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Abstract—Information exchange systems, such as BitTorrent,
Yahoo Answers, Yelp, Amazon Mechanical Turk, differ in many
ways, but all share a common vulnerability to selfish behavior
and free-riding. In this paper, we build incentives schemes based
on social norms. Social norms prescribe a social strategy for the
agents in the system to follow and deploy reputation schemes
to reward or penalize agents depending on whether they follow
or deviate from the prescribed strategy when selecting actions.
Because agents in these systems often have only limited capability
to observe the global system information, e.g. the reputation
distribution of the agents participating in the system, their beliefs
about the reputation distribution are heterogeneous and biased.
Such belief heterogeneity causes a positive fraction of agents
to not follow the social strategy. In such practical scenarios,
the standard equilibrium analysis deployed in the economics
literature is no longer directly applicable and hence, the system
design needs to consider these differences. To investigate how the
system designs need to change, we focus on a simple social norm
with binary reputation labels but allow adjusting the punishment
severity through randomization. First, we model the belief
heterogeneity using a suitable Bayesian belief function. Next, we
formalize the agents’ optimal decision problems and derive in
which scenarios they follow the prescribed social strategy. Then
we study how the system state is determined by the agents’
strategic behavior. We are particularly interested in the robust
equilibrium where the system state becomes invariant when
all agents strategically optimize their decisions. By rigorously
studying two specific cases where agents’ belief distribution
is constant or is linearly influenced by the true reputation
distribution, we prove that the optimal reputation update rule is
to choose the mildest possible punishment. This result is further
confirmed for more sophisticated belief influences in simulations.
In conclusion, our proposed design framework enables the
development of optimal social norms for various deployment
scenarios with limited observations.

Index Terms—game theory, limited observations, reputation.

I. INTRODUCTION

AS THE WEB has evolved, it has become increasingly
social. People turn to the web to exchange ideas, data

and services, as evidenced by the popularity of sites like
Wikipedia, Bit-Torrent, Yahoo Answers, Yelp and Amazon
Mechanical Turk (AMT). While these systems, which we refer
to as information exchange systems, differ in many ways,
they share a common vulnerability to selfish behavior and
free-riding. For example, a worker on AMT may attempt to
complete jobs with as little effort as possible while still being
paid; an agent in a peer-to-peer system may wish to download
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files without using bandwidth to upload files for others. In
order for these sites to thrive, participants must be properly
motivated to contribute.

Distributed optimization techniques have been applied ex-
tensively in engineering to enable the efficient usage of
resources by obedient or cooperative agents. Only in recent
years have engineers started to investigate incentive issues in
systems formed by self-interested agents. Many of the existing
mechanisms to combat free-riding problems rely on game-
theoretic approaches and can be classified as either pricing
mechanisms or reciprocity mechanisms. Pricing mechanisms
are appropriate in some settings, but do not make sense for
applications like Yahoo Answers, Wikipedia, or Yelp, where
much of the appeal is that the information is free.

Under a reciprocity mechanism, an agent is rewarded or
punished based on its behavior in the system according to a
differential service scheme [1] [2]. This preferential treatment
provides an incentive for agents to cooperate, and can be
implemented using either virtual currency [3] [4] [5] or repu-
tation. However, prior work shows that even optimal designs
based on virtual currency cannot achieve optimal performance
[6]. Depending on how an agent’s reputation is generated,
reciprocity-based protocols can be classified as direct reci-
procity mechanisms [7], or indirect reciprocity mechanisms
[8]. Direct reciprocity implies that the interaction between
two agents is influenced only by the history of their mutual
interactions, and not by their interactions with other agents.
Though easy to implement, direct reciprocity requires frequent
interactions between two agents in order to establish accurate
mutual ratings. This is restrictive in systems characterized by
high churn, asymmetry of interests, or infrequent interactions
between any pair of agents, such as most peer production
systems, online labor markets, and review sites.

Protocols that are based on indirect reciprocity typically
assign to each agent a global reputation [9] based on its past
interactions with all other agents in the system. A differential
service scheme recommends actions based only on the reputa-
tions of agents, and not on their entire history of interactions.
Much of the existing work on reputation mechanisms is
concerned with practical implementation details. Some focuses
on effective information gathering techniques [10] [11]. Many
empirical studies have been done on the impact of reputation
on a seller’s prices and sales [12] [13]. The few works [14]
[15] [16] providing theoretical results typically consider one
(or a few) long-lived seller(s) interacting with many short-
lived buyers. This model and the corresponding analysis are
not appropriate for information exchange systems where there
are many interacting agents playing the role of buyer or seller
or both, contributing and seeking information.
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To rigorously capture the impact of various strategy and
protocol design choices, a framework based on social norms
was proposed in [17] which was originally designed to sustain
cooperation in a community with a large population of indi-
viduals participating in anonymous random matching games
[18] [19] [20] [22]. In an incentive scheme based on a social
norm, each individual is assigned a dynamic label indicating
its reputation or status based on past behavior, and individuals
with different labels are treated differently by others in the
system. Hence, a social norm can be adopted easily in social
communities with an infrastructure that collects, processes,
and delivers information about individuals’ behavior. Most of
the existing works on reputation systems assume that agents
have complete knowledge of the system, i.e. the reputation
distribution in particular. However, this assumption is unre-
alistic in practice. First, none of the major existing online
information exchange systems (e.g. Yahoo! Answers, Yelp)
provide reputation statistics to agents in real-time. Second,
even if the reputation statistics are provided online and are
accessible by the agents, the agents may not believe their
accuracy and may not rely on them to make decisions. People
tend to form their beliefs based on their own experience
or experiences of “trusted” people. Hence, agents have only
incomplete information about the system and their beliefs are
heterogeneous.

