system for

some time. Hence, we model their interaction using

a repeated game rather than a one-shot game. As a

result, unlike existing works which assume constant

resource usage levels, in our model users may choose

time-varying resource usage levels.

• Imperfect monitoring. The users can never perfectly

observe the resource usage status in the system. In

particular, we allow the users to have very limited

monitoring of the resource usage status. Specifically,

they only receive a binary feedback signal, which

is quantized from the erroneous measurement on the

interference/congestion level.

Some or all of the aforementioned features have been

studied in numerous past works [1]–[14]. However, these

works proposed stationary resource sharing policies, which

dictate the users to choose constant resource usage levels

over the time horizon in which they interact. In contrast, our

previous works [21][22] are the first to propose nonstationary

resource sharing policies, which allow the users to choose

time-varying resource usage levels based on the history of

past (imperfect) observations on the resource usage status.

We have shown the significant performance improvement by

using nonstationary policies (e.g. up to 200% improvement

of spectrum efficiency in cognitive radio networks [22]).

However, our previous works [21][22] formulated and

solved the payoff maximization problem, in which each user

aims to maximize its long-term payoff (e.g. throughput). In

this paper, we consider the cost minimization problem, in

which each user aims to minimize its long-term cost (e.g.

energy consumption or payment for resource usage) subject

to the minimum requirement for the achieved long-term

payoff. The cost minimization problem is much harder to

solve, because 1) we need to consider both payoffs and costs,

and 2) the users are coupled in the constraint domain (i.e.

the minimum payoff requirements) instead of the objective

function domain as in the payoff maximization problem. We

will describe the challenges of the cost minimization problem

compared to the payoff maximization problem in more

details in Sec. II-C. But we would like to briefly illustrate

the difficulty of cost minimization problems under simpler

scenarios. When the users are obedient and use stationary

policies, the network utility maximization (NUM) framework

[23] commonly used for payoff maximization problems does

not apply here, because the constraints on the payoffs are

coupled in such a complicated way, that the problem cannot

be decomposed into uncoupled subproblems by using dual
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TABLE I

COMPARISONS AGAINST EXISTING WORKS.

Formulation Nonstationary Feedback (Overhead)

Hetero.

Selfish

users

[1]–[7] Min. Cost No Error-free, unquant. (Large) Yes

[8]–[14] Max. Payoff No Error-free, unquant. (Large) Yes

[15] Max. Payoff Yes Error-free, unquant. (Large) Yes

[16] Max. Payoff Yes Erroneous, limited (Medium) Yes

[17][18] Min. Cost Yes Erroneous, binary (One-bit) No

[19][20] Max. Payoff Yes Erroneous, binary (One-bit) No

[21][22] Max. Payoff Yes Erroneous, binary (One-bit) Yes

This work Min. Cost Yes Erroneous, binary (One-bit) Yes

decomposition. When the users are self-interested and use

stationary policies, the Nash equilibrium (NE) is not the

correct solution concept any more. Due to the coupled

constraints, the equilibrium is defined as the generalized NE

(GNE) [5]. Even establishing the existence of GNE is a

non-trivial task. We can imagine that designing nonstationary

policies in cost minimization problems should be much more

challenging than designing stationary policies.

In summary, we propose in this paper a novel design

framework for cost minimization in resource sharing

among decentralized users. We consider the problems in

which each player aims to minimize the cost associated

with resource usage while fulfilling its minimum payoff

requirement. We propose nonstationary resource sharing

policies, which significantly outperform existing stationary

policies. Although the nonstationary policies themselves are

complicated, we are able to come up with a low-complexity

online algorithm, which can be run by each user in a

decentralized manner, to construct the policy. In other

words, while the design of the nonstationary policies

is mathematically complicated, their implementation is,

fortunately, of low complexity. In fact, our proposed

policy is significantly easier to implement at run-time than

well-known stationary policies such as those in [1]–[7].

Moreover, the proposed policy only requires the users to have

imperfect and binary feedback on the resource usage status.

Note that our design framework can be easily adapted to the

case of obedient users, which will be discussed in Sec. IV-D.

