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Abstract— We study a power system with one independent
system operator (ISO) who procures energy from energy
generators, and decentralized aggregators who purchase energy
from the ISO to serve their customers. With the penetration
of renewable energy generation, the aggregators are adopting
energy storage to deal with the high volatility in supply and
prices. In the presence of energy storage, it is beneficial for all
the entities (i.e. the ISO and aggregators) to make foresighted
decisions (i.e. energy procurement decisions by the ISO and
energy purchase decisions by the aggregators) to minimize
their long-term costs. However, the optimal foresighted decision
making is complicated mainly because the information required
to make optimal decisions is decentralized among the entities.
We propose a design framework in which the ISO provides
each aggregator with a conjectured future price, and each ag-
gregator distributively minimizes its own long-term cost based
on its conjectured price as well as its local information. The
proposed framework can achieve the social optimum despite
the decentralized information among the entities. Simulation
results demonstrate significant reduction in the total cost by the
proposed foresighted energy purchase and procurement (EPP),
compared to the optimal myopic EPP (up to 60% reduction),
and the foresighted EPP based on the Lyapunov optimization
framework (up to 30% reduction).

I. INTRODUCTION

We consider a power system with multiple energy genera-
tors, one independent system operator (ISO) that operates the
system, and multiple aggregators that serve their customers.
Each aggregator is located in a different geographical area
and purchases energy from the ISO to serve its customers
(e.g. households) in the neighborhood. The ISO receives
energy purchase requests from the aggregators as well as
reports of (parameterized) energy generation cost functions
from the generators, and based on these, procures energy
from generators. We call the aggregators’ energy purchase
and the ISO’s energy procurement collectively as energy
purchase and procurement (EPP) 1.

In the current power systems, the optimal EPP decisions
are made roughly every hour (the frequency of the deci-
sions may be slightly different in different power systems).
Each aggregator’s energy purchase decisions are simple: just
purchase an amount of energy that is enough to serve the
demand of its customers. The ISO’s energy procurement
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1It should be noted that we focus on the interaction among the ISO and
the aggregators, and study the aggregators’ energy purchase and the ISO’s
energy procurement. This is very different from the works (see [1]–[3] for
representative papers) that focus on the interaction among one aggregator
and its customers, and study the customers’ energy consumption scheduling.

decisions are more complicated and determined by solving
the optimal power flow (OPF) problem, which minimizes the
total energy generation cost in the current time slot (e.g. in
one hour) subject to the constraints of the power network
(e.g. Kirchhoff’s laws, line capacity constraints). We call
such EPP strategies myopic, in the sense that the decision
makers aim to optimize the short-term performance. As we
will see, myopic EPP can be very suboptimal in future power
systems with renewable generation and energy storage.

The adoption of renewable energy in the power systems
introduces high fluctuation and uncertainty in energy gener-
ation and prices. To cope with this uncertainty, the demand
side of the system is deploying various solutions, one of
which is the use of energy storage [6]. The use of energy
storage endows the system with “a buffer” that correlates the
EPP decisions across time. Hence, the optimal EPP decisions
should not only maximize the current system performance,
but also consider the impact of the decisions on the future
system performance. In other words, the optimal EPP deci-
sions should be foresighted. For example, an aggregator can
purchase from the ISO more energy than requested from its
customers, and store the unused energy in the energy storage
for future use, if it anticipates the shortfall of renewable
generation and the rise of energy prices in the future.

In this paper, we design the optimal foresighted EPP
strategy in the presence of energy storage, and show that the
resulting strategy significantly outperforms the myopic EPP
strategies. However, the optimal foresighted EPP decisions
are difficult to make, becuase of the decentralized informa-
tion in the system. Specifically, the total cost of the system
depends on the generation cost functions (e.g. the speed of
wind for wind energy generation, the amount of sunshine for
solar energy generation), the status of the transmission lines
(e.g. their capacity), the amount of electricity in the energy
storage, and the demand from the customers, all of which
may change due to supply and demand uncertainty. However,
none of the entities knows all the above information: the ISO
knows only the generation cost functions and the status of
the transmission lines, and each aggregator knows only the
status of its own energy storage and the demand from its own
customers. Yet, each entity’s local information influences
its decisions, and hence influences the others’ costs in the
future. This is in sheer contrast with myopic EPP, in which
the decentralized information does not affect the decision
making very much: the aggregators purchase energy just
enough to serve the demand without worrying about the
future shortfalls and price fluctuations, and the ISO procures
energy to minimize the current cost without worrying about



