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Abstract—This paper proposes a novel framework for incen-
tivizing self-interested transceivers operating in autonomic wire-
less networks to provide relaying services to other transceivers
in exchange for tokens. Tokens represent a simple internal
currency which can be used by the transceivers in a network to
exchange services. Our emphasis in this paper is on developing
optimal designs for the token system, which maximize the system
efficiency, i.e. the probability that the relay transmission will
be executed by transceivers whenever they are requested to
provide such services. Particularly, we prove that the efficiency
of the relay network heavily depends on issuing the proper
amount of tokens rather than an arbitrary amount. First, we
study the transceivers’ optimal strategies (i.e. the strategies that
maximize the transceivers’ own utilities) using the formalism
of repeated games. We prove that these strategies exhibit a
simple threshold structure. We also prove that the threshold
is unique given transmission costs. Second, we determine the
optimal token amount which needs to be introduced in the relay
system to maximize the overall relay network efficiency. This
amount needs to be neither too small (since a too small amount
leads to a small relaying service request probability) nor too
large (since a too large amount leads to a small relaying service
provision probability) and depends on the threshold strategy that
the self-interested transceivers adopt. We subsequently develop
an efficient algorithm which is able to determine, depending on
the network characteristics, the threshold to be implemented by
the optimal strategies and the optimal token amount. Finally,
simulation results show the effectiveness of our token system de-
sign in providing incentives for cooperation among self-interested
relays in autonomic wireless relay networks.

Index Terms—autonomic communication, wireless relay net-
works, cooperative communication, incentives, tokens, repeated
games.

I. INTRODUCTION

In many wireless communication scenarios, the transmission
between two distant transceivers may have to be accomplished
with the help of an intermediate node (i.e. relay) due to
limited transmit power, deep fading exhibited by the direct
transmission channel or other transmission constraints [1]. The
concept of relaying has been adopted in many wireless infras-
tructures to improve the transmission quality, such as multi-
hop ad hoc networks, multi-hop cellular networks, wireless
cooperative networks as well as next generation telecommuni-
cation standards (e.g. IEEE 802.16j). To maximize the overall
network utility, most existing works that address the resource
allocation problem in wireless relay networks assume that (1)
there is a centralized agency (e.g. base stations) that performs
the resource allocation, (2) the network scale is small so the
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resource allocation problem can be relatively easily solved
and (3) all the participating devices will obediently follow
the prescribed allocation policy. However, these assumptions
do not hold for autonomic wireless relay networks where
(1) the network infrastructure is fully distributed and thus,
a central agency cannot intervene or manage the individual
transceivers’ behaviors at run-time, (2) the network can consist
of numerous anonymous transceivers, and (3) the participating
devices (or their owners) are self-interested and may refuse to
cooperatively relay traffic for other devices while incurring a
cost (e.g. relay transmission power).

Various incentive schemes have been recently proposed in
the literature to stimulate relay cooperation in wireless relay
networks. One way to foster cooperation is by using monetary
pricing schemes [11][12]. These methods often focus on static
networks where the interacting transceivers are fixed. A key
disadvantage of using monetary pricing is the absence of
the associated reliable financial accounting and the imprac-
ticality of implementing centralized accounting to pay for
decentralized services (i.e. relay cooperation among distributed
transceivers). Moreover, these methods are only suitable for
small-scale networks but they are difficult to implement in a
large-scale autonomic wireless relay system.

Another strand of literature proposes using reputation-based
methods for rewarding or punishing a transceiver based on its
behavior in the system. In [2], the “watchdog” mechanism is
proposed to identify the misbehaving nodes and the “pathrater”
mechanism is used to deflect the traffics around them in mobile
ad hoc networks. To enforce the cooperation by punishing mis-
behaving nodes, in [3] and [4] reputation-based mechanisms
are proposed to enforce node cooperation. A mathematical
analysis of the interaction emerging among relays using game
theory is provided in [5][6][7]. Various versions of the well-
known Tit-For-Tat strategy are proposed in [8][9]. Moreover,
using the repeated game framework, reputation schemes were
also proposed for providing incentives in relay networks where
nodes periodically update their partners due to mobility or
changes of environment [10]. However, a significant limitation
of reputation-based schemes when deployed in autonomic
wireless networks is that they rely on a central agency that
is able to collect, process, and deliver information about indi-
viduals’ behavior. This is because in order for these reputation
schemes to work, transceivers need to know the reputations of
their partners. Establishing such an infrastructure for managing
the reputations of transceivers may be prohibitively costly and
also, it would require that the transceivers can be identified
(they can no longer remain anonymous, as required in most
deployments of autonomous wireless networks). Summarizing,
existing works either require a central agency to intervene and
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manage the individual transceivers’ behavior in real-time or do
not scale for easy deployment in large-scale systems.