In the rest of this paper, we will first compare our work

with existing works in Sec. II. Then we describe the system

model and formulate the design problem in Sec. III. We

solve the design problem in Sec. IV and demonstrate the

performance improvement through simulations in Sec. V.

Finally, Sec. VI concludes the paper.

II. RELATED WORKS

We summarize the major differences between the existing

works and our work in Table I. Detailed explanations are as

follows.

A. Stationary Policies

Most existing works [1]–[14] focused on stationary

policies, which restrict the users to consume resources

at constant levels over the time horizon in which they

User 2's 
payoff

Nash 
equilibrium User 1's payoff

N
on-stationary 

policies

Stationary 
policies

Equilibrium
 

non-stationary 

policies 

(proposed)

Non-stationary 
policies 

assuming perfect 
monitoring

Fig. 1. An illustration of the operating points achievable by different
policies.

interact1. Our proposed nonstationary policies significantly

outperform the stationary policies proposed in the existing

works [1]–[14], especially in the presence of strong

interference/congestion. This can be illustrated in Fig. 1

in a two-user case. We can see that due to strong

interference/congestion, the set of payoffs achievable by

stationary policies is not convex, and each payoff in it

is Pareto dominated by some payoffs achievable only by

nonstationary policies.

Note that we list [12]–[14] in the category of stationary

policies, although they design policies in a repeated game

framework. This is because in the equilibrium where the

system operates, the policies in [12]–[14] use constant

resource usage levels. The repeated game formulation is

used only to provide incentives for self-interested users to

cooperate.

B. Nonstationary Policies

1) Nonstationary Policies Based on Repeated Games:

The major limitation of the works based on repeated games

with perfect monitoring [15] is the assumption of perfect

monitoring, which requires error-free and unquantized

feedback of the resource usage status. The theory of repeated

games with imperfect monitoring [16] allows erroneous and

limited feedback, but requires that the amount of feedback

increases with the number of resource usage levels that

the users can choose. In contrast, we only require binary

feedback regardless of the number of resource usage levels,

which significantly reduces the feedback overhead.

2) Nonstationary Policies Based on Constrained MDP:

The theory of constrained Markov decision processes

(MDP) or constrained partially-observable MDP (POMDP)

[17] has been used to solve resource sharing problems

(see representative works [18]). However, most of the

approaches based on constrained MDP or POMDP solve

only single-user decision problems (or multi-user problems

with homogeneous users), and cannot be easily extended to

the case where multiple heterogeneous users compete for a

1Although some resource sharing policies [1]–[10] go through a transient
period of adjusting the resource usage levels before the convergence to the
optimal resource usage levels, the players maintain constant resource usage
levels after the convergence.
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TABLE II

DIFFERENCES BETWEEN THE DESIGN FRAMEWORK FOR PAYOFF

MAXIMIZATION AND THAT FOR COST MINIMIZATION.

Payoff Maximization Cost Minimization

Optimization Resource usage schedule

only

Resource usage schedule

and resource usage levels

Feasible

operating

points

Part of a hyperplane Part of each one of infinite

number of hyperplanes

single resource. In addition, they assume that the users are

cooperative.

3) Nonstationary Policies Based on Multi-arm Bandit:

Nonstationary policies based on multi-arm bandit (MAB)

have been proposed in [19]–[20]. First, [19]–[20] focused

on the payoff (i.e. throughput) maximization problem, while

our work studies the cost minimization problems. In addition,

[19][20] assumed that the users are homogeneous and

cooperative, while our work considers heterogeneous and

self-interested users.

C. Comparison With Our Previous Works

Most related to this work are our previous works [21][22].

However, the design frameworks proposed in [21][22] and

in this work are significantly different because the design

objectives are different. In [21][22], we aimed to design

TDMA (time-division multiple access) resource sharing

policies that maximize the users’ sum payoff without

considering cost minimization. In TDMA policies, only one

user is active and consumes resources in each time slot. To

maximize its payoff, each user will choose the maximum

resource usage level when it is active. Hence, what we

optimized was only the resource usage schedule of the users.