In this paper, we build incentive schemes for information
exchange systems based on social norms, which explicitly
consider these scenarios. The main contributions of this paper
are summarized as follows:

• We design simple social norms for information exchange
systems using binary reputation and adjust the punish-
ment severity through randomization. This class of social
norms is simple and easy to implement while being close
to the optimal strategy in the unlimited observations case
[17].

• We model the agents’ heterogeneous beliefs of the system
state (i.e. the reputation distribution) based on their
limited observations using a Bayesian belief model. We
require the equilibrium to be robust to small disturbances
and prove the existence of robust equilibrium and we
study what are the conditions under which the equilib-
rium exists, as well as how its efficiency depends on the
agents’ observations.

• We prove that agents follow the social strategy only if
their beliefs about the system state are above certain
thresholds, i.e., they need to have sufficient “trust” in
the society. These thresholds are analytically computed
and depend on the system characteristics (e.g. discount
factor, benefit and cost). Using this result, we rigorously
study the system design problem and prove that, in most
scenarios, the optimal punishment design is to use the
mildest possible punishment, thereby leading to a differ-
ent social norm design than in the complete information
cases.

We highlight the differences from existing works in the
following. First, the information based on which agents make
their self-interested decisions is fundamentally different from
all the existing works. In the existing works on social re-
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Fig. 1. Comparisons with existing works.

ciprocation, agents have complete and accurate information
of the system state. Alternatively, in this work, we consider
more realistic scenarios where agents only acquire incomplete
and inaccurate information about the system state. Second,
since the information based on which agents make decisions is
incomplete, the equilibrium concept is different. For example,
in [17], the equilibrium is a public perfect equilibrium. How-
ever, in this paper, agents’ decisions are based on their own
observations and beliefs, the equilibrium concept that we use
is Bayes-Nash equilibrium. We also require the equilibrium to
be robust to smaller disturbances. Third, the agents’ strategic
behaviors at equilibrium differ significantly from the existing
results where all agents follow the recommended protocol in
equilibrium. In the considered model in this paper, agents have
heterogeneous beliefs under any system state and hence, not
all the agents will follow the recommended strategy. To better
illustrate the differences, we categorize the existing works in
Fig. 1.

The rest of this paper is organized as follows. Section II
describes the basic model, the structure of the social norms and
the belief model based on which the agents make decisions.
Section III investigates the agents’ decision problem. System
dynamics and the equilibrium are then studied. In Section IV,
the impact of punishment on the equilibrium performance is
investigated. The optimal design is derived for two specific
Bayesian belief functions. Simulations are conducted in Sec-
tion V followed by conclusions in Section VI.

II. SYSTEM MODEL

A. Setup

We consider an information exchange system where agents
request and provide information or resources. We utilize the
widely-used continuum model (mass 1), implicitly assuming
that the agent population is large and static. The system is
modeled as a discrete-time system where time is divided into
periods. When a requester generates a task, it is posted on
the website and a provider is assigned to solve the task. We
assume (as in Yelp, Yahoo Answers and etc.) that there is
no price associated with the task and that the provider is the
only strategic entity that needs to decide whether or not to
solve the task. Upon accepting, the provider incurs a cost c
to fulfill the task while the requester receives a benefit b . We
assume that b > c > 0 to make providing the service socially
valuable and denote γ = b/c as the benefit-to-cost ratio. This
is a simple gift-giving game (see Fig. 2) in which the dominant
strategy for the provider is not to provide service. Incentives
for providers to contribute their services can be constructed if
the provider is long-lived and will also become a requester in
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Fig. 2. The utility matrix of the gift-giving game.

the future. We assume that agents discount the future utility by
β ∈ (0, 1). We assume that in each period, each agent requests
a task to be solved and another agent is randomly assigned
to solve this task. This random matching model is common
in the economics literature [18] [19] [20]. Nevertheless, our
analysis also applies in deployment scenarios where only a
fraction λ ∈ [0, 1] of the population generates tasks in each
period and it is omitted here because our analysis will be very
similar. In the considered case when λ = 1, each agent is a
requester as well as a provider.