In this paper, we build a token system [13] to provide
transceivers in autonomic wireless relay networks with incen-
tives to provide relaying service due to its implementation
simplicity and possibility to operate the network in an au-
tonomous and distributed way. We will show that it is possible
to design effective incentive schemes for distributed and large-
scale wireless relay networks using token systems.

Electronic tokens are not new and were proposed to provide
incentives in wireless relay networks [14] as well as other peer-
to-peer systems [17][18][19][20]. Basically, electronic tokens
work as virtual currency: transceivers pay tokens to relays in
exchange for the provided relaying services. In [14], Nuglets
are introduced as the virtual currency in wireless ad hoc
networks. In networks operating based on Nuglets, one Nuglet
is transferred from the sender to the relay transceiver for
forwarding a message. Following this work, a tamper-proof
solution is developed in [15] focusing on the security issues
involved when implementing such systems. However, existing
works focus on the token implementation or security aspects
and rely on simulation methods to quantify the performance
of their proposed design. They lack a rigorous model and
performance analysis of the emerging relay interactions. Most
importantly, users’ strategic behavior in token systems is not
systematically analyzed, thereby leading to significant degra-
dation in the token system performance. Analytical attempts
to understand the users’ strategic behavior and its effect on the
system efficiency are made in [21] but this work is focused
on a very different network deployment scenario. The major
differences are: (1) [21] studies a deployment scenario where
only one agent makes a service request in each period; (2)
[21] assumes that the agent strategy is a threshold strategy
and shows that threshold strategies can be possible Nash
equilibria but it does not exclude the possibility that non-
threshold strategy can also be a Nash equilibrium; (3) [21]
does not establish the optimal token supply.

In this paper, we provide a rigorous analysis of our proposed
token system and prove its optimality. Importantly, we prove
that the efficiency of the relay network heavily depends on
issuing the proper amount of tokens rather than an arbitrary
amount. To determine this optimal amount, the system de-
signer needs to understand the self-interested behavior of the
strategic transceivers. We formulate the transceivers’ strategic
behavior using a novel repeated game formalism and prove
that transceiver strategies exhibit a threshold structure. Then
we show that there exists an optimal token amount which
needs to be introduced in the system for it to operate optimally.
This needs to be neither too small (since a too small amount
leads to a small relaying service request probability) nor too
large (since a too large amount leads to a small relaying
service provision probability) and depends on the threshold
strategy that self-interested transceivers adopt. Subsequently,
an efficient algorithm is developed to compute the optimal
threshold and determine the optimal token amount depending
on the network characteristics. Table I succinctly compares the
proposed token systems with the existing literature.

The rest of this paper is organized as follows. Section II

Characteristics NUM Pricing Reputation 
(Existing) 

Token 
Proposed 

Distributed  
network 

No No No Yes Yes 

Large scale  
network 

No No No Yes Yes 

Self-interested 
agents 

No Yes Yes Yes/NO Yes 

Anonymous  
agents 

No No No Yes Yes 

Rigorous  
design 

Yes Yes Yes/No No Yes 

 TABLE I
COMPARISON WITH EXISTING WORKS

introduces the system model and describes the relay trans-
mission process. Section III studies the optimal strategies for
the transceivers and shows that only threshold strategies are
optimal. Moreover, for each relaying cost, there exists a unique
associated optimal threshold. Section IV then determines the
optimal token supply that maximizes the system efficiency. An
efficient bisection algorithm is provided to find the threshold
that transceivers adopt. Section V provides simulation results.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Setup

We consider a dynamic wireless network with N wireless
mobile transceivers. We consider N to be large since there
are usually many transceivers in the network. In each time
period, a fraction of the transceivers needs to receive data
from their corresponding sources (e.g. the base station in
a cellular network or another nearby mobile transceiver in
an ad hoc network). However, not all of these transmissions
can be fulfilled simply through direct transmissions since the
wireless channel between the sources and the destinations may
be degraded, e.g. exhibit deep fading or shadowing. In such
cases, relay transmissions via intermediate transceivers which
forward signals to the destination are required to improve the
network performance [1].