In this work, since we aim to minimize the cost subject to

the minimum payoff requirements, and there may be many

resource usage levels that fulfill the payoff requirement, we

also need to optimize the users’ resource usage levels in

addition to the resource usage schedule, which makes the

design problem more challenging.

Next, we explain the differences in the design frameworks

in detail. Both design frameworks include three steps:

characterization of the set of feasible operating points,

selection of the optimal operating point, and the distributed

implementation of the policy. The fundamental difference is

in the first step, which is the most important step in the

design. In [21][22], since each user chooses the maximum

resource usage level when it is active, we know that the set

of feasible operating points lies in the hyperplane determined

by each user’s maximum achievable payoff. Hence, we

only need to determine which portion of this particular

hyperplane is achievable. On the contrary, in this work,

since the users may not choose the maximum resource

usage levels when active, the feasible operating points lie in

infinite number of hyperplanes, each of which goes through

the vector of minimum payoff requirements (see Fig. 2 for

illustration). Hence, it is more difficult to characterize the

set of feasible operating points in this work. Due to the

more complicated characterization of the feasible operating

User 2's payoff

User 1's payoff

Feasible operating points
(part of a hyperplane)

Payoff Maximization

User 1's maximum payoff

User 2's maximum payoff

User 2's payoff

User 1's payoff

Cost Minimization

Feasible operating points
(part of one hyperplanes)

Feasible operating points
(part of another hyperplanes)

Min. payoff requirements

Fig. 2. Illustration of feasible operating points in the design framework
for the payoff maximization problem and that for the cost minimization
problem.

points, the selection of the optimal operating point (the

second step) also becomes a more complicated optimization

problem in this work (although we can prove that it can be

converted to a convex optimization problem under reasonable

assumptions). In summary, in this work, the first two steps in

the design framework are fundamentally different from those

in [21][22], and are more challenging. We summarize the

major differences between the design frameworks for payoff

maximization and for cost minimization in Table II.

III. SYSTEM MODEL

The Stage Game: Consider a system with N players

sharing a common resource. Denote the set of the players

by N , {1, 2, . . . , N}. Each player i chooses its action ai

(i.e., its resource usage level) from its action set Ai ⊂ R+.

The joint action profile of all the players is denoted by

a = (a1, . . . , aN ) ∈ A , ×i∈NAi, and the action profile of

all the players other than player i is denoted by a−i. Given

the joint action profile a, each player i receives a payoff

ui(a), where ui : A → R+ is player i’s utility function. The

interaction among the players is characterized by the game

tuple G = 〈N , {Ai}i∈N , {ui}i∈N 〉. We define the resource

sharing game G as follows.

Definition 1: G is a resource sharing game, if 1) each

player i’s action set Ai is compact and includes 0 as an

element (i.e. 0 ∈ Ai); 2) each player i’s utility function

ui is decreasing in player j’s action aj , ∀j 6= i, and

is 0 when ai = 0, ∀a−i; 3) the set of feasible payoffs

V = {u(a) = (u1(a), . . . , uN (a)) : a ∈ A} has N + 1
extremal points2: (0, . . . , 0) ∈ R

N , u(ã1), . . . ,u(ãN ).

2The extremal points of a convex set are those that are not convex
combinations of other points in the set.
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The above definition captures the main characteristics

of a resource sharing system. The first property on the

action sets indicates that each user’s action set is closed

and bounded, which is consistent with the users’ inability

to consume unlimited amount of resources. In addition,

each user can choose not to use any resource by taking

action 0. The second property on the utility function reflects

the interference/congestion among the players: increasing

resource usage by one user results in a decrease in the

other users’ payoffs. Moreover, when a user does not use the

resource by choosing action 0, it will receive zero payoff. The

third property captures the strong interference/congestion

among the users: the increase of one player’s payoff comes at

such an expense of the other players’ payoffs that the set of

feasible payoffs is nonconvex. We are particularly interested

in the scenarios where the interference/congestion is strong,

because efficient resource sharing policies are essential to

mitigate the strong interference/congestion. On the contrary,

if the interference/congestion among users is weak, efficient

resource sharing policies are less important, because the

users can just choose their optimal resource usage levels

individually without affecting the other users. We illustrate

the payoffs in a two-user resource sharing game in Fig. 1.

