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ABSTRACT

We study joint resource allocation and packet scheduling for
multi-user video transmission in a 4G cellular network, where
the base station (BS) allocates resources (i.e. bandwidth) among
the users and each user schedules its video packets based on the
allocated resources. Most existing works either propose myopic
solutions for multi-user video transmission, in which the resource
allocation and packet scheduling is designed to maximize the
short-term video quality, or propose foresighted packet scheduling
solutions for single-user video transmission which maximize the
long-term video quality. In this work, we propose foresighted
resource allocation and packet scheduling solutions for multi-user
video transmission. Specifically, we develop a low-complexity
algorithm in which the BS updates the prices of resources for each
user and the users make individual packet scheduling decisions
based on the prices. The algorithm can be implemented by the
BS and the users in a decentralized manner, and converges to the
optimal prices under which the users’ optimal decisions maximize
the long-term total video quality subject to per-user minimum
video quality guarantees. Simulation results show 7 dB and 3 dB
improvements in PSNR (Peak Signal-to-Noise Ratio) over myopic
solutions and existing foresighted solutions, respectively.

Index Terms— wireless video transmission, packet scheduling,
resource allocation, multi-user communication

1. INTRODUCTION

Video applications, such as multimedia streaming, video chatting,
and gaming, have become the major applications deployed over the
current cellular networks. Such bandwidth-intensive and delay-sensitive
applications require efficient network resource allocation among the
users accessing the network, and efficient scheduling of each user’s
video packets based on its allocated resources.

Most existing works on multi-user video transmission propose
myopic solutions [4]–[7], in which the resource allocation and
packet scheduling is designed to maximize the short-term video
quality (i.e. the video quality in a given time interval). However,
due to time-varying channel conditions and dependency across video
packets, current resource allocation and packet scheduling decisions
have impact on the future system performance, which is not taken
into consideration by the myopic solutions. Hence, the myopic
solutions are inferior to foresighted solutions that maximize the
long-term average video quality across different time intervals.

However, most works that propose foresighted solutions [8]–[12]
study the packet scheduling of a single foresighted video user. In
practical networks with multiple users, the solutions developed for
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a single user cannot be readily applied. A direct extension to the
multi-user scenario may be to allocate a fixed amount of resources to
each user a priori. However, how to optimally allocate resources is
not addressed in the above works [8]–[12]. More importantly, such
a static allocation of resources may be suboptimal compared to the
solutions that dynamically allocate resources among multiple users.

In this paper, we propose a joint foresighted resource allocation
and packet scheduling solution for multi-user video transmission.
We study the uplink of a 4G cellular network1, in which the base
station (BS) allocates resources (i.e. bandwidth) to multiple video
users who perform packet scheduling given the allocated resources.
In our proposed solution, the BS does not directly allocate the
resources; instead, it charges each user for resources by a unit
“price”2, based on which each user determines its own optimal
packet scheduling and resource acquisition. This approach is
desirable, because in this way the users can make optimal decisions
in a decentralized fashion. To implement the proposed solution, we
propose a low-complexity algorithm in which the BS updates the
resource prices and the users make individual decisions based on
the prices. We prove that the algorithm can converge to the optimal
prices, under which the users’ optimal decisions maximize the
long-term total video quality in the network (subject to a minimum
video quality guarantee for each user).

The rest of the paper is organized as follows. We discuss
prior work in Section 2. In Section 3, we describe the system
model and formulate the design problem. Then we propose our
solution in Section 4. Simulation results in Section 5 demonstrate
the performance improvement of the proposed solution. Finally,
Section 6 concludes the paper.

2. RELATION TO PRIOR WORK

The existing works on wireless video transmission can be classified
based on various criteria. In Table 1, we categorize the existing
works [1]–[13] based on different criteria. Simply put, most works
propose solutions either for multiple myopic video users [1]–[7] or
for a single foresighted video user [8]–[12].

Very few works [13] propose solutions for multiple foresighted
video users. Since this work [13] is most related to our work,
we discuss the differences from [13] in detail. The challenge in
foresighted multi-user video transmission is that the users’ decisions
are dynamic and are coupled through the resource (e.g. bandwidth
or time) constraints. Hence, the design problem is much more

1The work can be easily extended to the downlink, and to wireless LANs
(Local Area Networks) in which temporal transmission opportunities are
allocated.