At this point, several points regarding the operating of the
considered autonomic wireless relay network are worth noting:

1) Transceivers are mobile and hence, they move to various
locations at different times. Hence, they have different
neighboring transceivers and experience different channel
conditions at different times.

2) The transceivers that need relay transmissions are differ-
ent in different time periods. This depends both on the
transmission demand arrival process of the transceivers
and the realizations of the channel conditions for the
specific transmissions.

We capture the demand for relay transmissions in the
network by λ, which is the probability that a transceiver needs
to receive data from its source using relay transmissions in
each period. Hence, λ is the relay transmission demand rate
and depends on the overall network condition. Note that for
individual transceivers, the relay transmission demand prob-
abilities may be different. In the simulation section, we will
show that using the mean network relay demand probabilities
λ achieves close-to-optimal performance even when individual
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transceivers’ relay transmission demand rates are heteroge-
neous. We assume that the transceivers are anonymous and
self-interested, meaning that they aim to maximize only their
own utilities and do not care about the overall performance
of the network. Because forwarding signals incurs costs (e.g.
transmission power) to the transceivers who act as relays, self-
interested transceivers do not want to help other transceivers
by forwarding their traffic without having proper incentives.
Hence, our focus is on designing such incentive mechanisms.
Denote the action space of the transceivers which are requested
for relay service by A = {0, 1}; the action a = 0 means “not
relay” and a = 1 means “relay”.

Suppose at time period t, a transceiver j acts as the relay
and a transceiver i is the receiver. Note that we allow multiple
simultaneous transmissions and hence, there may be multiple
relay-receiver pairs in the same time slot in the relay network.
Nevertheless, we focus on one such pair for illustration. If
transceiver j does relay for transceiver i, transceiver i (as
the receiver) enjoys a benefit b(rd) which depends on the
receiving data rate rd. Transceiver j (as the relay) incurs a
cost c(rd, Gsr, Grd) which depends on the data rate rd as well
as the channel conditions to conduct the relay transmission at
this transmission rate, i.e. the channel gain between the source
and the relay Gsr and the channel gain between the relay and
the destination Grd. Though the cost incurred when relaying
traffic is affected by many considerations, in this paper, we
specifically consider the relay transmission power as the cost
to the relay transceiver to achieve a target transmission rate
rtarget. Suppose the source transmission power is fixed at
Ps and denote the relay transmission power as Pr. Standard
relay channel analysis for Amplify-and-Forward (AF)1 yields
a received Signal-to-Interference-and-Noise Ratio (SINR) as

Γsrd =
ΓsrΓrd

Γsr + Γrd + 1
(1)

where Γsr and Γrd are the SINRs on the source-relay
channel and the relay-destination channel. To achieve a certain
target rate rtarget for the receiver transceivers, it is equivalent
that the SINR is larger than a corresponding target value
Γtarget. Hence, the minimum required relay transmission
power is

Pr = argmin
{
Pr : Γsrd ≥ Γtarget

}
(2)

Therefore, the relaying cost c(rtarget, Gsr, Grd) given a tar-
get rate is the solution to (2). Depending on which application
is running on the receiver, the target transmission rates of the
transceivers may vary over time. Let b = Eb(rtarget) be the
expected benefit over all possible target rates. We normalize
the costs to this expected benefit (i.e. by dividing the cost by
b).

Note that since the channel condition realizations for differ-
ent transmission pairs are different, the associated costs for the
relay transceivers also vary. However, since the cost is always
positive (i.e., c(rtarget, Gsr, Grd) > 0), the dominant strategy
for the relay transceiver is always to not forward traffic in this
simple gift-giving game (see Figure 1).

1Our analysis is also applicable to other relay schemes other than AF.
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Fig. 1. The relay transmission game. (first utility - receiving transceiver;
second utility - relay transceiver

B. Token System

If the transceivers would only be involved in a single relay
transmission as the relay, they will be reluctant to help forward
the traffic since this incurs them a cost and provides them with
no reward. However, because transceivers are active in the
network for a long time, proper incentives can be provided
to make them take into account when making decisions the
benefits of relaying. We assume that the transceivers discount
the future utility at a constant rate β ∈ (0, 1] 2. One way to
introduce such incentives to relay traffic for other transceivers
is through the use of tokens, which are exchanged among
transceivers in order to “buy” and “sell” relaying services.
In each relay transmission, the receiving transceiver pays one
token to the relay transceiver in exchange for forwarding the
traffic.