the future demand.
To overcome the difficulty resulting from information

decentralization, we propose a decentralized EPP strategy
based on conjectured prices. Specifically, each aggregator
makes decisions based on its conjectured price and its local
information on the status of its energy storage and the
demand from its customers. Since the energy price is usually
determined based on the generation cost and the status of the
transmission lines, the conjectured prices are determined by
the ISO. We propose a simple online algorithm for the ISO to
update the conjectured prices based on its local information,
and prove that by using the algorithm, the ISO obtains
the optimal conjectured prices under which the aggregators’
(foresighted) best responses minimize the total system cost.

In the rest of the paper, we will first discuss related
works in Section II. Then we will present the system model
and problem formulation in Section III. We present our
design framework of foresighted EPP in Section IV, and
demonstrate its performance gain by simulation in Section
V. Finally, Section VI concludes the paper.

II. RELATED WORKS

The key feature that sets apart our paper from most works
on EPP [4]–[8] is that in our work, all the decision makers
in the system are foresighted. Each aggregator seeks to
minimize its long-term cost, consisting of its operational cost
of energy storage and its payment for energy purchase. In
contrast, in most existing works [4]–[8], the aggregators are
myopic and seek to minimizing their short-term (e.g. one-day
or even hourly) cost.

Although some works [9]–[12] assume that the aggregator
is foresighted, they study the decision problem of a single
aggregator. When there are multiple aggregators in the sys-
tem (which is the case in practice), this approach neglects the
impact of aggregators’ decisions on each other, which leads
to suboptimal solutions in terms of minimizing the total cost
of the system.

In Table I, we summarize the above discussions on the
related work by comparing with them in various aspects.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a power system with one ISO indexed by 0, G
generators indexed by g = 1, 2, . . . , G, I aggregators indexed
by i = 1, 2, . . . , I , and L transmission lines (see Fig. 1 for an
illustration). In the following, we may refer to the ISO or an
aggregator generally as entity i ∈ {0, 1, . . . , I}, with entity 0
being the ISO and entity i ∈ {1, . . . , I} being aggregator i.
The power system can be modeled as a stochastic dynamic
system described as follows.

States: The ISO’s state is defined as s0 = (ε, ξ) ∈ S0,
where ε = (ε1, . . . , εG) are the parameters of the energy
generation cost functions reported by the generators, and
ξ = (ξ1, . . . , ξL) are the status of the transmission lines
such as the phases measured by the phasor measurement
units (PMUs). Each aggregator i’s state is defined as si =
(di, ei) ∈ Si, where di is the aggregate demand from

Generator 1 Generator g

Aggregator 1 Aggregator i

PMU on line l
ISO

Storage Storage

Fig. 1. The system model of the smart grid. The information flow to the
ISO is denoted by red dashed lines, the information flow to the aggregators
is denoted by black dotted lines, and the information flow sent from the
ISO is denoted by blue dash-dot lines.

aggregator i’s customers and ei is the amount of energy left
in aggregator i’s storage. Each entity’s state is known to itself
only.

Actions: The ISO’s action is how much energy each
generator should produce, denoted by a0 ∈ A0 ⊂ RG+. Each
aggregator i’s action is how much energy to purchase from
the ISO, denoted by ai ∈ Ai ⊂ R+.

Instantaneous Costs: Each entity’s instantaneous total cost
consists of two parts: the operational cost and the payment.
Each entity i’s operational cost ci : Si × Ai → R is a
convex function of its action ai. An example operational
cost function of an aggregator can be

ci(si, ai) = p ·max{di − (ei + ai), 0}+mi(ei),

where p > 0 is the penalty of failing to fulfill the demand
(i.e. when ei + ai < di), and mi(ei) is the maintenance cost
of the energy storage that is convex [6].