B. Punishment adjustable social norm

In the considered information exchange systems, the proto-
col (system) designer will design a social norm κ, which is
composed of a social strategy σ, a reputation update rule τ ,
and a reputation set Θ. Each agent is tagged with a reputation
θ representing its social status. We consider only two available
reputation labels for the agents Θ = {0, 1} with θ = 1
indicating a good status and θ = 0 indicating a bad status.
Denote the social strategy by the mapping σ : Θ → A, where
Θ is the reputation set of the requester and A = {0, 1} stands
for the action set1 of the provider. The action a = 1 represents
the case where the provider offers the service while a = 0
when it does not provide service. Hence, the social strategy
is σ(1) = 1, σ(0) = 0. The social strategy favors good agents
because it suggests to the providers to only provide service to
good requesters but not to provide service to bad requesters. At
a first glance, this strategy may seem similar to the well-known
Tit-for-Tat (TfT) strategy which rewards agents for cooperative
behaviors and punishes them for non-cooperative behaviors.
However, for the TfT strategy to work successfully it needs
to be based on the history of past reciprocation of the same
agents which are repeatedly interacting over time. Hence, it
requires direct reciprocity between interacting agents while the
social strategy proposed here is based on indirect reciprocity
and it is applicable in systems where agents have infrequent
interactions and are anonymous.

The social norm provides incentives to providers to adhere
to the social strategy by affecting their reputation based on
the action they take. Intuitively, agents who follow the social
strategy should receive good reputations and those who do
not should receive bad reputations. Denote the reputation
update rule by the mapping τ : Θ × Θ × A → [0, 1], where
τ(θ, θ′, a) indicates the probability that the provider has a good
reputation in the next period when the provider’s reputation is

1The social norm can be easily extended to scenarios where actions are
not binary, e.g. multiple effort levels. In that case, the reputation update rule
is agent who exerts a certain level of effort drops to low reputation with a
probability.
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Fig. 3. Reputation update rule.

θ, the requester’s reputation is θ′ and the provider takes action
a. The deployed update rule is: τ(θ, 0, a) = θ, ∀a and

τ (1, 1, a) =

{
1 ifa = σ (1)
0, ifa �= σ (1)

τ (0, 1, a) =

{
α ifa = σ (1)
0, ifa �= σ (1)

Essentially, if the provider deviates from the prescribed
social strategy when meeting a good requester 2 , its reputation
drops to 0; if the bad provider follows the prescribed social
strategy, it restores a good reputation with probability α ∈
[0.1]. Hence, for an agent to receive service when it becomes
a requester in the future, it needs to follow the social strategy
as a provider in the current period. The parameter α adjusts
the severity of punishment of the social norm which needs to
be designed by the system designer. Such randomization can
be easily implemented by a central entity that maintains and
processes agents’ reputations. For α = 1, the punishment is
the mildest, allowing the bad provider to restore its reputation
after a single cooperation with a good requester; for α = 0, the
punishment is the harshest, preventing the bad provider from
having a good reputation again in the future no matter how this
behaves; for α ∈ (0, 1), the expected time periods for which
the agent remains in the bad reputation is at least 1/α. Even
though we focus on a system using only binary reputation
labels, randomization affects the punishment severity similar
to a system using multiple (more than 2) reputation labels. We
portray the aforementioned reputation update rule in Fig. 3.

C. Belief heterogeneity and trust

In this subsection, we model the agents’ belief heterogene-
ity. Because agents are far-sighted, their decisions depend
on how they evaluate the system state, i.e., the reputation
distribution of the system. Since we are considering a binary
reputation system, the reputation distribution can be fully
described by the fraction of agents with good reputations,
which we define as the social reputation ρs and use in the
reminder of this paper. We consider the scenarios where agents
have incomplete information of this social reputation. Agents
only have inaccurate and heterogeneous beliefs about the
social reputation ρs. In practical systems, the accurate value
of ρs is difficult to obtain unless agents have full access to all
agents’ reputation information. Agents form beliefs about the
social reputation according to their observations of a limited
number of reputations of other agents or their limited memory

2We will use in the remainder of this paper the term “good/bad” users to
refer to the users with good/bad reputations.
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of agents’ reputations with whom they have interacted in the
past. In both cases, their information of the social reputation
ρs is inaccurate and heterogeneous.

We assume that agents’ belief ρ of the social reputation ρs
follows a conditional distribution fρ|ρs

(·) of the true ρs. This
agent-specific belief can also be interpreted as the agents’ own
“trust” in the system. The belief distribution function satisfies
the following properties:

1) fρ|ρs
(·) has full support on [0,1]. That is, all beliefs can

emerge for a given social reputation.
2) fρ|ρs

(·) is continuous in ρs. The true ρs has a continuous
impact on agents’ beliefs.

III. SYSTEM DYNAMICS AND EQUILIBRIUM

In this section, we discuss the system dynamics and for-
mally define the Bayes-Nash equilibrium. For this, we first
need to formalize the provider’s decision problem and char-
acterize the social reputation that arises in the steady-state in
our model.

