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Abstract— Peer review (e.g., review of research papers) is
essential for the success of the scientific community. In peer
review, the reviewers voluntarily exert costly effort in re-
viewing papers. Hence, it is important to design mechanisms
to elicit high effort from reviewers. Exploiting the fact that
the researchers interact with each other repeatedly (e.g., by
submitting and reviewing papers over years), we propose a
rating and matching mechanism to elicit high effort from
reviewers. Our proposed mechanism overcomes two major
difficulties, namely adverse selection (i.e., the unidentifiable
quality of heterogeneous reviewers) and moral hazard (i.e.,
the unobservable effort levels from reviewers). Specifically,
our proposed mechanism assigns and updates ratings for the
researchers, and matches researchers’ papers to reviewers with
similar ratings. In this way, the mechanism identifies different
types of reviewers by their ratings, and incentivizes different
reviewers to exert high effort.

Focusing on the matching rule, we first provide design
guidelines for a general matching rule that leads the system
to an equilibrium, where the reviewers’ types are identified
and their high efforts are elicited. Then we study in detail
a baseline matching rule that assigns each researcher’s paper
to one of the two reviewers with the closest ratings, provide
guidelines of how to choose the initial ratings, and analyze
equilibrium review quality and equilibrium ratings. Finally,
we extend the baseline matching rule to two classes. The
first extension provides extra reward and/or punishment by
adjusting the probabilities of matching each researcher’s paper
to its neighbors. The second extension provides extra reward
and/or punishment by allowing to match each researcher’s
paper to reviewers other than its neighbors. We prove that
it is beneficial (in the sense that the optimal equilibrium review
quality is higher) to reward reviewers in the first extension,
and to punish reviewers in the second extension, due to the
different ways the reward and punishment are carried out. We
also prove that our proposed matching rules elicit much higher
effort from reviewers, compared to matching rules that mimic
the current mechanisms of assigning papers.

I. INTRODUCTION

Peer review (e.g., review of research papers) is an integral
and essential part of the academia. The efficiency of the
peer review system has a critical impact on the quality of a
research community. A key problem in the peer review sys-
tem is that the reviewers voluntarily exert effort in reviewing
papers, and that the effort are costly for the reviewers. Hence,
it is important to design mechanisms in which the reviewers
have incentives to review papers with high effort, such that
the efficiency of the peer review system is improved.

Based on the fact that the researchers interact with each
other repeatedly (e.g., by submitting and reviewing papers
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over time), we propose a rating and matching mechanism to
elicit high effort from the reviewers. The basic idea of our
proposed mechanism is to assign a rating for each researcher
and update their ratings based on their past review quality
reported by the authors. Next we match the papers from
high-rating researchers more likely to high-rating reviewers.
Hence, the researchers have incentives to exert high effort
levels to improve their ratings and the chances of getting
high-quality reviewers.

There are two major challenges in designing an efficient
rating and matching mechanism. First, even though the
quality of a review can be assessed by the authors, there
is no way to observe the effort level of the reviewer. This
is because the quality of the review is an unknown function
of the effort level exerted by the reviewer. The problem of
unobservable effort levels is called moral hazard problems
in economics literature. Second, since the reviewers are
heterogeneous, their review quality can be different even
if they exert the same amount of effort. This problem of
unidentifiable quality (i.e., the mapping from a reviewer’s
effort level to the review quality) of a reviewer is called
adverse selection problems in economics. In the presence
of both moral hazard and adverse selection problems, it is
difficult to identify high-quality and low-quality reviewers,
and the effort levels exerted by them.

In this paper, we design the rating update rule and the
matching rule, such that we can identify different types of
reviewers and incentivize them to choose high effort levels
in the equilibrium. The rating update rule ensures that the
ratings of the reviewers truly reflect their review quality. The
matching rule incentivizes different types of reviewers to
exert high effort. In the equilibrium of the system, more
capable reviewers with higher quality and lower cost in
reviewing provide higher-quality review, and hence have
higher ratings which in turn confirm their quality.

We first propose a baseline matching rule, which simply
matches a researcher’s paper to reviewers with closest (higher
and lower) ratings. The probability of being matched to
a higher-rating or lower-rating reviewer depends on the
distance from the researcher’s rating to the reviewers’ rat-
ings. We provide design guidelines of how to choose the
initial ratings, prove the convergence to the equilibrium,
and analyze the equilibrium review quality and rating of
researchers with different quality. We then extend the base-
line matching rule in two directions. Both extensions enable
us to construct a class of matching rules and to tune the
extent to which the matching rules reward and/or punish
reviewers. The first extension provides extra reward and/or
punishment by adjusting the probabilities of matching each



researcher’s paper to its neighbors. The second extension
provides extra reward and/or punishment by allowing to
match each researcher’s paper to reviewers other than its
neighbors. Our interesting finding shows that it is beneficial
(in the sense that the optimal equilibrium review quality
is higher) to reward reviewers in the first extension, and
to punish reviewers in the second extension, due to the
different ways the reward and punishment are carried out.
Our results show the importance of designing the correct
reward and punishment mechanisms for different types of
matching rules.