2Note that the “price” is a control signal, rather than the price for real
monetary payment.



Table 1. Comparisons With Related Works.
Traffic model Users Foresighted Optimal

[1]–[3] Flow-level Multiple No No
[4]–[7] Packet-level Multiple No No
[8]–[12] Packet-level Single Yes No

[13] Packet-level Multiple Yes No
Proposed Packet-level Multiple Yes Yes
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complicated than that in myopic multi-user video transmission
(where the decision is static) and that in foresighted single-user
video transmission (where there is no coupling). The key idea to
overcome this challenge is to use Lagrangian multipliers (interpreted
as the prices of the resources) and add the product of the Lagrangian
multipliers and the constraints onto the users’ objective functions
[13]. In this way, the users’ decision problems are decoupled.
However, contrary to standard dual decomposition in myopic video
transmission, such a solution is in general suboptimal (i.e. there
is a positive duality gap), because they use the same Lagrangian
multiplier (i.e. a uniform price) under all the states [13]. In contrast,
in our work, we allow the BS to use different prices in different
states (i.e. different channel conditions). In this way, we can achieve
better performance than MU-MDP with uniform price [13].

3. SYSTEM MODEL AND PROBLEM FORMULATION

A key feature of our model is that we use a packet-level model
[13] to the characterize the video traffic (in terms of distortion
impacts, delay deadlines, interdependency, etc.), which is distinct
from widely-used flow-level models in other papers that characterize
only the rate changes of video traffic [1]. Hence, we will first
introduce the video traffic model for each user, and then describe the
network model.

3.1. The Video Traffic Model For Each User

3.1.1. Characteristics of Video Data

In video transmissions, we usually encode the source data using a
GOP (Group of Pictures) structure: the data is encoded into a series
of GOPs, indexed by g = 1, 2, . . ., where one GOP consists of N
data units (DUs). Each DU n = 1, . . . , N in GOP g is characterized
by its size, distortion impact, delay deadline, and dependency. The
DUs in one GOP have different characteristics. However, different
GOPs are “the same”, in the sense that the nth DU in different GOPs

have the same (statistical) characteristics. We denote the nth DU in
GOP g by fg

n , and list its characteristics as below.

• Size: The size of a DU is the number of packets (assumed
to be of equal length as in [12]) in the DU. We denote the
size of DU fg

n by lgn (packets). The size lgn of DU fg
n is

an random variable following the probability mass function
PMFn. As in [13], we assume that the sizes of different DUs
are independent random variables. Note that the distributions
of the sizes of the nth DUs in different GOPs are the same.

• Distortion impact: Each DU fg
n has a distortion impact of

qgn per packet. The distortion impact measures how much
distortion is added to the video if a packet is not received or
cannot be successfully decoded at the receiver. The nth DUs
in different GOPs have the same distortion impact per packet,

namely qgn = qg
′

n , ∀g, g′.
• Delay deadline: The delay deadline dgn of DU fg

n is the
time before which the DU should be decoded. The relative
differences between delay deadlines of DUs are fixed across

different GOPs, namely dgn − dgn+1 = dg
′

n − dg
′

n+1, ∀g, g′.
Moreover, the relative differences between delay deadlines of
the same DUs in adjacent GOPs are fixed as the length of the
GOP, namely dgn − dg+1

n = dgm − dg+1
m , ∀m,n.

• Dependency: Since the DUs in one GOP are encoded using
techniques such as motion estimation/compensation, the DUs
may have complex dependency relationships. We say that
DU fg

n depends on DU fg
m, if DU fg

n is encoded based on
the prediction from DU fg

m (in other words, DU fg
n cannot

be decoded without decoding DU fg
m first). We represent the

dependency among DUs in one GOP by a directed acyclic
graph (DAG) [8], where the vertices are DUs and an edge
from DU fg

m to DU fg
n indicates that DU fg

n depends on DU
fg
m. As in [13], we assume that if DU fg

n depends on DU
fg
m, we have dgn ≥ dgm and qgn ≤ qgm, namely DU fg

m should
be decoded before DU fg

n and has a higher distortion impact
than DU fg

n . Note that there is no dependency between DUs
in different GOPs.