A. Agent’s decision problem

We begin by investigating a typical provider’s decision
problem based on its belief ρ. The provider’s decision will be
based on its own reputation θ, the requester’s reputation θ′ and
its belief ρ toward the social reputation. The provider chooses
an action a(θ, θ′|ρ) ∈ A to maximize its total expected
discounted utility. Depending on which action the provider
takes, the reputation transition follows the reputation update
rule. The provider will follow the social strategy if the long-
run payoff is larger than the payoff obtained by deviating and
will deviate otherwise. The long-term payoff is calculated as

U(a|θ, θ′, ρ) = u(a|θ, θ′) + βV (τ(θ, θ′, a), ρ)

where u(α|θ, θ′) is the stage payoff and V (τ(θ, θ′, a), ρ) is the
expected discounted future payoff. Note that V (τ(θ, θ′, a), ρ)
only depends on the reputation in the next period and is

V (θ0, ρ) = Eρ{
∞∑
t=0

βtu(at|θt, θ′t)}

Note that the expectation of future payoffs is different
for agents who have different “trust” ρ. It is well-known
in the game-theoretic literature that reasoning in incomplete
information scenarios becomes very complex for the players,
if not impossible. Specifically, rational behavior not only
depends on the agent’s belief about the environment but also
involves agents forming higher-order beliefs. Therefore, most
game-theoretic models dealing with incomplete information
scenarios assume that agents have only limited reasoning
capabilities [23] [24]. Similarly, in this paper, we assume that
agents possess simple reasoning capabilities about the play of
agents with whom they interact based on their reputations:
agents’ subjective beliefs are that agents with high reputation
follow the social strategy and agents with low reputation
defect. Under this assumption, the forward trajectory of ρ
remains constant because agents with low reputations defect
and hence, they maintain low reputations while agents with
high reputations follow the recommended strategy and hence,

they maintain high reputations. The next proposition shows
that the provider needs to have sufficient “trust” in the society
in order for it to be willing to follow the social strategy.

Proposition 1. The optimal action a∗(θ, θ′|ρ) for the provider
with a belief ρ to follow the prescribed social strategy has a
threshold property, i.e.,

a∗ (1, 1|ρ) =
{

1, if ρ ≥ ρG
0, if ρ < ρG

; a∗ (0, 1|ρ) =
{

1, if ρ ≥ ρB
0, if ρ < ρB

and a∗(θ, θ′|ρ) = σ(θ′) for all other cases where,

ρG =
1− β

β(γ − α)
, ρB =

1− β

βα(γ − 1)

Proof: See Appendix A.
The above proposition proofs that agents will only follow

the social strategy if they believe that the society is in a
sufficiently good state. Moreover, it also provides several
subtle insights about the agents’ behaviors: (1) Since both
ρG, ρB are strictly positive, there is always a positive fraction
of agents who will deviate because of their (heterogeneous)
beliefs. (2) Since ρG ≤ ρB , incentives of good agents to
cooperate is always at least as large as those of bad agents.
(3) Since ρG is increasing with α and ρB is decreasing with
α, punishment has opposite effects on agents’ incentives:
harsher punishment increases the incentives of good agents
to cooperate but also increases the incentives of bad agents to
deviate.

B. Dynamics and equilibrium

We assume initially that the social reputation is ρS . The
limited observations of agents induce heterogeneous beliefs.
Agents optimize their strategies a∗ according to Proposition
1, and these strategies induce dynamics in the new social
reputation Φ(ρs, a

∗). The equilibrium requires a consistency
check: the steady state social reputation remains invariant, i.e.
ρs = Φ(ρs, a

∗).

Definition 1. (Bayes-Nash equilibrium in the information
exchange system.) Given that an information exchange system
is characterized by β, γ and a punishment design α, let ρs be
a social reputation, fρ|ρs

(ρ) be the induced belief distribution
due to limited observations, and a∗ be the optimal strategy
for the agents given the beliefs. We say that (ρs, fρ|ρs

, a∗)
constitutes an equilibrium if

1) Agents adopt the optimal strategy a∗ to maximize their
expected utilities (as in Proposition 1).

2) The invariant property holds ρs = Φ(ρs, a
∗).

It is worth noting that the agents’ optimal strategy does not
rely on the current social reputation ρs since the threshold
beliefs are only functions of β, γ, α but not ρs. However,
because the belief distribution is induced by ρs, the fraction
of agents who follow the social strategy is thus influenced by
ρs, which in turn determines the social reputation in the next
period. The new social reputation in the next period can be
calculated as follows

Φ(ρs, a
∗) =ρ2sFρ|ρs

(ρ ≥ ρG)

+ α(1− ρs)ρsFρ|ρs
(ρ ≥ ρB) + ρs(1− ρs)
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We denote Δ(ρs) = Φ(ρs, a
∗)−ρs as the change in the social

reputation and thus,

Δ(ρs) = α (1− ρs) ρsFρ|ρs
(ρ ≥ ρB)︸ ︷︷ ︸

bad to good

− ρ2sFρ|ρs
(ρ ≤ ρG)︸ ︷︷ ︸

good to bad

(1)
with

Fρ|ρs
(ρ ≥ ρB) =

1

∫
ρ=ρB

fρ|ρs
(ρ) dρ

Fρ|ρs
(ρ ≤ ρG) =

ρG∫
ρ=0

fρ|ρs
(ρ) dρ

The first part in (1) represents the fraction of agents whose
reputations change from bad to good and the second part is
the fraction of agents whose reputations change from good to
bad. To constitute an equilibrium, it is sufficient and necessary
that Δ(ρs) = 0. However, in information exchange systems
it is of paramount importance that the resulting equilibrium
is robust to small disturbances (e.g. small reputation update
errors).