The overlay token system enables simple deployment of the
relay network with self-interested transceivers. (1) One token
provides one unit relay transmission opportunity and has no
intrinsic value outside of the relay network. This avoids many
financial problems (such as fraud) that are associated with
monetary incentive schemes. (2) No personal information of
the others is required when a transceiver makes a decision.
Hence, the system can be fully anonymous and more secure.
(3) Several techniques that enable secure electronic token
transactions in a distributed way have been proposed [30][14].
(Essentially no central entity is needed for the transactions.)
Our work assumes using such technologies for implementing
the proposed token exchange protocol.

C. Timing of the relay request and transmission

The conventional relay transmission process often involves
two stages: relay selection and transmission. However, besides
the conventional two stages for the relay transmission in
each period with obedient transceivers, there is one more
decision stage in the presence of self-interested transceivers
because they have to decide whether relaying the traffic is in
their best interests. In the relay selection stage, the receiving
transceiver selects a neighbor transceiver as the candidate
relay and sends a relay request message (REQ). When the
candidate relay receives the REQ, it makes the decision on
whether or not to provide the relaying service. If it accepts the
request, it sends back an acceptance acknowledgement (ACK).
Then the relay transmission follows in the transmission stage.
If the candidate relay declines the request, it sends back a
decline acknowledge (NACK). In such a scenario, either no
transmission or simply direction transmission follows in the
transmission stage. To deploy such a system, two essential

2One interpretation of the discount factor β is the probability that the
transceivers stay in the network. For example, if β = 0.9, the transceivers
stay in the network with probability 0.9 in the next period.
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issues for its implementation need to be emphasized. (Note
though that these implementation aspects do not affect the
proposed token system design.)

First, relay selection has been shown to be critical for the
relay network performance and much work has focused on this
issue [22][23][24][25]. However, since the main focus of this
paper is not on how to select the optimal relay but rather on
how to incentivize the relay transceiver to provide the relaying
service once it is selected, we only briefly describe several
relay selection solutions which can be adopted in conjunction
with the proposed token system. The simplest relay selection
scheme is the random selection, i.e. the receiving transceiver
randomly selects a neighbor transceiver as the candidate relay.
More sophisticated relay selection schemes, in which the
receiving transceiver gathers the (partial) channel information
of its neighbor transceivers (e.g. through beacons on the
control channel) and estimates the required relay transmission
power (e.g. based on the received signal strength of the
beacon), can also be employed. Subsequently, the receiver
chooses the transceiver requiring the least relay transmission
power. If efficient channel assignment schemes are available
(e.g. see [27][28]), almost all transmissions in the network
can take place on orthogonal channels within interference
regions, then the relay selection criterion is simply to choose
the wireless transceiver with the best channel condition and
thus requiring the least power for relaying. Otherwise, co-
channel interference may influence the relay transmission
performance. In such scenarios, the receiving transceiver may
use approximate relay selection metrics (e.g. ignoring the
potential interference when calculating the required power) or
some interference-aware metrics (e.g. estimating the potential
interference [24][25]) to perform the relay selection. However,
it is important to note that the transceivers are not able to
observe the number of tokens that other transceivers have
due to privacy considerations and hence, it cannot choose the
candidate relay according to the token holding.

Second, solutions for implementing token passing securely
and efficiently among anonymous transceivers are essential.
Our token exchange system will rely on existing solutions for
token exchanges proposed for e-commerce e.g. [29][30][31]. A
common method to ensure that tokens are securely exchanged
involves a Trusted Third Party (TTP), i.e. an escrow service.
However, such solutions are centralized and cannot be readily
deployed in autonomic relay networks, which are inherently
distributed. Alternatively, distributed fair exchange protocols
which do not require a centralized TTP are proposed in [29].
Our proposed token system is based on the solution in [29].

We assume that once the candidate relay transceiver accepts
a relay request, a secure communication channel is setup
between the receiving transceiver and the relay transceiver.
This could be easily done using various authentication and
encryption methods. Therefore, the token passing is protected
from the outside attacks. Moreover, each transceiver partici-
pating in the wireless relay networks using tokens is equipped
with a tamper-proof secure module (SM). Transceivers cannot
have access to the stored data or change the secure module’s
behavior. However, full access stays possible, but limited to
some authorized parties, i.e. the network provider. In this way,
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Fig. 2. Secure Token Passing Process.

the SM plays the role of a distributed TTP. Upon receiving the
ACK from the relay transceiver, the token passing works as
follows: (1) The receiving transceiver’s SM decreases its token
counter by 1. (2) The relay transceiver relays the packets to
the receiving transceiver’s SM. (3) If the desired packets are
received before timeout, the SM sends an encrypted message
to the relay transceivers’ SM which then increases its token
counter by 1. If the desired packets are not received, then the
receiving transceiver’s SM increases its token number by 1.
Figure 2 illustrates the described secure token passing process.