II. RELATED WORKS

To the best of our knowledge, no prior work has proposed
joint matching and rating mechanisms for moral hazard and
adverse selection problems. Next, we discuss related works
on rating mechanisms and those on matching separately.

A. Works on Rating Mechanisms
1) Rating Mechanisms for Review Score Aggregation:

Some works ([1] and references therein) on rating mecha-
nisms study how to aggregate review scores (i.e., ratings)
to ensure the correct decisions on the paper/proposal accep-
tance. The ratings in [1] are provided by the reviewers to
evaluate papers, while the ratings in our work are maintained
by the editorial system to evaluate reviewers. Moreover,
the focus in [1] is to make the correct acceptance/rejection
decision by aggregating the ratings from the reviewers, while
the focus here is to incentivize the reviewers to exert high
effort levels. There is no notion of “effort” in [1].

2) Rating Mechanisms for Effort Elicitation: Some works
on rating mechanisms study how to elicit high effort through
ratings. See our recent works applied to peer-to-peer systems
[3][4], which are based on the seminal work on social norms
[2]. The problem studied in these works [2]–[4] is similar to
the one studied in this work, namely how to design rating
mechanisms to incentivize agents to exert costly effort.

However, the works [2]–[4] focus exclusively on the moral
hazard problem (i.e., the problem of elicit unobservable
effort), and ignore the adverse selection problem (i.e., the
problem of learning the heterogeneous review quality) by
assuming homogeneous agents. In this work, we assume
heterogeneous agents and deal with both the moral hazard
and adverse selection problems. In [2]–[4], due to the ho-
mogeneity of agents, binary ratings are usually sufficient
to identify whether a player has behaved well or badly. In
contrast, in this work, the rating is continuous, such that the
rating mechanism can identify not only whether a player has
behaved well or badly, but also its review quality.

Another key difference is that we extensively study and
design the matching rule, while a fixed uniformly random
matching rule is used in [2]–[4]. In our setting, we will
prove that a uniformly random matching rule will result in
the lowest review quality in the equilibrium.

B. Works on Matching
1) Matching in Resource Allocation and Exchange: There

is a huge literature on matching in resource allocation

(e.g., allocation of schools to students [6]) and exchange
(e.g., kidney exchange [7]). To some extent, they focus on
adverse selection problems (i.e., identifying the benefit from
matching to a particular agent), but do not consider moral
hazard problems (i.e., eliciting high effort from agents). In
particular, they do not have the notation of “effort” at all.
Once an agent (e.g., a student) is matched to another (e.g.,
a school), the benefit (obtained by this student) is fixed.
In contrast, in our paper, once a paper is matched to a
reviewer, the benefit from the review depends not only on
the reviewer’s quality, but also on its effort. The goal of
our paper is to incentivize the reviewers to exert high effort,
which is different from the goal of the works on matching
in resource allocation and exchange.

2) Matching in Repeated Games: Repeated games re-
search in economics assumes that agents interact either with
the same agents all the time (direct reciprocity), or with
anonymous agents randomly (indirect reciprocity) [2], as is
the case in our work. However, the existing research on
indirect reciprocity assumes that the agents are uniformly
randomly matched according to exogenous matching rules.
Our work significantly differs from all this literature: the
proposed matching rules are endogenous and directly affect
agents’ incentives. This makes our study both significantly
different and much more challenging than existing works.

III. MODEL

A. Basic Setup

Consider a community N = {1, . . . , N} of N researchers.
Each researcher acts both as an author, who benefits from
reviews of its submitted paper, and as a reviewer, who exerts
effort in reviewing papers. A designer (e.g., the editor of a
journal) aims to design an editorial policy that incentivizes
the researchers to exert high effort in reviewing papers. The
editorial policy includes two parts: the rating mechanism that
assigns and updates a rating θi ∈ R+ for each researcher i,
and the matching rule that matches papers with reviewers
(possibly based on the ratings). In the following, we write
the rating profile, namely the ratings of every researcher, as
θ = (θ1, . . . , θN ). The rating profile is known only to the
designer. We define the rating distribution d(θ) as a vector
of length N that is an ordered list of all the ratings (from
high ratings to low ratings). We denote the jth element of
the rating distribution by d(θ)j . Notice that d(θ)j is not
necessarily identical to θj . Hence, the rating distribution
does not disclose any information about the identities of the
researchers.

Time is slotted as t = 1, 2, . . .. In each time slot t, the
entities in the system moves in the following order:1

1) The designer publishes the rating distribution d(θ),
and informs each researcher i of its rating θi and
its ranking ki (i.e., ordered position) in the rating
distribution.