Definition 2. (Robust equilibrium) The equilibrium with ρs is
robust if and only if

Δ(ρs) = 0 and
dΔ(ρs)

dρs
< 0

Now we study the conditions under which robust equilib-
rium exists.

Proposition 2. Given that an information exchange system
is characterized by β, γ and the punishment design is α, the
existence of the robust equilibrium depends on ρB .

1) If ρB > 1, ρs = 0 is the unique robust equilibrium.
2) If ρB ≤ 1 , there exists at least one robust equilibrium

ρs ∈ (0, 1).

Proof: Omitted proofs can be found in [26].
Proposition 2 proves that neither full efficiency nor zero

efficiency will occur in the robust equilibrium in the limited
observations case. As we will see later, the actual efficiency
will depend on the punishment severity which needs to be
carefully designed. Before proceeding to that, we compare
the achievable efficiency for the limited observations case
with that for the unlimited observations case to illustrate the
different design aspects.

C. Unlimited observations

In this subsection, we investigate how the system evolves
if agents make unlimited observations (i.e. fρ|ρs

(ρ) =
I (ρ− ρs)) to illustrate why the system design should be
different than in the limited observations case. Suppose that
the system starts with an initial social reputation ρ0s ∈ [0, 1],
and we examine in which long-run state ρt→∞

s that the system
will be trapped in.

Proposition 3. With unlimited observations, the long-run
system state is (1) If ρ0s ≥ ρB, ρ

t→∞
s = 1. (2) If ρ0s ≤

ρG, ρ
t→∞
s = 0. (3) If ρG < ρ0s < ρB, ρ

t→∞
s = ρ0s .

Proof: Omitted proofs can be found in [26].
We see that, in the unlimited observations case, appropri-

ately choosing the initial social reputation (e.g. by influencing

the experiences of sufficient people) can lead to full efficiency
while starting from the wrong initial social reputation leads to
zero efficiency regardless of the choice of α. This differs from
the limited observations case where neither the full efficiency
(cooperation) nor the zero efficiency (no cooperation) systems
can occur in a robust equilibrium. The achievable efficiency
depends on the punishment severity of the social norm and
hence, this needs to be carefully designed as discussed in the
next section.

IV. OPTIMAL PUNISHMENT DESIGN

The minimum social reputation beliefs ρG, ρB that sustain
cooperation are determined by the punishment. The harsher the
punishment is (smaller α), fewer good providers deviate while
also fewer bad providers cooperate to restore their reputations.
Hence, when designing the punishment, the tension between
providing incentives to good versus bad agents needs to be
considered. In this section, we characterize the impact of
punishments on the achievable system efficiency. Our focus is
on maximizing the cooperation among the agents and hence,
we use the social reputation, i.e. the fraction of good agents
in the system, as the efficiency metric.

The objective of the system designer in our model is to
choose the optimal punishment α, given the network envi-
ronment parameters β, b, c such that the social reputation is
maximized (hence, the probability that agents cooperate is
also maximized which leads to the maximized social welfare).
Formally, the design problem is to solve

maximize
α

ρs

subject to the system is in a robust equilibrium

A. Belief distribution function based on observations

In this subsection, we describe a specific belief distribution
function based on the agents’ observations for further analysis.
Suppose that in each period an agent is able to observe M
reputations of other agents. The agent’s belief ρ is formed
based on these observation results. We define M as the obser-
vation granularity which quantifies how much agents are able
to observe the system and define m as the observation result
which indicates the number of good reputations observed.
The observation granularity represents how well informed the
agents in the system are and hence, we treat it as an intrinsic
characteristic of the information exchange system. Hence, we
assume that M is exogenously determined3 and the designer
selects the social norm that maximizes the system’s efficiency.
Note that even if the observation results of agents are the
same, it is still possible for them to form different beliefs. We
therefore use the widely-adopted representative agent model
[25] to determine how heterogeneous beliefs are formed.

First we consider the case where all agents have the same
observation granularity, i.e. all agents make M observations.
Therefore, there are M + 1 representative agents, each rep-
resenting agents having the same observation results (i.e.
m = 0, 1, ...,M respectively). In Bayesian statistics, the beta

3Alternatively, the observation granularity could also be a design parameter.
In that case, there might be associated with making observations and the
designer needs to optimize M given costs.
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distribution B(m+1,M−m+1) can be seen as the posterior
probability of the parameter of a binominal distribution after
observing m successes and M−m failures. Therefore, we use
the beta distribution to model a representative agent’s belief
when the observation result is m high reputations out of M
other agents (similar belief function is used in [21] to model
agents’ posterior beliefs after observations).

fm,M (ρ) = B(m+ 1,M −m+ 1)