The Repeated Game: Since players interact with each

other repeatedly, we model their interaction as a repeated

game with the stage game G played in every period t =
0, 1, 2, . . .. At the beginning of each period t, players choose

the action profile a
t, leading to an interference/congestion

level f(at). We assume that f(a) is increasing in ai, ∀i ∈
N . The interference/congestion level is observed by the

players with errors. We denote the noisy observation at

period t by zt, which is characterized by the conditional

probability density function η(zt|f(at)). The players also

quantize the noisy observation for limited feedback. We

denote the feedback signal at the end of period t by yt.

In this paper, we will focus on binary feedback, which has

minimal overhead. The noisy observation zt is quantized

as 0 if it is below a threshold z0, and quantized as 1

otherwise. Then the conditional probability distribution of

the feedback signal is ρ(yt = 0|at) =
∫

zt<z0

η(zt|f(at))dzt

and ρ(yt = 1|at) = 1 − ρ(yt = 0|at).
A resource sharing policy specifies the action profile a

t

the players choose at each period t based on the past history.

The history up to period t is the collection of past feedback

signals, namely ht = {y0, . . . , yt−1} for t ≥ 1 and h0 = ∅.

Hence, player i’s policy πi is a mapping from the set of all

possible histories H , ⊔∞
t=0{0, 1}t to its action set Ai. We

define the resource sharing policy as the joint policy profile

π = (π1, . . . , πN ).
We classify all the spectrum sharing policies into two

categories, stationary and nonstationary policies. A spectrum

sharing policy π is stationary if and only if for all i ∈
N , for all t ≥ 0, and for all ht ∈ {0, 1}t, we have

πi(h
t) = astat

i , where astat
i ∈ Ai is a constant. A spectrum

sharing policy is nonstationary if it is not stationary. In

this paper, we restrict our attention to a special class of

nonstationary polices, namely TDMA policies (with constant

resource usage levels). A spectrum sharing policy π is a

TDMA policy if at most one user consumes resources in

each time slot, and each user i chooses the same resource

usage level aTDMA
i ∈ Ai when it is active.

Costs, (Long-term) Payoffs, and Equilibrium: Each user

i has a cost ci(ai) in choosing the resource usage level ai.

The cost can model, for example, the payment or energy

consumption associated with using the resources.

Each user i’s long-term payoff is defined as the expected

discounted average payoff. Assuming, as in [12]–[16], the

same discount factor δ ∈ [0, 1) for all the players, player i’s
payoff can be written as

Ui(π) = Eh0,h1,...

{

(1 − δ)

[

ui(π(h0)) +
∞
∑

t=1

δtui(π(ht))

]}

.

Similarly, we can define player i’s long-term cost as

Ci(π) = Eh0,h1,...

{

(1 − δ)

[

ci(πi(h
0)) +

∞
∑

t=1

δtci(πi(h
t))

]}

.

Each user i aims to minimize its long-term cost Ci(π)
while fulfilling a minimum payoff requirement Umin

i . From

one user’s perspective, it has the incentive to deviate from

a given resource sharing policy, if by doing so it can fulfill

the minimum payoff requirement with a lower cost. Hence,

we can define the equilibrium as follows.

Definition 2: A resource sharing policy π is an

equilibrium if for all i ∈ N , we have

πi = arg min
π′

i

Ci(π
′
i,π−i), subject to Ui(π

′
i,π−i) ≥ Umin

i ,

where π−i is the joint policy of all the users except user i.

IV. THE DESIGN FRAMEWORK

The goal of the designer is to minimize certain cost

criterion while fulfilling all the users’ minimum payoff

requirements at the equilibrium. The cost criterion can

be represented by a function W (C1(π), . . . , CN (π)). An

example cost criterion can be the weighted sum of all the

users’ costs, i.e. W =
∑

i∈N wi · Ci(π) with wi ≥ 0 and
∑

i∈N wi = 1. We can formally define the policy design

problem as

min
π

W (C1(π), . . . , CN (π)) (1)

s.t. π is an equilibrium,

Ui(π) ≥ Umin
i , ∀i ∈ N .