The ISO’s operational cost c0(s0, a0) =∑G
g=1 cg(εg, a0,g), where cg(εg, a0,g) is the convex

increasing energy generation cost of generator g. An
example cost function can be

cg(εg, a0,g) = (q0,g+q1,g·a0,g+q2,g·a20,g)+qr,g·(a0,g−a−0,g)2,

where a−0,g is the production level in the previous time slot.
In the cost function, q0,g + q1,g · a0,g + q2,g · a20,g is the
quadratic cost of producing a0 amount of energy [1][2], and
qr,g ·(a0,g−s0,g)2 is the ramping cost of changing the energy
production level.

Each aggregator i’s payment to the ISO is yi(s0, ai,a−i) ·
ai, where yi(s0, ai,a−i) is the unit energy price that depends
on the ISO’s state s0, its own purchase ai, and the other
aggregators’ purchases a−i. Similarly, the ISO’s payment to
the generators is yT0 ·a0, where y0 is the vector of unit prices
for each generator.

Each entity i’s total cost c̄i is the sum of its operational
cost and its payment.

State Transitions: We assume that each entity’s state
transition is Markovian, namely its current state depends only
on its previous state and its previous action [5][7][8][11][12].
Under the Markovian assumption, we denote the transition



TABLE I
COMPARISONS WITH RELATED WORKS ON ENERGY PURCHASE AND PROCUREMENT.

Interaction Energy storage Time horizon Foresighted Aggregators Supply uncertainty Demand Uncertainty
[1][2] Aggregator-Customer No 1 day No Single No No

[3] Aggregator-Customer No 1 day No Single No Yes
[4] ISO-Aggregator No 1 day No Multiple No No
[5] ISO-Aggregator No 1 day No Multiple Yes No
[6] ISO-Aggregator Yes 1 day No Multiple No No

[7][8] ISO-Aggregator Yes 1 day No Multiple Yes Yes
[9][10] ISO-Aggregator Yes Infinite Yes Single No Yes

[11][12] ISO-Aggregator Yes Infinite Yes Single Yes Yes
Proposed ISO-Aggregator Yes Infinite Yes Multiple Yes Yes
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Fig. 2. Illustration of the interaction between the ISO and aggregator i
(i.e. their decision making and information exchange) in one period.

probability of entity i’s state si by ρi(s
′
i|si, ai). We also

assume that conditioned on the ISO’s action a0 and the
aggregators’ action profile a, each entity’s state transition
is independent of each other.

We divide time into periods (e.g. hours) t = 0, 1, 2, . . ..
In each period t, the entities act according to the time line
shown in Fig. 2. Each entity i’s strategy is a mapping from
its set of states to its set of actions, denoted by πi : Si → Ai.
Each entity chooses its action based on its strategy in each
period.

The joint strategy profile π = (π0, . . . , πI) and the initial
state (s00, s

0
1, . . . , s

0
I) induce a probability distribution over

the sequences of states and prices, and hence a probability
distribution over the sequences of total costs c̄0i , c̄

1
i , . . ..

Taking expectation with respect to the sequences of stage-
game payoffs, we have entity i’s expected long-term total
cost given the initial state as

C̄i(π|(s00, s01, . . . , s0I)) = E {(1− δ)
∑∞
t=0 (δt · c̄ti)} , (1)

where δ ∈ [0, 1) is the discount factor. We de-
fine each entity i’s expected long-term operational cost
Ci(π|(s00, s01, . . . , s0I)) given the initial state in a similar way.

B. Problem Formulation

The ISO aims to minimize the long-term total cost in
the system. In addition, we need to satisfy the constraints
due to the capacity of the transmission lines, the supply-
demand requirements, and so on. We denote the constraints
by f(s0, a0,a) ≤ 0, where f(s0, a0,a) ∈ RN with N being
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Fig. 3. Illustration of the entities’ decision making and information
exchange. The action and the message exchange in the dashed box are
related to the conjectured prices proposed in the design framework in
Sec. IV.

the number of constraints. We assume that the electricity flow
can be approximated by the direct current (DC) flow model,
in which case the constraints f(s0, a0,a) ≤ 0 are linear in
each ai. Hence, the design problem can be formulated as

minπ
∑

s00,s
0
1,...,s

0
I

I∑
i=0

Ci(π|(s00, s01, . . . , s0I)) (2)

s.t. f(s0, π0(s0), . . . , πI(sI)) ≤ 0, ∀(s0, . . . , sN ).