=
Γ(M + 2)

Γ(m+ 1)Γ(M −m+ 1)
ρm(1− ρ)M−m

where Γ(·) is the gamma function. For an individual agent
who has the same observation result of this representative
agent, its belief is then a realization according to fm,M (ρ).
Since the fractions of agents who have different observation
results follow a binominal distribution with the parameter ρs
(which is the true social reputation), the belief distribution
function is given by

fM
ρ|ρs

(ρ) = Em{fm,M}

=

M∑
m=0

(
M
m

)
ρms (1− ρs)

M−mfm,M (ρ)

Next, we consider the case where the observation gran-
ularity is a random variable to model the scenario where
agents may make different numbers of observations. Suppose
the observation granularity follows an independent identical
distribution Ω(·) over non-negative integer numbers. Because
we consider a continuum model, a fraction Ω(M) of the agents
makes M observations. Therefore, the belief distribution of all
agents is

fρ|ρs
(ρ) =

∑
M∈N

Ω(M)fM
ρ|ρs

(ρ)

The observation granularity determines the knowledge
agents can obtain regarding the social reputation of the system.
A larger will lead to more accurate beliefs for the agents about
the social reputation. We make a few discussions about the
impact of observation granularity.

• M = 0: fm,M (ρ) = f0,0 (ρ) is constant and hence,
fρ|ρs

(ρ) is constant and independent of ρs, thereby
implying that the agents’ beliefs of the social reputation
are uniformly random.

• M → ∞: fρ|ρs
(ρ) → I (ρ− ρs), where I(·) is the

indicator function, thereby implying that as the obser-
vation granularity becomes infinite, agents have perfect
knowledge of the social reputation.

In the remainder of this section, we will consider the
constructed belief distribution function and assume that all
agents have the same observation granularity. Simulations are
conducted for the case when agents have different observation
granularities in Section V.

B. Efficiency bounds

In this subsection, we rigorously investigate how the obser-
vation granularity affects the system performance.

Proposition 4. Given that an information exchange system is
characterized by β, γ,M , for a design parameter α, the robust
equilibrium ρ∗s is bounded as follows

α(1− ρB)
M+1

α(1− ρB)
M+1 +

(
1− (1− ρG)

M+1
) ≤

ρ∗s ≤ α
(
1− ρM+1

B

)
α
(
1− ρM+1

B

)
+ ρM+1

G

Proof: Omitted proofs can be found in [26].

Corollary 1. Fix β, γ,M , for large γ, the robust equilibrium
ρ∗s is bounded away from 1,

ρ∗s ≤ 1−
(

1− β

β (γ − 1)

)M+1

, ∀α ∈ [0, 1]

Proof: Omitted proofs can be found in [26].
The above result shows that the upper bound depends on

the granularity of observations. If the system designer wants to
achieve a higher efficiency, it is necessary that agents are able
to make more observations to acquire more accurate reputation
distribution information. In some systems, the number of
observations can be designed by the designer. For example,
the website designer may only allow agents to access the
reputations of a limited number of other agents due to privacy
and security concerns. Therefore, the tradeoff between effi-
ciency and privacy needs to be carefully considered. However,
in this paper, we assume that the observation granularity
is exogenously determined and characterize the information
availability of the system.

In the following we analyze several specific cases of limited
observations which induce different agent belief distributions.

C. Example 1: M = 0 (constant belief distribution)

We first consider the simplest case: M = 0, i.e. agents
have no observation. In the belief model that we use, M = 0
corresponds to the case that agents have a (constant) uniform
belief over all possible social reputations, namely fρ|ρs

(ρ) = 1
and

Fρ|ρs
(ρ ≥ ρB) = 1− ρB, Fρ|ρs

(ρ ≤ ρG) = ρG

For this simple case, we are able to explicitly determine the
unique robust equilibrium:

ρ∗s =
α (1− ρB)

α (1− ρB) + ρG
=

α− 1−β
β(γ−1)

α− 1−β
β(γ−1) +

1−β
β(γ−α)

It is equivalent to consider the maximization problem,

max
α

(
α− 1− β

β (γ − 1)

)
(γ − α)

The objective function is a quadratic function. The maxi-
mum is achieved at

α∗ = min

{
γβ (γ − 1) + 1− β

2β (γ − 1)
, 1

}

The above equation therefore provides the optimal α which is
designed to maximize the efficiency when M = 0.
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Proposition 5. Given that an information exchange system is
characterized by β, γ and for M = 0, the optimal punishment
parameter is

α∗ = min

{
γβ (γ − 1) + 1− β

2β (γ − 1)
, 1

}

and the induced robust equilibrium is

ρ∗s =

⎧⎨
⎩

1
4 (γ− 1−β

β(γ−1))
2

1
4 (γ− 1−β

β(γ−1) )
2
+ 1−β

β

, if γβ(γ−1)+1−β
2β(γ−1) < 1

1− 1−β
β(γ−1) , if

γβ(γ−1)+1−β
2β(γ−1) ≥ 1

Proof: Omitted proofs can be found in [26].