1Throughout the paper, the superscript (·)′ on a function refers to the
derivative, and the superscript (·)t refers to the variable under consideration
at time point t ∈ Z+.



2) Each researcher submits a paper.
3) The designer matches each researcher i’s paper to

another reviewer (i.e., one of the other researchers)
according to a probabilistic matching rule mkij :
(d(θ)ki , d(θ)j) 7→ [0, 1]. The matching rule mkij

determines the probability mkij(d(θ)ki , d(θ)j) that the
paper of the researcher with the kith highest rating is
matched to the reviewer with the jth highest rating.
From the definition, we can see that the matching
rule depends only on the researchers’ rankings in their
ratings, but not on their identities.

4) Each researcher j chooses an effort level etj ∈
[0, emax

j ] to review the paper, where Ej is j’s maximum
effort level. The quality of researcher j’s review then
depends on its effort as qj(etj), where qj : R+ → R+

is the review quality function.
5) Each researcher i receives benefit bi(qj(etj)) from the

obtained review, where bi : R+ → R+ is i’s benefit
function, and incurs a cost of ci(eti) for reviewing a
paper, where ci : R+ → R+ is i’s cost function.

6) Each researcher i sends a report rti about the review
to the designer. We assume that the report accurately
reflects the reviewer’s review quality, namely rti =
qj(e

t
j).

7) The designer updates the researchers’ ratings. We write
the rating update rule as π : (θtj , r

t
i) 7→ θt+1

j . For
fairness, the rating update rule is identical for all
reviewers and is given by a convex combination of the
reviewer’s old rating and the report about its review
quality:2

π(θtj , r
t
i)=

{
(1− µ) · θtj + µ · rti , j reviewed papers,

θtj , otherwise.
(1)

where µ ∈ (0, 1) is a constant step size.

Note that each researcher i has a maximum effort level
emax
i , and hence has a maximum review quality qi(e

max
i ).

Since the new rating is the convex combination of the old
rating and the review quality, given any initial rating θ0i ,
researcher i’s rating can only be in the interval [0, θmax

i ],
where θmax

i , max
{
θ0i , qi(e

max
i )

}
. In other words, the

possible ratings of each researcher are contained in the
compact set [0, θmax

i ].
Throughout the paper, we make the following assumption

about the cost function and the review quality function.
Assumption 1 (Cost, Review Quality, and Benefit): Each

researcher i’s cost function ci(·), review quality function
qi(·), and benefit function bi(·) satisfy the following:

• The cost ci(·) is strictly convex, strictly increasing, and
differentiable in the effort level ei.

• The review quality qi(·) is concave, increasing. and
differentiable in the effort level ei. In addition, q′i(0)
is bounded.

2Under the assumption that j’s review quality qj(ej) is perfectly ob-
served, it does not matter how many reports about j’s review quality are
received.

• The benefit bi(·) is increasing, concave, and differen-
tiable in review quality qj .

• Without loss of generality, we normalize ci(0) = 0,
qi(0) = 0, and bi(0) = 0.

B. Information – Who Knows What

We summarize the information known to each entity in
the system.

1) The designer: The designer receives reports ri of
review quality, and keeps the rating θti for each researcher i
at each time slot t. Hence, the designer knows the identity of
the researcher at the kith position of the rating distribution.
However, it does not know the review quality functions qi(·),
the benefit functions bi(·), or the cost functions ci(·).

2) Each researcher i: Each researcher i knows its own
review quality function qi(·), benefit function bi(·), and cost
function ci(·), but does not know the above functions of the
other researchers. It also knows the matching rule m and
the rating update rule π. It knows its own rating θti at each
time slot t, the rating distribution d(θ)t at each time slot t,
and its position in the rating distribution kti . Note that each
researcher i does not know the ratings of other researchers,
or the identity of its reviewer.

C. Payoffs and Equilibrium

In each time slot t, researcher i’s expected payoff is its
expected benefit from the review of its paper minus the
expected cost of reviewing another researchers’ papers. We
write researcher i’s expected payoff as ui(m, θi, d, e), which
depends on the matching rule m, its own rating θi, the
rating distribution d, and all the researchers’ effort levels
e , (e1, . . . , eN ). The expected payoff is defined as

ui (m, θi, d(θ), e) =
∑
j 6=ki

mkij (d(θ)ki , d(θ)j)·bi (qj (ej))

−

∑
j 6=ki

mjki (d(θ)j , d(θ)ki)

 · ci(ei). (2)

The goal of each researcher i is to choose an optimal se-
quence of effort levels {et,∗i }∞t=0 to maximize the discounted
average of expected payoffs, namely

{et,∗i }
∞
t=0 = arg max

{eti∈R+}∞t=0

E

{
(1− δi)

∞∑
t=0

δtiui(m, θ
t
i , d

t, eti, e
t
−i)

}
, (3)

where et−i is the effort levels chosen by all the researchers
other than i, and δi ∈ [0, 1) is researcher i’s discount
factor. A researcher’s discount factor reflects its patience. We
take expectation E{·} because the rating update is random,
namely a researcher’s rating is either updated or kept the
same depending whether it is matched to a paper.