We outline the proposed design framework to solve the

policy design problem (illustrated in Fig. 3), which consists

of three steps. First, we characterize the set of feasible

operating points that can be achieved at equilibria. Then,

given this set, we select the optimal operating point based on

the cost criterion. Finally, we construct the optimal resource

sharing policy that achieves the optimal operating point.
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Fig. 3. The design framework.

A. Characterize The Set of Feasible Operating Points

The first step in solving the design problem (1) is to

quantify the set of feasible operating points that can be

achieved at equilibria. We define an operating point as

ū = (ū1, . . . , ūN ), which is a collection of each user i’s
instantaneous payoff ūi when user i is the only one that

uses the resources. An operating point ū is feasible, if there

exists an equilibrium π such that 1) ui(π(ht)) = ūi for all

ht such that πi(h
t) > 0; 2) each user i achieves its minimum

payoff requirement, i.e. Ui(π) = Umin
i .

Before quantifying the set of feasible operating points, we

define bij(ūi) as

bij(ūi) = sup
aj∈Aj ,aj>0

ρ(y = 1|ãi(ūi)) − ρ(y = 1|aj , ã
i
−j(ūi))

uj(aj , ãi
−j(ūi))/ūj

,

where ã
i(ūi) is the action profile that satisfies ãi

j = 0,∀j 6= i
and ui(ã

i) = ūi.

Now we state Theorem 1, which characterizes the set of

feasible operating points.

Theorem 1: An operating point ū is feasible, if

• Condition 1: the discount factor δ satisfies δ ≥

δ , 1/
(

1 +
1−

∑

i∈N µ
i

N−1+
∑

i∈N

∑

j 6=i
(−ρ(y=1|ãi(ūi))/bij(ūi))

)

,

where µ
i
, maxj 6=i

1−ρ(y=1|ãi(ūi))
−bij(ūi)

.

• Condition 2:
∑

i∈N Umin
i /ūi = 1, and ūi ≤ Umin

i /µ
i
.

Proof: See [24, Appendix A].

B. Select The Optimal Operating Point

Given the set of feasible points obtained in Theorem 1,

we need to select the optimal operating point ū
⋆ based on

the cost criterion W . The following proposition formulates

the problem of finding the optimal operating point.

Proposition 1: The optimal operating point ū
⋆ can be

solved by the following optimization problem

ū
⋆ = arg min

ū
W (C̄1(ūi), . . . , C̄N (ūi)), (2)

subject to
∑

i∈N

Umin
i /ūi = 1, ūi ≤ Umin

i /µ
i
,

where C̄i(ūi) =
Umin

i

ūi
· ãi

i(ūi). In particular, if

W (C̄1, . . . , C̄N ) is jointly convex in C̄1, . . . , C̄N , the

optimization problem (2) is convex.

Proof: See [24, Appendix B].

TABLE III

THE ALGORITHM RUN BY EACH USER i.

Require: {Umin
j /ū⋆

j}j∈N and ū⋆
i

Initialization: Sets t = 0, u′
j(0) = Umin

j /ū⋆
j for all j ∈ N .

repeat

Calculates dj(t) =
u′

j(t)−µ
j

1−u′
j
(t)+

∑

k 6=j(−ρ(y=1|ãj)/bjk)
, ∀j

Finds i∗ , arg maxj∈N dj(t)
if i = i∗ then

Chooses resource usage level ãi∗

i∗ (ū⋆
i )

else

Does not consume resources (i.e. chooses action 0)
end if

Updates u′
j(t + 1) for all j ∈ N

if yt = 0 then

u′
i∗ (t + 1) = 1

δ
u′

i∗ (t)− ( 1
δ
− 1) · (1 +

∑

j 6=i∗
ρ(y=1|ãi∗ )

−bi∗j
)

u′
j(t + 1) = 1

δ
u′

j(t) + ( 1
δ
− 1) · ρ(y=1|ãi∗ )

−bi∗j
, ∀j 6= i∗

else

u′
i∗ (t + 1) = 1

δ
u′

i∗ (t)− ( 1
δ
− 1) · (1−

∑

j 6=i∗
ρ(y=0|ãi∗ )

−bi∗j
)

u′
j(t + 1) = 1

δ
u′

j(t)− ( 1
δ
− 1) · ρ(y=0|ãi∗ )

−bi∗j
, ∀j 6= i∗

end if

t← t + 1
until ∅

TABLE IV

COMPARISON OF DESIGN FRAMEWORKS FOR SELF-INTERESTED AND

OBEDIENT USERS.