D. Problem Formulation

To obtain good system performance for the token system
(i.e., a high probability that the relay transmission is accepted
and executed when requested by transceiver), a careful design
by the system designer is required. A key question when
designing such a system is what the amount of tokens that are
circulated in the system should be. A straightforward intuition
is that the token system does not work if there are too few
tokens in the network because few transceivers have the tokens
to request relay transmissions. In addition, in this paper, we
will also show that too many tokens are not helpful either, by
studying the strategies that the self-interested transceivers use.
Therefore, there must be a proper number of tokens that the
designer must deploy in the network.

Denote the transceiver strategy by σ : S → A, which is
a mapping from the system state space S to the relay action
space A. Each state s ∈ S captures a combination of channel
states and token holdings of all possible transmission pairs.
Transceivers may use different strategies and hence, we denote
σi as transceiver i’s relaying strategy. Denote the total amount
of tokens circulating in the system by W . The efficiency,
which is the expected probability that the relay transmis-
sion successfully takes place over the states, is denoted by
ES{E(σ1, σ2, ..., σN , s|W )}, where E(σ1, σ2, ..., σN , s|W ) is
the relay transmission probability in system state s when
transceiver i uses action σi(s), ∀i in state s ∈ S . The objective
of the system designer is to issue a proper number of tokens
in the system such that the relay transmission probability is
maximized when all transceivers play optimal strategies to
maximize their own utilities. Hence, the designer’s problem
can be formulated as a hierarchical problem as follows.

The transceiver-level problem deals with transceivers’ in-
centives and tries to solve the optimal transceiver strategy, i.e.
the strategy that maximizes transceivers’ own utilities. This
problem is solved by the self-interested transceivers. Denote
Vi(s|σi) as the long-term utility when transceiver i is in a
state s ∈ S and uses the strategy σi. The transceiver-level
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problem is to find the optimal strategy σi such that ∀s ∈ S ,
Vi(s|σi) ≥ Vi(s|σ′

i), ∀σ′
i ̸= σi. Therefore, the output of this

problem is a transceiver strategy σi that determines the optimal
actions for all states.

The designer-level problem is to maximize the system
efficiency by issuing the optimal amount of tokens into the sys-
tem. This problem is solved by the system designer. However,
the designer can solve this problem only after understanding
the self-interested behavior of the transceivers and hence, the
designer also needs to solve the transceiver-level problem in
the first place. Therefore, the designer-level problem is as
follows,

maximize
W

ES{E(σ1, σ2, ..., σN , s|W}
subject to σi is the optimal transceiver strategy

by solving the transceiver-level problem,∀i

III. OPTIMAL TRANSCEIVER STRATEGIES

A self-interested transceiver tries to maximize its own utility
when making a decision on whether or not to forward the
traffic. Suppose the transceiver already has k tokens. If the
transceiver decides to forward the traffic, it will gain one more
token to make the total number be k + 1 in the next time
period; otherwise, it remains having k tokens in the next time
period. Because forwarding the traffic incurs an instant cost c,
the transceiver needs to compare the marginal utility V (k +
1|σ) − V (k|σ) with this cost to make a utility maximization
decision, where V (k|σ) is the utility of holding k tokens. For
different strategies σ, the induced utilities V (k|σ), ∀k ∈ N are
different. Therefore, a relay strategy is optimal, meaning that
the transceiver would like to follow the strategy, if and only
if it has the one-shot deviation property [26]:

Definition 1: (Optimal Strategy). A transceiver strategy σ
is an optimal strategy if and only if ∀k ∈ N,

β (V (k + 1|σ)− V (k|σ)) ≥ c, if σ (k) = 1
β (V (k + 1|σ)− V (k|σ)) < c, if σ (k) = 0

(3)

Note that the discount factor β is applied since the marginal
utility is obtained in the next period. The optimal strate-
gies make the transceiver always maximize its utility for all
possible token numbers that it might have by following the
strategy. The number of all possible transceiver strategies is
large and hence, finding the optimal strategies is difficult. In
the following we study whether a strategy σ is optimal and
simply write V (k) instead of V (k|σ) for brevity.