3.1.2. Traffic State

We introduce the traffic state, which completely characterizes the
state of the video traffic at each time slot t = 1, 2, . . .. Note that
in this paper, we take the perspective from the application layer, and
denote t as the time slot in the application layer (which could be
divided into smaller time slots in the physical layer). At time slot
t, as in [8][12], we assume that the wireless user will only consider
for transmission the DUs in the range of [t, t + W − 1], where W
is referred to as the scheduling time window (STW) and assumed
to be determined a priori3. We further assume that the STW is
chosen to satisfy the following condition: if DU fg

j directly depends
on DU fg

j , then dgj − dgj < W . This assumption ensures that
we can choose to transmit DUs fg

j and fg
j in the same time slot.

Following the model in [12], at time slot t, we introduce the context
to represent the set of DUs that are considered for transmission, i.e.,
whose delay deadlines are within the range of [t, t + W − 1]. We
denote the context by Ct =

{
fg
j |dgj ∈ [t, t+W − 1]

}
. Since the

GOP structure is fixed, the context Ct is periodic with the period

3The STW can be determined based on the channel conditions
experienced by the user in each time slot. For example, the STW can be set
small when the channel conditions are poor, and large whenever the channel
conditions are good.



of T (i.e. the length of a GOP), namely Ct and Ct+T have the
same types of DUs and the same DAG between these DUs. Since
the context represents the set of DUs to be transmitted, it implicitly
represents the dependency among the DUs. The transition from
context Ct to Ct+1 is deterministic.

Given the current context Ct, we let xf,t denote the number
of packets in the buffer associated with DU f ∈ Ct. We denote
the buffer state of the DUs in Ct by xt = {xf,t|f ∈ Ct}. The
traffic state at time slot t is then defined as (Ct, xt), where the
context Ct represents the types of DUs, the dependency among
them, and the buffer state xt represents the amount of packets
remaining for transmission. Hence, the traffic state is able to capture
heterogeneous multimedia traffic and is a super-set of existing
well-known priority-buffer models.

3.1.3. Packet Scheduling

At each time slot t, the wireless user experiences a channel condition
ht ∈ H, where H is the set of finite possible channel conditions and
ht is referred to as the channel state. Note that the channel condition
is the quality of the channel perceived by the application layer, rather
than the channel gain from transmitter to receiver measured in the
physical layer. In this paper, we assume that the wireless channel
is slow-fading (i.e. remains the same in one time slot) and that the
channel condition ht can be modeled as a finite-state Markov chain
with transition probability ph(h

′|h) ∈ [0, 1]. We further define
the state which the wireless user experiences at each time slot t as
st = (Ct, xt, ht), which includes the current context, buffer state
and channel state. At time slot t, the wireless user decides how
many packets should be transmitted from each DU in the current
context. The decision is represented by at(Ct, xt, ht) = {af,t|f ∈
Ct, af,t ∈ [0, xf,t]}, where af,t represents the amount of packets
transmitted from DU f . We consider the following payoff at each
time slot t:

u(st, at) =
∑

f∈Ct
qf · af,t − ρ

(
ht,

∑
f∈Ct

af,t

)
. (1)

In the above payoff function, the first term represents the
distortion reduction obtained by transmitting the data from the
DUs in the current context. The second term represents the disutility
of the energy consumption by transmitting the data. The energy
consumption function ρ(h, a) is assumed to be a convex function of
a given the channel condition h.

3.2. The Network Model

In the previous subsection, we discuss the model for a single user.
In this work, we consider a 4G cellular network, where there are I
wireless video users transmitting to the BS indexed by 0. The users
access the channels in a FDMA (frequency-division multiple access)
manner. We normalize the total bandwidth to be 1, and will be
divided and shared by the users. The BS knows the channel states of
all the users (this information can be obtained by channel estimation
from pilot signals sent from the users). We write the BS’s state as
s0 = (h1

t , . . . , h
I
t ), where hi

t is the channel state of user i. We will
hereafter use superscript i to denote user i.