Conditions Boundary Algorithm

Obedient δ = N−1

N
µ

i
= 0, ∀i bij = −∞, ∀i, j

Self-interested δ > N−1

N
µ

i
> 0, ∀i bij ∈ (−∞, 0), ∀i, j

C. Construct The Optimal Policy

Given the optimal operating point obtained in the second

step, each user i runs the algorithm in Table III in a

decentralized manner, and achieves its minimum payoff

requirements. The resulting policy is an equilibrium, in that

if a user does not follow the algorithm, it will either achieve

a lower payoff or achieve the same payoff with a higher cost.

The optimal policy can be viewed as implementing a

simple “largest-distance-first” scheduling, namely the user

farthest away from the optimal operating point (i.e. has the

largest dj(t)) occupies the resources by itself. However, it is

not trivial to define the “distance” from the optimal operating

point dj(t). We can prove that the distance dj(t) used in our

proposed algorithm is the correct one.

Theorem 2: If each user i ∈ N runs the algorithm in

Table III, then each user i can achieve its minimum payoff

requirement Umin
i with a cost C̄i that minimizes the cost

criterion W (C̄1, . . . , C̄N ). The policy implemented by the

algorithm is an equilibrium: if a user does not follow the

algorithm, it will either fail to achieve its minimum payoff

requirement, or achieve it with a higher cost.

Proof: See [24, Appendix C].

D. Obedient Users

Obedient users will follow any resource sharing policy

as long as their minimum payoff requirements are achieved.
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Without requiring the policy to be deviation-proof, the design

framework can be greatly simplified. We summarize the

differences in the design frameworks for self-interested users

and obedient users in Table IV.

First, the sufficient conditions for feasible operating points

are relaxed (i.e. a smaller critical discount factor δ). Second,

the boundaries of the feasible operating points µ
i

become

zero. In other words, the operating points ūi can be arbitrarily

large. Third, in the algorithm to compute the resource sharing

policy, since bij = −∞, the terms related to bij vanish,

which makes the algorithm simpler.

E. Implementation

Our proposed design framework can be implemented

in two phases: an initial information exchange phase in

which the optimal operating point is calculated, followed

by a decentralized implementation phase in which users

run the algorithm in Table III in a decentralized manner.

In the following, we first specify what information needs

to be exchanged in the initial information exchange phase.

Then we show that the total overhead of initial information

exchange and feedback in the proposed framework is much

smaller than those in existing works.

1) Overhead of initial information exchange and

feedback: To better illustrate the overhead, we compare the

overhead of initial information exchange and feedback in the

proposed framework with that in [1]–[7], which proposed

energy-efficient stationary power control algorithms. The

comparison is summarized in Table V. In the initial

information exchange phase, the proposed framework has an

additional overhead of N2 + N compared to [1]–[7]. This

additional overhead mainly comes from the information

exchange of bij , which is used for deviation-proofness3.

However, in the run time, the feedback overhead of the

proposed policy is significantly lower than that of [1]–[7].

Specifically, in [1]–[7], each user’s receiver needs to

feedback the interference temperature in each time slot,

which has an overhead of N real numbers per time slot. In

contrast, in our proposed framework, each user only needs

to feedback a one-bit binary signal. This feedback can be

further reduced: they can send a distress signal (possibly

just a probe signal) only when the feedback signal is y = 1.