Note that the optimization problem (3) is very hard, if
not impossible, to solve. The difficulty lies in the coupling
of one researcher’s decisions over time and the coupling of
different researchers’ decisions. First, the researcher’s current



decision (i.e., effort level) affects not only its current payoff
(through the cost), but also its future ratings and hence
future payoffs. Second, the researcher’s payoff is affected by
the others’ decisions (through the benefit). However, since
a researcher has no knowledge about the others’ review
quality functions, benefit functions, or cost functions, it
cannot predict the others’ effort levels and the evolution
of the rating distributions. In summary, a researcher cannot
solve the optimization problem (3) due to the computational
complexity and the lack of knowledge.

As discussed above, the main challenge in solving (3)
comes from the difficulty of calculating a researcher’s
future payoffs, due to the coupling across time and re-
searchers. To choose the optimal effort level at each time
t, each researcher i holds a conjecture that its future value
E
{

(1− δi)
∑∞
τ=t δ

τ−t
i ui(m, θ

τ
i , d

τ , eτi , e
τ
−i)
}

(i.e., its dis-
counted average payoff after time t) is the following:

fi(αi, β
t
i , θ

t
i , d

t, eti) ,

αi ·
∑
j 6=ki

[
mkij(π(θti , qi(e

t
i)), d(θ)tj) · bi(d(θ)tj)

]
+ βti . (4)

In the above conjecture function, the term∑
j 6=ki

[
mkij(π(θti , qi(e

t
i)), d(θ)tj) · bi(d(θ)tj)

]
=
∑
j 6=ki

[
mkij(θ

t+1
i , d(θ)tj) · bi(d(θ)tj)

]
(5)

is the expected benefit that reviewer i will get in time t +
1, assuming that the others’ ratings remain the same (i.e.,
θt+1
j = θtj for all j 6= i).

Each researcher i holds such a conjecture for two reasons.
First, it cannot predict the others’ effort levels or future
ratings. Hence, it holds a conjecture that the others’ ratings
remain the same, or equivalently, that the others’ ratings
precisely reflect their review quality, namely d(θ)tkj =

qj(e
t
j). Second, it conjectures that its future value is an affine

function of its expected benefit. Both of the above conjectures
are required to be true in the equilibrium to be defined later.

The coefficient αi reflects how “optimistic” a researcher
is about the rating mechanism. A researcher with a larger
αi “believes in” the rating mechanism more, because it
anticipates a higher future value given the expected benefit.
The coefficient βti is updated in each time slot by researcher
i, such that the conjectured future value converges to the true
future value in the equilibrium.

Then at each time t, each researcher i simply solves the
following static problem for its optimal effort level et,∗i :

et,∗i = arg max
ei∈R+

(1− δi) · ui(m, θti , dt, ei, e−i)

+ δi · fi(αi, βti , θti , dt, ei). (6)

Each researcher i has all the information needed to solve the
above static optimization problem.

Definition 1 (Conjectural Equilibrium [5]): Given any
matching rule m and any rating update rule π, a conjectural
equilibrium (CE) is a triple {θ∗i , e∗i , β∗i }i∈N that satisfies:

• Incentive compatibility constraints: for all i ∈ N ,

e∗i = arg max
ei∈[0,emax

i ]
(1− δi) · ui(m, θ∗i , d∗, ei, e∗−i)

+ δi · fi(αi, β∗i , θ∗i , d∗, ei), (7)

• Stable and correct ratings: for all i ∈ N , θ∗i = qi(e
∗
i ),

• Consistent conjectures: for all i ∈ N ,

fi(αi, β
∗
i , θ
∗
i , d
∗, e∗i ) = ui(m, θ

∗
i , d
∗, e∗). (8)

In the definition, the incentive compatibility (IC) con-
straints ensure that the effort level e∗i is the best response of
each researcher i, such that researcher i is in its self-interest
to choose e∗i . A CE also requires that each researcher’s
rating truly reflects its review quality at the equilibrium
effort level e∗i , and hence each researcher’s rating is stable,
namely π(θ∗i , qi(e

∗
i )) = θ∗i . Finally, a CE requires that each

researcher’s conjecture about its future value is correct.
There may be multiple CEs. As a designer, it is desirable

that the system will converge to a CE from any initial rating
profile. The convergence is important, because the designer
can distinguish the true review quality of the reviewers at
the equilibrium. The choice of the matching rule plays an
important role in ensuring the convergence to a CE.