Note that in the above optimization problem, we use entity
i’s operational cost Ci instead of its total cost C̄i, because
all the payments are transferred with in the system and are
thus canceled in the total system cost. Note also that we
sum up the cost under all the initial states. This can be
considered as the expected total system cost when the initial
state is uniformly distributed. The optimal stationary strategy
profile that minimizes this expected total system cost will
also minimize the total system cost given any initial state.
We write the solution to the design problem as π? and the
optimal value of the design problem as C?.

IV. OPTIMAL FORESIGHTED EPP

A. The aggregator’s Decision Problem and Conjectured
Price

Contrary to the ISO, each aggregator aims to minimize its
own long-term cost C̄i(π|(s00, s01, . . . , s0I)). In other words,



each aggregator i solves the following problem:

πi = arg min
π′i

C̄i(π
′
i,π−i|(s00, s01, . . . , s0I)).

Assuming that the aggregator knows all the information, the
optimal solution to the above problem should satisfy the
following:

Vi(s0, si, s−i) = minai∈Ai

{
(1− δ)c̄i(s0, si, ai,a−i) +

δ ·
∑
s′0,s

′
i,s
′
−i

[
ρ0(s′0|s0)

∏I
j=1 ρj(s

′
j |sj , aj)Vi(s′0, s′i, s′−i)

]}
.

However, the information (such as the other aggregators’
strategies π−i and states s−i, and the ISO’s state s0)
necessary to solve the above problem is never available to
aggregator i.

One way to decouple the interaction among the aggrega-
tors is to endow each aggregator with a conjectured price.
Denote the conjectured price as ỹi, we can rewrite aggregator
i’s decision problem as

Ṽ ỹii (si) = minai∈Ai

{
(1− δ) [ci(si, ai) + ỹi · ai] +

δ ·
∑
s′i

[
ρi(s

′
i|si, ai)Ṽ

ỹi
i (s′i)

]}
.

Clearly, we can see from the above equations that given the
conjectured price ỹi, each aggregator can make decisions
based only on its local information.

In Fig. 3, we illustrate the entities’ decision making and
information exchange in the design framework based on
conjectured prices. We can see that in the proposed design
framework, the ISO sends the conjectured prices to the
aggregators before the aggregators make decisions. This
additional procedure of exchanging conjectured prices allows
the ISO to lead the aggregators to the optimal EPP strategies.
The remaining question is how to determine the optimal
conjectured prices, such that when each aggregator reacts
based on its conjectured price, the resulting strategy profile
miminizes the system cost.

B. The Optimal Decentralized EPP Strategy

We propose a distributed algorithm used by the ISO to
iteratively update the conjectured prices and by the aggre-
gators to update their optimal strategies. The algorithm will
converge to the optimal conjectured prices and the optimal
strategy profile that achieves the minimum total system cost
C?.

At period t, given the conjectured price ỹti , each aggregator
i solves

Ṽ
ỹti
i (si) = minai∈Ai

{
(1− δ) [ci(si, ai) + ỹti · ai] +

δ ·
∑
s′i

[
ρi(s

′
i|si, ai)Ṽ

ỹti
i (s′i)

]}
,(3)

and obtains the optimal value function Ṽ
ỹti
i as well as

the corresponding optimal strategy π
ỹti
i under the current

conjectured price ỹti .

TABLE II
DISTRIBUTED ALGORITHM TO COMPUTE THE OPTIMAL

DECENTRALIZED EPP STRATEGY.