D. Example 2: M = 1 (linear belief distribution)

In this subsection we consider the case M = 1. For
example, agents observe the reputation of one other agent by
sampling the system. This can be interpreted as agents having
a linear belief distribution regarding the true social reputation.
The belief function thus is given by

fρ|ρs
(ρ) = ρsf1,1 (ρ) + (1− ρs) f0,1 (ρ)

= 2 (1− ρs+(2ρs − 1) ρ)

Note f1,1(ρ) = ρ, f0,1(ρ) = 1 − ρ. Hence, the cumulative
belief functions are linear in ρ,

Fρ|ρs
(ρ ≥ ρB) = (1− ρB)

2
+ 2ρB (1− ρB) ρs

Fρ|ρs
(ρ ≤ ρG) = ρG (2− ρG)− 2ρG (1− ρG) ρs

To solve Δ(ρs) = 0, it is equivalent to solve Δ(ρs)/ρs = 0
for ρs �= 0. Let g(ρs) = Δ(ρs)/ρs.

g (ρs) = α
(
(1− ρB)

2
+ 2ρB (1− ρB) ρs

)
(1− ρs)

− (ρG (2− ρG)− 2ρG (1− ρG) ρs) ρs

The above function is a quadratic function regarding ρs. It
is difficult to determine the robust equilibrium and even more
difficult to analyze the impact of punishment directly. In the
following, we instead first establish tighter upper and lower
bounds of the efficiency in the robust equilibrium than the
general bounds given in Proposition 4 when γ is large. In most
information exchange systems, service cost is much smaller
than the benefit that can be obtained from receiving this
service, therefore we focus on the systems where γ is large.
Using the new bounds we can derive the optimal punishment
based on which optimal social norms can be designed.

Proposition 6. Given that an information exchange system is
characterized by β, γ and M = 1, for a design parameter α,
the robust equilibrium ρ∗s is bounded by

α(1− ρB)
2

α (1− ρB) (1− 3ρB) + ρG (2− ρG)
≤

ρ∗s ≤ α(1− ρB)
2

α(1− ρB)
2
+ ρ2G

Proof: Omitted proofs can be found in [26].
The upper bound in the above proposition has significant

implications for the optimal punishment design. In order to
maximize the upper bound, it is equivalent to consider the
following maximization problem

max
α

α(1− ρB)
2 or max

α
α

(
1− 1− β

αβγ

)2

Expanding the above objective function, we get

α

(
1− 1− β

αβγ

)2

= α+
1

α

(
1− β

βγ

)2

− 2
1− β

βγ
.

Recall that we need to ensure that ρB < 1 since otherwise
the only robust equilibrium is 0 according to Proposition 3
and hence, the feasible α needs to satisfy

α ≥ 1− β

βγ
.

Therefore, choosing α = 1 maximizes the objective func-
tion and hence, it maximizes the upper bound for all feasible
α. Note that for α = 1, the upper bound is indeed the actual
efficiency because the upper and lower bounds are identical.
Therefore, α = 1 maximizes the efficiency of the robust
equilibrium. The following proposition restates this result and
also determines the social reputation in equilibrium.

Proposition 7. Fix β, γ,M = 1, for large γ, the robust
equilibrium ρ∗s is maximized by choosing α∗ = 1, and the
optimal solution is

ρ∗s =

(
1− 1−β

βγ

)2

(
1− 1−β

βγ

)2

+
(

1−β
βγ

)2

Note that this robust equilibrium efficiency is close to 1
when γ is large or β is close to 1. We will numerically
illustrate the higher order cases, i.e. values of M other than 0
and 1, in the simulation section. However, from the above
analysis of the two specific examples, several key design
insights can be drawn: when the benefit-to-cost ratio is large,
(1) it is optimal to choose α = 1, which is the mildest
punishment possible, and (2) larger M leads to a higher social
reputation for α = 1 .

V. SIMULATIONS AND DISCUSSIONS

In this section, we provide some simulation results. In Fig.
4, the social reputation evolutions for different observation
granularities (i.e. M = 0, 1, 2) are illustrated. For each
observation granularity, we start the system from two different
initial states ρt=0

s = 0.1 and ρt=0
s = 0.99 to illustrate how the

system state evolves from very different initial states. ρt=0
s =

0.1 represents a system where the majority of agents have
low reputations and ρt=0

s = 0.99 is a system where almost
all agents have high reputations. The simulations show that
the system indeed converges to the same robust equilibrium
where the social reputation does not change. For the simulated
cases, the robust equilibrium is unique. However, there could
be multiple robust equilibria in which case different initial
states would converge to different robust equilibria.

Fig. 5 illustrates the impact of the punishment probability α
on the system performance for various observation granulari-
ties. For a given mild punishment (large α), more observations
have higher efficiency. For a given harsh punishment (small
α), it is possible that more observations can lead to lower
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Fig. 4. Stable state of the system for β = 0.25, γ = 8 and α = 0.9.
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Fig. 5. Impact of the punishment parameter α for various observation
granularities. (γ = 5, β = 0.5)

efficiency. However, since choosing a mild punishment is
always better than choosing a harsh punishment, basically
M should be larger to achieve higher efficiency. It suggests
that in order to obtain the better performance, agents need
to have more accurate information of the social reputation.
Fig. 6 further compares the simulated optimal efficiency in
equilibria with the upper bound established in Proposition 3.
The established bound is close to the simulation points and the
performance becomes close to full efficiency as M increases.