D. The Design Problem Formulation

The designer’s problem is to maximize the equilibrium re-
view quality. We write the designer’s objective as a function
of the equilibrium review quality W (q1(e∗1), . . . , qN (e∗N )).
Then the designer problem can be defined as

maxm,π W (q1(e∗1), . . . , qN (e∗N )) (9)
s.t. {θ∗i , e∗i , β∗i }i∈N is a CE under m,π.

Note that the designer does not maximize the social wel-
fare, namely the total benefit minus cost of the researchers.
This is because the designer here is the editorial manager of
a journal or a research community. It is more natural from an
editorial manager’s perspective to maximize the total review
quality. The editorial manager may not care about the cost
of reviewing paper; in fact, it would actually like to elicit
more effort from the reviewers, resulting in higher costs.

IV. CONVERGENCE TO CONJECTURAL EQUILIBRIA

In this section, we consider general matching rules, and
provide important guidelines for designing the matching
rules. As discussed before, we would like to have a matching
rule under which the system will converge to a CE from
any initial rating profile under best response dynamics. In
this way, the designer can distinguish the true review quality
of the reviewers at the equilibrium. Before discussing the
properties of the matching rules that ensure the convergence,
we first describe the best response dynamics.

At each time slot t, the best response dynamics consist of
the following three updates:

eti = arg max
ei∈[0,emax

i ]
(1− δi) · ui

(
m, θti , d

t, ei, e
t
−i
)

+δ · fi
(
αi, β

t
i , θ

t
i , d

t, ei
)

; (10)



θt+1
i =

{
(1− µ) · θti + µ · qi (eti) if i reviewed

θti otherwise
; (11)

βt+1
i = ui

(
m, θti , d(θ)t, et

)
(12)

− αi ·
∑
j 6=i

[
mkij

(
θt+1
i , d(θ)tj

)
· bi
(
d(θ)tj

)]
.

The update of effort levels in (10) and the update of
ratings in (11) are the same as (6) and (1), respectively. They
are rewritten here for the convenience of reference. When
determining the effort level in (10), although the current
payoff ui

(
m, θti , d

t, ei, e
t
−i
)

depends on the others’ effort
levels et−i, the current payoff can be separated into the
benefit which depends only on the others’ effort et−i, and
the cost which depends only on researcher i’s own effort ei.
Hence, when solving (10), researcher i can treat the benefit
as a constant, and consider only the cost, which depends on
its own effort level and is known to researcher i.

The update of the parameter βi in (12) ensures that
the conjectured future payoff equals to the current pay-
off, namely fi

(
αi, β

t+1
i , θti , d

t, eti
)

= ui (m, θti , d(θ)t, et).
When the system converges to a CE {θ∗i , e∗i , β∗i }i∈N , we will
have fi (αi, β

∗
i , θ
∗
i , d
∗, e∗i ) = ui (m, θ∗i , d(θ)∗, e∗), which

ensures that the third requirement of “consistent conjectures”
in the definition of CE is fulfilled.

Next, we will provide the design guidelines on the match-
ing rules, such that the above dynamics (10)–(12) always
converge to a CE from any initial ratings. In fact, the design
guideline is simple and intuitive: the matching rule should
ensure that each researcher’s expected benefit is concave and
increasing in its own rating.

Definition 2 (Desirable Matching Rules): We say that a
matching rule m is desirable, if under any rating profile θ,
• each researcher i’s (conjectured) expected benefit from

the review of its paper, namely∑
j 6=ki

[mkij(d(θ)ki , d(θ)j) · bi(d(θ)j)] ,

is concave and increasing in its own rating θi;
• each researcher i’s expected number of papers to review

is positive and fixed, namely∑
j 6=ki

mkij(d(θ)j , d(θ)ki) = M > 0.

The requirements of concavity and monotonicity are very
reasonable. The expected benefit should be increasing in
one’s rating, such that one has incentives to exert high effort
levels to increase its rating. In addition, if the expected
benefit is concave in one’s rating, since the marginal benefit
is decreasing, one will not dramatically increase its effort
level, which facilitates the convergence. The requirement of a
fixed number of papers to review ensures the fairness among
the reviewers across time.

Despite the simplicity of the requirements for desirable
matching rules, we are able to prove its convergence under
proper rating update rules.

Theorem 1 (Convergence): Under any desirable matching
rule, starting from any initial θ0, there exists µ̄ > 0 such that
under any small step size µ ∈ (0, µ̄] in the rating update rule,
the system will converge to a CE through updates (10)–(12).

Proof: See [8].

V. DESIGN OF MATCHING RULES

The matching rule is the critical component of our design.
In this section, we will first prove that some naive matching
rules, which are reminiscent of how the papers are assigned
in some of the current review systems, are inefficient. Next
we propose a baseline matching rule, and analyze the prop-
erties of this baseline rule in detail. Finally, we extend this
baseline rule in two directions.