Input: Each entity’s performance loss tolerance εi
Initialization: Set t = 0, ā0

i = 0, ∀i ∈ I, ỹ0
i = 0, ∀i = 0, 1, . . . , I .

repeat
Each aggregator i solves its decision problem (3)
The ISO solves its decision problem (4)

Each aggregator i reports its purchase request πỹt
i

i (si)

The ISO updates āt+1
i = āti + π

ỹt
i

i (si) for all i ∈ I
The ISO updates the conjectured prices:

ỹt+1
i (s0) =

[
(λt+1)T · ∂f(s0,a)

∂ai

]T
, where

λt+1 =

{
λt + 1

t+1
· f
(
s0, π

ỹt
0

0 (s0),
āt+1
1
t+1

, . . . ,
āt+1
I
t+1

)}+

until ‖Ṽ ỹ
(t+1)
i

i − Ṽ ỹt
i

i ‖ ≤ εi

Similarly, given the conjectured prices ỹt0 ∈ RG, the ISO
solves

Ṽ
ỹt
0

0 (s0) = minai∈Ai

{
(1− δ)

[∑
g cg(s0, a0) + (ỹt0)T · a0

]
+ δ ·

∑
s′0

[
ρ0(s′0|s0, a0)Ṽ

ỹt
0

0 (s′0)
]}

, (4)

and obtains the optimal value function Ṽ
ỹt
0

0 as well as
the corresponding optimal strategy π

ỹt
0

0 under the current
conjectured price ỹt0.

Then the ISO updates the conjectured prices using a
stochastic subgradient method. The detail of this update,
along with the complete description of the algorithm, is given
in Table II.

Theorem 1: The algorithm in Table II converges to the
optimal strategy profile, namely

lim
t→∞

∣∣∣∣∣ ∑
s0,s1,...,sI

[
I∑
i=0

Ci(π
ỹt |(s0, s1, . . . , sI))

]
− C?

∣∣∣∣∣ = 0.

Proof: See the appendix in [15].
From Fig. 3, we can see that the amount of information

exchange at each period is small (O(I)), compared to the
amount of information unavailable to each entity (

∏
j 6=i |Si|

states plus the strategies π−i). In other words, the algorithm
enables the entities to exchange a small amount (O(I))
of information and reach the optimal EPP strategy that
achieves the same performance as when each entity knows
the complete information about the system.

V. SIMULATION RESULTS

In this section, we validate our theoretical results and
compare against existing EPP strategies through extensive
simulations. We use the widely-used IEEE test power sys-
tems [13]. We describe the other system parameters as
follows:
• One period is one hour. The discount factor δ = 0.99.
• The demand of aggregator i at period t is uniformly

distributed among the interval [di(t mod 24) −∆di(t
mod 24), di(t mod 24)+∆di(t mod 24)]. We let the
peak hours for all the aggregators to be from 17:00 to
22:00. The mean value of aggregator i’s demand di(t
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Fig. 4. The normalized hourly total cost versus the capacity of the energy
storage.

mod 24) = 50 + (i − 1) · 0.5 MW in peak hours and
di(t mod 24) = 25 + (i − 1) · 0.5 MW in off-peak
hours. The range ∆di(t mod 24) = 5 MW in peak
hours and ∆di(t mod 24) = 2 MW in off-peak hours.
These values are adapted from [14].

• All the aggregators have the same linear energy storage
cost function [6]: ci(si, ai) = 2 · (ai − di)+.

• All the renewable energy generators have linear energy
generation cost functions [14]: cg(a0,g) = g·a0,g , where
the unit energy generation cost has the same value as
the index of the generator (these values are adapted
from [14], which cited that the unit energy generation
cost ranges from $0.19/MWh to $10/MWh). Although
the energy generation cost function is deterministic, the
maximum amount of energy production is stochastic
(due to wind speed, the amount of sunshine, and so on).
The maximum amounts of energy production of all the
renewable energy generators follow the same uniform
distribution in the range of [90, 110] MW.

• The conventional energy generators have the same en-
ergy generation cost function [6]:

cg(a0,g) = 0.5 · (a0,g)2︸ ︷︷ ︸
generation cost

+ 0.1 · (a0,g − a−0,g)2︸ ︷︷ ︸
ramping cost

.