Fig. 7 and Fig. 8 illustrate the impact of the benefit-to-cost
ratio γ and the discount factor β on the system efficiency.
For a given punishment probability, the system performance
improves with large γ. The discount factor β has a similar
impact: larger β leads to better performance.

The case where agents have different observation granular-
ities is investigated in Fig. 9. In this set of simulations, a frac-
tion 1− q of agents have observation granularity M = 1. For
the other fraction q of agents, their observation granularities
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Fig. 6. Bounds on the efficiency for various observation granularities. (β =
0.5)
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Fig. 7. Impact of the benefit-to-cost ratio γ on the system efficiency. (β =
0.5)

are uniformly randomly distributed between 0 and 2-6. Fig.
9 shows how q affects the system performance under various
α. We see that the design does not change even if there is
some randomness in the observation granularities. The optimal
punishment design is still α = 1 which is the mildest possible
punishment.

Next, we discuss the optimal punishment design. The fact
that the mildest punishment is optimal may seem counter-
intuitive. However, this finding can be easily explained as
follows. Punishment is often used to prevent agents from
misbehaving. When agents have high reputations, harsher
punishments impose greater threats on these agents if they
would deviate. Hence, it may seem that harsher punishments
are needed to obtain a better performance. However, this
intuition is only valid when all agents are on the equilibrium
path, i.e. they always follow the social strategy. For the limited
observations scenario, there are always a positive fraction of
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Fig. 8. Impact of the discount factor β on the system efficiency. (γ = 5).

agents who deviate no matter what the punishment is. Once
agents are in the punishment phase, harsher punishments be-
come disincentives for them to restore their reputations. When
the benefit-to-cost ratio is large, the punishment has greater
impact on the disincentives for agents with low reputations
than the incentives for agents with high reputations. Therefore,
choosing the mildest punishment is the best design in those
scenarios.

VI. CONCLUSION

In this paper, we design the optimal social norm protocol for
information exchange systems in which agents have heteroge-
neous beliefs due to limited observations of the system. First,
the optimal provider strategy is shown to have a threshold
property: agents cooperate only when they have sufficient
“trust” in the system (i.e. believe that sufficient agents are
cooperating). Second, a Bayesian belief model is proposed
to rigorously model the agents’ belief heterogeneity and
determine the impact of these beliefs on the system efficiency.
Finally, the impact of the punishment severity on the robust
equilibrium and the achievable system efficiency is rigorously
studied. When agents can make unlimited observations, either
full or no cooperation emerges in the robust equilibrium.
However, in the more realistic limited observations scenario,
full efficiency can never be achieved and different punishment
strategies lead to different robust equilibria having different
efficiencies. Hence, the system designer needs to select the
optimal punishment to maximize the system efficiency given
the agents’ observation granularity. We show that choosing the
mildest punishment is optimal for most systems and support
this finding with both analytical and simulation results. While
in this paper agents are assumed to possess simple reasoning
capabilities, an important direction for future research will
constitute considering more sophisticated reasoning and belief
formation models for the agents. We have followed here the
well-known adage “one has to start somewhere”, but we are
keenly aware that there is much more to be done.
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Fig. 9. Impact of randomness in the observation granularity on the system
efficiency. (β = 0.5, γ = 5)

APPENDIX A
PROOF OF PROPOSITION 1

First we consider the decision problem when the provider
has a good reputation. Obviously, if the requester’s reputation
is bad, it is optimal that the provider follows the social strategy
and plays defect (not provide). If the requester’s reputation is
good, the provider may have incentives to deviate from the
social strategy due to the immediate cost. For a provider with
high reputation to provide service, it requires,

U(1|1, 1, ρ) ≥ U(0|1, 1, ρ)
which further yields,

c ≤ β(V (1, ρ)− V (0, ρ))

Next we consider a provider’ incentive problem to provide
service when it has a low reputation. Similarly, the only
possible deviation occurs when the requester has a high
reputation. For the provider to follow the social strategy, it
requires,

U(1|0, 1, ρ) ≥ U(0|0, 1, ρ)
In both cases, we need to determine the future payoff differ-
ence V (1, ρ) − V (0, ρ). The discounted future payoff can be
written in the following recursive form.

V (1, ρ) = ρ(b− c) + βV (1, ρ)

V (0, ρ) = −ρc+ β[ραV (1, ρ) + (1− ρα)V (0, ρ)]

and hence,

V (1, ρ)− V (0, ρ) =
ρb

1− β(1− ρα)

Therefore, the agents’ trust ρ needs to be above the following
thresholds:

ρ ≥ 1− β

β(γ − α)
, if θ = 1

ρ ≥ 1− β

βα(γ − 1)
, if θ = 0
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