A. Inefficiency of Naive Matching Rules

We show the inefficiency of the matching rules that do not
consider the ratings of the researchers when assigning their
papers. To some extent, such matching rules are reminiscent
of how the papers are assigned in some existing systems.
In such systems, a paper is assigned either to a reviewer
randomly, or to a reviewer based only on the reviewer’s rating
(e.g., its past history of reviewing). As we will show next,
such matching rules are inefficient in the sense that they
cannot incentivize reviewers to exert high effort.

Proposition 1: Under any matching rule that is indepen-
dent of the researcher’s rating, namely mkj(d(θ)k, d(θj)) =
mk′j(d(θ)k′ , d(θj)) for any k, k′, and θ, there is a unique
CE, in which e∗i = 0 and θ∗i = qi(e

∗
i ) = 0 for all i.

Proof: See [8].
The above proposition underlines the importance of de-

signing matching rules that take into account not only the
ratings of the reviewers, but also those of the researchers.

B. Design of The Baseline Matching Rule

The baseline matching rule works as follows:
1) For the researchers with the same rating, match their

papers among themselves using any one-to-one map-
ping that does not match one’s paper to itself.

2) For any researcher i with a distinct rating (i.e., no other
researcher has the same rating),

a) If it has the highest rating (i.e., ki = 1), match
its paper to a reviewer with the second highest
rating.

b) If it has the lowest rating (i.e., ki = N ), match its
paper to a reviewer with the second lowest rating
with probability d(θ)N

d(θ)N−1
. Hence, its paper gets

no reviewer with probability 1− d(θ)N
d(θ)N−1

.
c) If 1 < ki < N , match its paper to its two “neigh-

bors” with the following probabilities (which sum
up to 1):

mki,ki−1(d(θ)ki , d(θ)ki−1) =
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
,

and

mki,ki+1(d(θ)ki , d(θ)ki+1) =
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
.
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Fig. 1. An illustration of the baseline matching rule. There are 7
researchers. The paper of the researcher with the highest rating is matched
to the reviewer with the second highest rating. The paper of the researcher
with the lowest rating is matched to the reviewer with the second lowest
rating with probability 0.5. The two researchers with the same rating 0.4 are
matched to each other. The rest are matched to their two nearest neighbors
with probabilities inversely proportional to the distances in ratings.

The above matching rule matches the researchers with the
same rating to each other. For a researcher with a distinct
rating, it matches its paper with its two nearest “neighbors”
with probabilities that depend on how close its rating is to
its neighbors’ ratings.

1) The Choice of Initial Ratings: In the considered sys-
tem, it is important to choose the initial ratings correctly, be-
cause under different initial ratings, the system may converge
to different CEs. Since the designer has no knowledge about
the researchers at the beginning, it is reasonable to assign
the same initial rating to all the researchers for fairness. In
this case, the following proposition tells us that we should
not assign the initial rating too low.

Proposition 2: There always exists a rating θ, such that
any initial rating profile with the same rating θ0 ≤ θ for
all the researchers is the equilibrium rating profile, and that
each researcher i chooses an equilibrium effort level e∗i such
that qi(e∗i ) = θ0.

Proof: See [8].
Proposition 2 indicates that we should choose a high

enough initial rating. The key reason is that no researcher
has incentive to reach a higher rating than the initial one,
because it will get a distinct highest rating in this case. Then
its benefit will stay the same, while the cost will be higher,
compared to choosing an effort level such that its rating
remains the same as the initial rating. In other words, the
initial rating determines the highest review quality produced
by each researcher. We show that when the initial rating is
low enough, it is the best response to choose an effort level
e∗i that satisfies qi(e∗i ) = θ0.

2) Convergence: It is useful to classify researchers into
types based on their cost, review quality, and benefit func-
tions, etc. We define researchers of a certain type as follows.

Definition 3 (Types): The researchers of the same type
have the same normalized marginal benefit to cost ratio,
defined as δiαiq

′
i(·)

(1−δi)c′i(·)
, the same review quality function qi(·),

and the same marginal benefit function b′i(·).
Definition 4 (Ordering of Capability): A researcher i is

more capable than a researcher j, if

δiαiq
′
i(e)

(1− δi)c′i(e)
≥

δjαjq
′
j(e)

(1− δj)c′j(e)
,∀e,

qi(e) > qj(e),∀e,
b′i(θ) ≥ b′j(θ),∀θ.

Definition 3 identifies “types” of researchers, in the sense
that the researchers of the same type will always choose the
same effort level and hence get the same rating. Definition 4
gives an ordering of the researchers in terms of their “capa-
bility”. We will prove that a more capable researcher indeed
produces higher-quality review and gets higher ratings.

In the rest of this section, we make the following assump-
tion about the population size of the community.

Assumption 2 (Large Population): There is more than one
researcher of each type.