We compare the proposed EPP strategies with the follow-
ing schemes.

• Centralized optimal strategies (“Centralized”): We as-
sume that there is a central controller who knows
everything about the system and solves the long-term
cost minimization problem as a single-user MDP. This
scheme serves as the benchmark optimum.

• Myopic strategies (“Myopic”) [4]–[8]: In each period
t, the aggregators myopically minimizes their current
costs, and based on their actions, the ISO minimizes
the current total generation cost.

• Single-user Lyapunov optimization (“Lyapunov”) [9]–
[12]: We let each aggregator adopt the stochastic opti-
mization technique proposed in [9]–[12]. Based on the
aggregators’ purchases, the ISO minimizes the current
total generation cost.
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Fig. 5. The normalized hourly total cost versus the uncertainty in renewable
energy generation. The aggregators have energy storage of capacity 25 MW.
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Fig. 6. The normalized hourly total cost versus the uncertainty in renewable
energy generation. The aggregators have energy storage of capacity 50 MW.

1) Impact of the energy storage: First, we study the
impact of the energy storage on the performance of different
schemes. We assume that all the generators are conventional
energy generators using fossil fuel, in order to rule out the
impact of the uncertainty in renewable energy generation
(which will be examined next). The performance criterion
is the total cost per hour normalized by the number of buses
in the system. We compare the normalized total cost achieved
by different schemes when the capacity of the energy storage
increases from 5 MW to 45 MW.

Fig. 4 shows the normalized total cost achieved by dif-
ferent schemes under IEEE 30-bus system. We can see
that the proposed EPP strategy achieves almost the same
performance as the centralized optimal strategy. The slight
optimality gap comes from the performance loss experienced
during the convergence process of the conjectured prices.
Compared to the EPP strategy based on single-user Lyapunov
optimization, our proposed strategy can reduce the total cost
by around 30% in most cases. Compared to the myopic EPP
strategy, our reduction in the total cost is even larger and
increases with the capacity of the energy storage (up to 60%).



2) Impact of the uncertainty in renewable energy gen-
eration: Now we examine the impact of the uncertainty
in renewable energy generation. We let half of the gen-
erators to be renewable energy generators. Recall that the
maximum amounts of energy production of the renewable
energy generators are stochastic and follow the same uniform
distribution. We keep the mean value of the maximum
amount of energy production to be 100 MW, and vary the
range of the uniform distribution. A wider range indicates a
higher uncertainty in renewable energy production. Hence,
we define the uncertainty in renewable energy generation as
the maximum deviation from the mean value in the uniform
distribution.

Fig. 5 and Fig. 6 show the normalized total cost with
different degrees of uncertainty in renewable energy gener-
ation, when the aggregators have 25MV and 50MV energy
storage, respectively. Again, the proposed strategy achieves
the performance of the centralized optimal strategy, and has
lower total cost compared to the other schemes. We can also
see that when the aggregators have larger capacity to store
energy, the increase of the total cost with the uncertainty is
smaller. This is because the energy storage can smooth the
demand, in order to mitigate the impact of uncertainty in the
renewable energy generation. This shows the value of energy
storage to reduce the cost.

VI. CONCLUSION

In this paper, we proposed a methodology to perform
optimal foresighted EPP strategies that minimize the long-
term total cost of the power system. We overcame the hurdles
of information decentralization in the system, by decoupling
the entities’ decision problems using conjectured prices.
We proposed an online algorithm for the ISO to update
the conjectured prices, such that the conjectured prices can
converge to the optimal ones, based on which the entities
make optimal decisions that minimize the long-term total
cost. We prove that the proposed method can achieve the
social optimum, and demonstrate through simulations that
the proposed foresighted EPP significantly reduces the total
cost compared to the optimal myopic EPP (up to 60%
reduction), and the foresighted EPP based on the Lyapunov
optimization framework (up to 30% reduction).
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[7] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonol-
losa, “Noncooperative and cooperative optimization of distributed
energy generation and storage in the demand-side of the smart grid,”
IEEE Trans. on Signal Process., vol. 61, no. 10, pp. 2454–2472, May
2013.
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