We assume that each user i uses adaptive modulation and coding
(AMC) based on its channel condition. In other words, each user i
chooses a data rate rit under the channel state hi

t. Note that the rate
selection is done by the physical layer and is not a decision variable
in our framework. Then as in [2][3], we have the following resource
constraint: ∑I

i=1

∑
f∈Ct

af,t

rit(h
i
t)

≤ 1 . (2)

Finally, note that although we consider cellular networks in this
paper, the model can be readily applied to video transmission in
wireless LANs operating under the IEEE 802.11e protocol, where
the users access the channel in a TDMA (time-division multiple
access) manner.

3.3. The Design Problem

Each user performs packet scheduling based on its state st. Hence,
each user i’s strategy can be defined as a mapping πi(s

i
t) ∈ Ai(sit),

where Ai(sit) is the set of actions available under state sit. We allow
the set of available actions to depend on the state, in order to capture
the minimum video quality guarantee. For example, we may have
a minimum distortion impact reduction requirement for each user at
any time, which imposes constraints on the users’ actions. The joint
strategy profile is π = (π1, . . . , πI).

The users aim to maximize their expected long-term payoff.
The initial state (s00, . . . , s

I
0) induce a probability distribution over

the sequences of states, and hence a probability distribution over
the sequences of total payoffs u0

i , u
1
i , . . .. Taking expectation with

respect to the sequences of stage-game payoffs, we have user i’s
expected long-term payoff given the initial state as

Ui(π|(s00, . . . , sI0)) = E

{
(1− δ)

∞∑
t=0

(
δt · ui

t

)}
, (3)

where δ ∈ [0, 1) is the discount factor.
The design problem can be formulated as

minπ

∑
s00,...,s

I
0

I∑
i=1

Ui(π|(s00, . . . , sI0)) (4)

s.t.
I∑

i=1

‖πi(si)‖1
rit(h

i
t)

≤ 1, ∀s0,

where the constraint in the above design problem is an abstraction
of the bandwidth constraint (2). We write the solution to the design
problem as π� and the optimal value of the design problem as U�.

4. OPTIMAL FORESIGHTED VIDEO TRANSMISSION

In this section, we derive the optimal foresighted video transmission.

4.1. Decomposition of The Users’ Decision Problems

Contrary to the designer, each user aims to minimize its own
long-term total payoff Ui(π|(s00, . . . , sI0)). In other words, each
user i solves the following problem:

πi = argmax
π̃i

Ui(π̃
i,π−i|(s00, . . . , sI0)).

Assuming that the user knows all the information, the optimal
solution to the above problem should satisfy the following:

V (si) = max
ai∈Ai(si)

(1− δ)ui(si, ai) + δ ·
∑
si′

ρi(si′|si, ai)V (si′)

s.t.
I∑

i=1

‖ai‖1
rit(h

i
t)

≤ 1. (5)

Note that the above equations would be the Bellman equations, if the
user knew all the information such as the other users’ actions a−i,



Table 2. Distributed algorithm to compute the optimal decentralized
video transmission strategy.

Input: Each user’s performance loss tolerance εi

Initialization: Set k = 0, āi(0) = 0, ∀i, λi(0) = 0, ∀i.
repeat

Each user i solves

Ṽ i,λi,(k)(s0)(si) = maxai∈Ai(si)(1 − δ)
[
ui(si, ai) − λi,(k)(s0) · ai

]

+δ · ∑si′
[
ρi(si′|si, ai)Ṽ i,λi,(k)(s0)(si′)

]

Each user i submits its bandwidth request πi,λi,(k)(s0)(si)

The BS updates āi(k + 1) = āi(k) + π
λi,(k)(s0)
i (si) for all i = 1, . . . , I

The BS updates the prices:

λi,(k+1)(s0) = λi,(k)(s0) + 1
k+1 · 1

rit(h
i
t)

until ‖Ṽ i,λi,(k+1)(s0) − Ṽ i,λi,(k)(s0)‖ ≤ εi

t+1

The BS
observes its state:

The BS
updates the price

t+1

BS User i

tt
User i

observes its state:

User i
makes decisions on
packet scheduling:

The BS
announces the price

Fig. 2. Illustration of the interaction between the BS and user i (i.e.
their decision making and information exchange) in one period.

and the BS’s state s0. However, such information is never known
to the user. Hence, we need to separate the influence of the other
entities from each user’s decision problem.