Assumption 2 is reasonable in practice, since the number
of researchers is indeed large. Given the same initial rating,
the researchers of the same type will choose the same
best response effort level, and hence have the same rating.
Assumption 2 ensures that for each researcher, there is
always another researcher with the same rating. According
to Clause 1) in the baseline matching rule, each researcher
will always have exactly one paper to review all the time.

Theorem 2: Suppose that the large population assumption
(Assumption 2) holds. Then we have
• the baseline matching rule is a desirable matching rule;
• starting from any initial rating profile, there exists µ̄ > 0

such that under any small step size µ ∈ (0, µ̄] in the
rating update rule, the system will converge to a CE
through the best response dynamics (10)–(12);

• if the researchers have the same initial rating, at any
point in the best response dynamics (10)–(12), more
capable researchers will always find it in their self-
interest to produce higher review quality, and thus have
higher ratings than less capable researchers.
Proof: See [8].

Theorem 2 ensures the convergence of the best response
dynamics to a CE. In fact, we can say something stronger
about the best response dynamics: a more capable researcher
has a higher rating than a less capable researcher at any point
in the best response dynamics. This means that the rating
mechanism can successfully distinguish the researchers of
different types, and rank them in the correct order. Note
that more capable researchers produce higher-quality review
in their self-interest, as a result of maximizing their own
payoffs; they are not obliged to do so by the designer.

C. Two Classes of Extended Matching Rules

Previously, we focused on the baseline matching rule. The
baseline matching rule is able to incentivize the researchers
to exert high effort levels, by increasing the benefit obtained
by a researcher when its rating increases. Now we extend
the baseline rule in two different ways, both of which result
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Fig. 2. An illustration of the first extension of matching rules. We only
show the matching of the researcher with rating 0.8, who is matched to its
two nearest neighbors with different probabilities than in the baseline rule.

in a class of matching rules that allow us to tune the reward
and/or punishment provided by the matching rules.

In the first extension, we assign the probability that the
paper of a researcher with a distinct rating is assigned to the
neighbors. In particular, the matching rule is parametrized
by γ such that any researcher i with a distinct rating and
with ki ∈ [2, N − 1] is matched to its neighbors with the
following probabilities:

mki,ki−1(d(θ)ki , d(θ)ki−1) =
[
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
+ γ · θi

]1
0
,

and

mki,ki+1(d(θ)ki , d(θ)ki+1) =
[
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
− γ · θi

]1
0
,

where [·]10 , min{max{·, 0}, 1}.
We illustrate this extension in Fig. 2.
We can see that when γ > 0 (γ < 0), the resulting match-

ing rule rewards (punishes) the researcher by increasing its
probability of being matched to the higher-rating (lower-
rating) neighbor. When γ = 0, it reduces to the baseline
matching rule.

In the second extension, we allow a researcher to be
matched to a reviewer with even higher or even lower ratings
than its nearest neighbors. In particular, the matching rule
is parametrized by γr ∈ [0, 1] and γp ∈ [0, 1]. Then any
researcher i with a distinct rating and with ki ∈ [3, N − 2]
is matched to its neighbors and neighbors of neighbors with
the following probabilities:

mki,ki−1(d(θ)ki , d(θ)ki−1) =
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
· (1− γr),

mki,ki−2(d(θ)ki , d(θ)ki−2) =
d(θ)ki

−d(θ)ki+1

d(θ)ki−1−d(θ)ki+1
· γr,

and

mki,ki+1(d(θ)ki , d(θ)ki+1) =
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
· (1− γp),

mki,ki+2(d(θ)ki , d(θ)ki+2) =
d(θ)ki−1−d(θ)ki

d(θ)ki−1−d(θ)ki+1
· γp.

We illustrate this extension in Fig. 3.
We can see that the parameters γr and γp reflect to

what extent the researchers are rewarded and punished,
respectively. When γr = γp = 0, the matching rule reduces
to the baseline rule. When γr = 1 (γp = 1), the researcher
is rewarded (punished) by being matched to a reviewer with
the next higher (lower) rating.

It is interesting to ask under each class of extended
matching rules, which matching rule is optimal in terms of
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Fig. 3. An illustration of the second extension of matching rules. We only
show the matching of the researcher with rating 0.8, who is matched to
possibly its four neighbors, instead of two nearest neighbors in the baseline
rule.

the equilibrium review quality? We first define the notion
that one matching rule is “better” than the other.

Definition 5: We say that a matching rule m′ is “better”
than another matching rule m, if for any equilibrium rating
profile θ∗ under m, we can find an equilibrium rating profile
θ∗′ under m′ that satisfies θ∗′ > θ∗.

The following theorem tells us how to design an extended
matching rule that is better than the baseline rule.