2) Computational complexity: As we can see from

Table III, the computational complexity of each user in

constructing the optimal policy is very small. In each

time slot, each user only needs to compute N distances

{dj(t)}j∈N , and N normalized values {u′
j(t)}j∈N , all of

which are determined by analytical expressions. In addition,

although the original definition of the policy requires each

user to memorize the entire history of feedback signals, in

the actual implementation, each user only needs to know

the current feedback signal yt and memorize N normalized

values {u′
j(t)}j∈N .

3For obedient users, this overhead can be avoided since there is no need
to broadcast bij .

TABLE V

COMPARISON OF THE TOTAL OVERHEAD OF INITIAL INFORMATION

EXCHANGE AND FEEDBACK.

Overhead

[1]–[7]

Initial information exchange: N/A

Feedback: Each user i feeds the interference temperature

back in each time slot

Total overhead: N real numbers in each time slot

Initial information exchange: Each user i broadcasts to all

the other users: ρ(y = 1|ãi), Umin

i , and {bji}j 6=i

Proposed Feedback: a binary feedback signal

(self-interested) Total overhead: N2+N real numbers initially, and a distress

signal (possibly just a probe) when necessary

Initial information exchange: Each user i broadcasts to all

the other users: Umin

i

Proposed Feedback: a binary feedback signal

(obedient) Total overhead: N real numbers initially, and a distress

signal (possibly just a probe) when necessary

TABLE VI

COMPUTATIONAL COMPLEXITY OF THE PROPOSED FRAMEWORK.

Computation Memory

Initial Solve the convex program (2) Needed for solving (2)

Run-time N indices analytically N indices

V. SIMULATION RESULTS

In this section, we apply our design framework to

spectrum sharing scenarios, in which multiple users share the

spectrum. Their actions are the transmit power levels, their

payoffs are the throughput, and their costs are the energy

consumption. We use the following system parameters. The

noise powers at all the users’ receivers are 0.05 W. For

simplicity, we assume that direct channel gains have the

same distribution gii ∼ CN (0, 1),∀i, and the cross channel

gains have the same distribution gij ∼ CN (0, α),∀i 6= j,

where α is defined as the cross interference level. Each user

measures the interference temperature with a measurement

error ε that is Gaussian distributed with zeros mean and

variance 0.1. The energy efficiency criterion is the average

energy consumption across the users. The discount factor is

0.95.

We compare the proposed policy against the optimal

stationary policy in [1]–[7] and two (adapted) versions of

the punish-forgive (PF) policies in [12]–[15]. Since the

PF policies in [12]–[15] were originally proposed for the

throughput maximization problem, we need to adapt them to

solve the cost minimization problem in (1). We describe the

state-of-the-art policies that we compare against as follows.

• The optimal stationary policy [1]–[7]: each user

transmits at a constant power level that is just large

enough to fulfill the throughput requirement under the

interference from other users.

• The (adapted) stationary punish-forgive (SPF) policy

[12]–[14]: the SPF policies are dynamic policies that

have two phases. When the users have not received

the distress signal (defined as the signal y = 1), they

transmit at optimal stationary power levels. When they

receive a distress signal that indicates deviation, they

switch to the punishment phase, in which all the users
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Fig. 4. Illustration of different policies. Upper plot: in the stationary policy,
the users transmit at constant power levels (two flat black lines); in PF and
proposed policies, only one user transmits in each time slot; in the PF
policy, the users choose the same power levels as in the stationary policy
after time slot 4 when y = 1 received. Lower plot: the two users’ average
energy consumptions under different policies.

transmit at the Nash equilibrium power levels. In the

energy efficiency formulation, the optimal stationary

power levels are the Nash equilibrium power levels.

Hence, the adapted SPF policy is essentially the same

as the optimal stationary policy.

• The adapted nonstationary punish-forgive (NPF) policy:

the punish-forgive policy in [15] is different from those

in [12]–[14], in that nonstationary power levels are used

when the users have not received the distress signal.

In the simulation, we adapt the NPF policy in [15]

such that the users transmit in the same way as in

the proposed policy when they have not received the

distress signal. After receiving the distress signal, the

NPF policy requires the users to transmit at the optimal

stationary power levels.

Since the SPF policy is the same as the optimal stationary

policy, in the rest of this section, we focus on the NPF policy,

and simply refer to the NPF policy as the PF policy.