One way to decouple the interaction among the users is to
penalize the constraint onto the objective function. Denote the
Lagrangian multiplier (i.e. the “price”) associated with the constraint
under state s0 as λi(s0), we can rewrite user i’s decision problem as

Ṽ λi(s0)(si) = maxai∈Ai(si)(1− δ)
[
ui(s

i, ai)− λi(s0) · ai
]

(6)

+δ ·∑s′i

[
ρi(si′|si, ai)Ṽ λi(s0)(si′)

]
.

Clearly, we can see from the above equations that given the price λi,
each user can make decisions based only on its local information.

The remaining question is how to determine the optimal prices,
such that when each user reacts based on its price, the resulting
strategy profile maximizes the social welfare.

4.2. The Optimal Decentralized Video Transmission Strategy

The optimal prices depend on the BS’s state, which is known to
the BS only. Hence, we propose a distributed algorithm used by
the BS to iteratively update the prices and by the users to update
their optimal strategies. The algorithm will converge to the optimal
prices and the optimal strategy profile that achieves the minimum
total system payoff U�. The algorithm is described in Table 2.

Theorem 1 The algorithm in Table 2 converges to the optimal
strategy profile, namely

limk→0

∣∣∣∑s00,...,s
I
0

∑I
i=1 Ui(π

λ(k) |(s00, . . . , sI0))− U�
∣∣∣ = 0 .

Table 3. The proposed framework reduces to existing frameworks.
Framework Simplification of the proposed framework

Myopic [4]–[7] δ = 0

MU-MDP [13] The price λ(s0) = λ under all the state s0

Table 4. Comparisons of PSNR under different energy
consumptions.

Energy consumption (Joule) 0.08 0.10 0.15

Myopic [4]–[7] (30, 24, 24) dB (40, 35, 25) dB (45, 45, 34) dB

MU-MDP [13] (34, 28, 27) dB (44, 40, 28) dB (50, 48, 38) dB

Proposed (37, 32, 30) dB (46, 43, 32) dB (54, 51, 42) dB

Proof 1 See [14, Appendix A].

We illustrate the algorithm (i.e. the BS’s and users’ updates and
their information exchange) in one period in Fig. 2. We can see
that the amount of information exchange at each iteration is small
(O(I)), compared to the amount of information unavailable to each
entity (

∏
j �=i |Si| states plus the strategies π−i). In other words, the

algorithm enables the entities to exchange a small amount (O(I))
of information and reach the optimal video transmission strategy
that achieves the same performance as when each entity knows the
complete information about the system.

5. SIMULATION RESULTS

We consider a wireless network with three users streaming video
sequences “Foreman” (CIF resolution, 30 Hz), “COstguard” (CIF
resolution, 30 Hz), “Mobile” (CIF resolution, 30 Hz), respectively.
The energy consumption function is set as ρ(h, a) = σ2(2a −
1)/|h|2, where |h|2/σ2 = 1.4 (≈ 1.5 dB) [12]. We set the discount
factor as δ = 0.95. Note that different video sequences have
heterogeneous distortion impact, delay deadlines, and dependency
among packets. Hence, the simulation will demonstrate that our
proposed solution can accommodate heterogeneous video streams.

We compare against the myopic solution [4]–[7] and the
foresighted solution with uniform price [13] in terms of the peak
signal-to-noise ratio (PSNR) and energy consumption. The results
are listed in Table 4. We can see that the proposed solution can
achieve on average a 7 dB PSNR improvement for all the users,
compared to the myopic solution, and a 3 dB PSNR improvement
for all the users, compared to the MU-MDP solution with uniform
price.

6. CONCLUSION

We propose the optimal foresighted resource allocation and packet
scheduling solution for multi-user video transmission. The proposed
solution achieves the optimal long-term total video quality subject
to each user’s minimum video quality guarantee, by dynamically
allocating bandwidth among the users and dynamically scheduling
the users’ packets while taking into account the dependency among
the packets and the time-varying channel conditions. We develop
a low-complexity algorithm that can be implemented by the BS and
the users in a decentralized manner and can converge to the proposed
optimal solution. Simulations show that our proposed solution can
achieve significant improvements in PSNR of up to 7 dB compared
to myopic solutions and of up to 3 dB compared to state-of-the-art
foresighted solutions.
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