Theorem 3: Suppose that the large population assumption
(Assumption 2) holds. Then we have:
• in the first extension, there exists a γ > 0 (i.e.,

rewarding) under which the extended rule is better than
the baseline rule;

• in the second extension, there exists γr = 0 and γp > 0
(i.e., punishing) under which the extended rule is better
than the baseline rule.
Proof: See [8].

Theorem 3 tells us if we reward or punish by assigning
higher or lower probabilities of being matched to the higher-
rating neighbor, it is beneficial to reward. On the contrary,
if we reward or punish by creating the possibility of being
assigned to the next higher- or lower-rating neighbors, it
is beneficial to punish. Note that we can get the benefit
only when we set the correct parameters in the extended
matching rules. The technical reason is that we want to
increase the marginal expected benefit when a researcher’s
rating is changed, in order to give more incentive for them to
exert high effort levels. The message delivered by our result
is that, we should carefully design the reward and punishment
mechanism based on the way we reward and punish.

VI. SIMULATION RESULTS

We consider a system with 5 types of researchers. There
are 100 researchers of each type. All the researchers have the
same patience δi = 0.8, the same cost function ci(ei) = e2i ,
and the same benefit function bi(θ) = −θ2 + 2θ. Different
types of researchers have different quality function qi(ei) =
pi ·ei, where pi = 0.2, 0.4, 0.6, 0.8,. They also have different
optimism αi = 1.1, 1.2, 1.3, 1.4, 1.5.

1) Convergence and Performance Improvement: Fig. 4
shows the convergence to the conjectured equilibrium from
the initial rating 1.0. As predicted by Theorem 2, the
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Fig. 4. Convergence to the conjectural equilibrium.
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Fig. 5. Equilibria under different initial ratings.

equilibrium rating and review quality is ordered according
to the types of the researchers. Fig. 4 also shows that under
exogenous matching rules that do not depend on researchers’
ratings, the reviewers exert lowest efforts all the time. Hence,
the proposed endogenous matching greatly improves the
performance of the review system.

2) Impact of Initial Ratings: In Fig. 5, we examine the
impact of the initial rating. We can see that when the initial
rating is high enough (1.2 and 0.8), the system converges to
the same equilibrium. When the initial rating is low (0.5),
some types may stay at the initial rating. This is consistent
with Proposition 1, which indicates that when the initial
rating is sufficiently small, the initial rating is the equilibrium
rating for all the researchers.

3) Different Matching Rules: We compare the sum review
quality and the social welfare (i.e., the total benefit minus
cost) at the equilibrium under different matching rules.

In Table I, we evaluate the first extension of matching rules

TABLE I
EQUILIBRIUM REVIEW QUALITY AND SOCIAL WELFARE UNDER THE

FIRST EXTENSION OF MATCHING RULES.

γ -0.2 -0.1 -0.05 0 0.05 0.1 0.2
Sum review quality 0.64 0.91 0.96 1.29 1.28 1.36 1.28

Social welfare 1.37 1.58 1.59 1.44 1.45 1.46 1.55

TABLE II
EQUILIBRIUM REVIEW QUALITY AND SOCIAL WELFARE UNDER THE

SECOND EXTENSION OF MATCHING RULES.

(γr, γp) (0, 0) (0, .5) (0, 1) (.5, 0) (.5, .5) (.5, 1)
Sum review quality 1.29 1.31 1.40 1.11 1.28 1.33

Social welfare 1.44 1.41 1.35 1.27 1.57 1.43

under different parameters γ. We can see that in our setting,
the optimal γ should be 0.1, which results in the highest sum
review quality. This is consistent with our theoretical results:
we can find a rewarding matching rule that outperforms
the baseline rule. It is worth mentioning that the matching
rule that maximizes the sum review quality may not be the
one that maximizes the social welfare. This is reasonable,
because higher review quality also results in higher cost.

In Table II, we evaluate the second extension of matching
rules under different parameters γr and γp. We can see that
the optimal sum review quality is achieved when γr = 0 and
γp = 1, which is a matching rule that punishes to the most
severe extent. The threat of being matched to an even lower-
rating reviewer provides more incentive for researchers to
exert high effort. Again, such a matching rule does not result
in the optimal social welfare. The optimal social welfare is
achieved when γr = 0.5 and γp = 0.5, where the researchers
are also rewarded for good behaviors.

VII. CONCLUSION

We studied the problem of effort elicitation in peer review
systems. We modeled the two key features in such systems:
namely moral hazard (i.e., the unobservable effort by the
reviewers) and adverse selection (i.e., the unidentifiable
quality of the reviewers). We proposed a rating and matching
mechanism to identify the reviewers of different types,
and elicit the appropriate amount of effort from different
reviewers. We extensively studied the design of matching
rules, in terms of the initial ratings, the convergence, and
the equilibrium ratings and review effort. We also studied
the extensions to different classes of matching rules, and
proved the efficiency of different reward and punishment
mechanisms under different matching rules.
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