A. Illustrations of Different Policies

Fig. 4 illustrates the differences among stationary, PF,

and the proposed policies in a simple case of two users,

whose minimum throughput requirements are 1 bits/s/Hz

and 2 bits/s/Hz, respectively. In stationary policies, users

transmit simultaneously with constant power levels (0.5 W

and 0.9 W), which are higher than those (0.15 W and 0.75 W)

in the proposed policy, because users need to overcome

multi-user interference to achieve the minimum throughput

requirements. In addition, users transmit all the time in

stationary polices, which results in even higher average

energy consumption.

The key difference between the proposed policy and the

PF policy lies in time slot 5, after a distress signal is sent at

t = 4. In the PF policy, users transmit together at the same

high power levels as in the stationary policy at t = 5. In the
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Fig. 6. Energy efficiency of the stationary, PF, and proposed policies under
different number of users.

proposed policy, user 2, the user who transmitted at t = 4,

transmits again at t = 5. In summary, the punishment in the

PF policy is the multi-user interference, which increases the

energy consumptions of both users, while the punishment in

the proposed policy is the delay in transmission, which keeps

the energy consumptions low. This advantage of the proposed

policy in terms of energy efficiency is also illustrated in

Fig. 4.

Finally, we can see that in the steady state, the energy

consumption of the proposed policy is much lower than those

in the other policies.

B. Performance Gains

We compare the energy efficiency of the optimal stationary

policy, the optimal punish-forgive policy, and the proposed

policy under different cross interference levels in Fig. 5. We

consider a network of two users whose minimum throughput

requirements are 1 bits/s/Hz. First, notice that the energy

efficiency of the proposed policy remains constant under

different cross interference levels, while the average transmit

power increases with the cross interference level in the other

two policies. The proposed policy outperforms the other

two policies in medium to high cross interference levels

(approximately when α ≥ 0.3). In the cases of high cross

interference levels (α ≥ 1), there is no stationary policy

that can fulfill the minimum throughput requirements. As

a consequence, the punish-forgive policies cannot fulfill the

throughput requirements when α ≥ 1, either.

In Fig. 6, we examine how the performance of these three

policies scales with the number of users. The number of users
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different minimum throughput requirements.

in the network increases, while the minimum throughput

requirement for each user remains 1 bits/s/Hz. The cross

interference level is α = 0.2. We can see that the stationary

and punish-forgive policies are infeasible when there are

more than 6 users. In contrast, the proposed policy can

accommodate 18 users in the network with each users

transmitting at a power level less than 0.8 W.

Fig. 7 shows the joint spectrum and energy efficiency of

the three policies. We can see that the optimal stationary

and punish-forgive polices are infeasible when the minimum

throughput requirement is larger than 1.6 bits/s/Hz. On the

other hand, the proposed policy can achieve a much higher

spectrum efficiency (2.5 bits/s/Hz) with a better energy

efficiency (0.8 W transmit power). Under the same average

transmit power, the proposed policy is always more energy

efficient than the other two policies.

In summary, the proposed policy significantly improves

the spectrum and energy efficiency of existing policies in

most scenarios. In particular, the proposed policy achieves

an energy saving of up to 90%, when the cross interference

level is large or the number of users is large (e.g., when

α = 0.9 in Fig. 5 and when N = 7 in Fig. 6). These

are exactly the deployment scenarios where improvements in

spectrum and energy efficiency are much needed. In addition,

the proposed policy can always remain feasible even when

the other policies cannot maintain the minimum throughput

requirements.

VI. CONCLUSION

In this paper, we proposed a design framework for

nonstationary policies to achieve cost minimization in

decentralized resource sharing problems. The proposed

nonstationary resource sharing policies greatly outperform

existing stationary policies. In one of many applications

of our design framework, namely power control, we

demonstrate the significant performance improvement (up to

90% energy saving) over existing policies. We also proposed

a low-complexity online algorithm, which can be run by

each user in a decentralized manner, to construct the policy.

Furthermore, the proposed policy only requires the users to

have imperfect and binary feedback on the resource usage

status.
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