A. Values and Marginal Values

The value of holding tokens depends on the strategy that
the transceiver uses. The utility functions are inter-dependent
with each other as follows

V (0) = (1− λσ(0))βV (0) + λσ(0) (−c+ βV (1))
V (k) = λ (b+ βV (k − 1))︸ ︷︷ ︸

Loose one token

+λσ(k) (−c+ βV (k + 1))︸ ︷︷ ︸
Obtain one more token

+(1− λ (1 + σ(k)))βV (k)︸ ︷︷ ︸
The same token number

, ∀k ≥ 1

(4)

For k ≥ 1, in each period, with probability λ, the transceiver
becomes a receiving transceiver which is in need of relay
service. In this case, it spends one token and obtains a benefit
b by receiving the service. With probability λ it becomes a
relay transceiver. If the strategy is to relay, then it obtains one
more token and incurs a relaying cost c. So the expected long-
term utility is the second term. With probability λ(1− σ(k)),
the transceiver does not provide service when it is a relay.
Moreover, with probability (1−2λ), it is idle. Therefore, with
probability (1− λ(1 + σ(k))), the transceiver keeps the same
number of tokens. This is the third term. For k = 0, the long-
term utility can also be similarly analyzed. The only difference
is that the transceiver cannot request the relaying service in
any case since it has no token.

It is convenient to denote the marginal utility V (k + 1) −
V (k) of holding k tokens as M(k). In the following, we study
the property of the marginal utilities. We denote Kσ as the
smallest level k that makes σ(k) = 0, i.e. “not relay”. More
precisely, for every transceiver strategy σ there exists Kσ ≥ 0
such that σ(k) = 1, ∀k < Kσ and σ(Kσ) = 0. However, for
k ≥ Kσ, σ(k) can be arbitrary. We first study the marginal
utilities for k ≤ Kσ in the following lemma.

Lemma 1: For any transceiver strategy , the marginal utili-
ties satisfy

1) If 0 ≤ k ≤ Kσ , then M(k) > 0.
2) In the range 0 ≤ k ≤ Kσ, M is either increasing,

decreasing or decreasing the increasing.
3) If M(Kσ − 1) ≥ c/β, then M(0) > M(1) > ... >

M(Kσ − 1) ≥ c/β.
Lemma shows how the marginal utilities look like. For any

strategy, the marginal utilities below Kσ are positive, meaning
that having more tokens always generates a higher utility.
More importantly, if the strategy is an optimal strategy, by the
third part of this lemma, the marginal utility diminishes with
an increase in the token holding. This implies that transceivers
may not want to accumulate more tokens beyond some point
if the marginal utility of having one more token falls below the
current cost. However, because Lemma only partially studies
the marginal utilities (i.e. those below Kσ), we establish this
threshold property in the next subsection by studying the
general case.

B. Threshold property

We now study which transceiver strategies can be optimal
strategies.

Proposition 1: An optimal transceiver strategy σ is a
threshold strategy, i.e., there exists Kth, such that

σ(k) = 1, for k ≤ Kth

σ(k) = 0, for k > Kth
(5)

The above proposition tells that the optimal strategies can
only be threshold strategies. This tremendously simplifies our
analysis on transceivers’ rational behaviors by only focusing
on the thresholds. Our intuition also suggests that transceivers
may like to use threshold strategies due to their simplicity
and in fact, many research works make this assumption when
they build their models. Different from these works, we start
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from arbitrary relay strategies and analytically prove that
threshold strategies are indeed the rational optimal choices of
the transceivers instead of just assuming this property due to its
simplicity without rigorously proving its optimality. Using this
novel repeated game formalism, we are also able to determine
the thresholds that transceivers may want to use. We discuss
how to determine the threshold in Section IV, when we study
the optimal token supply.

C. Varying cost

Now we take into account the impact of the instant cost
c on the transceiver’s decision problem. Because the costs to
the relay transceivers are different over time due to changing
locations and varying channel conditions, transceivers may not
want to use a constant threshold strategy. In the following, we
study how the cost for relaying affects the choice of threshold.

Proposition 2: For given λ, β, b and a threshold strategy σK

with threshold K, there exists cL, cH (0 < cL < cH) such that
∀c ∈ (cL, cH ], σK is an optimal strategy; otherwise, it is not.

Proposition 2 states that there is a corresponding continuous
interval of cost values that make a threshold strategy be
optimal. It establishes the conditions that need to be satisfied
by the cost for a threshold strategy to be optimal. However, we
are more interested in, for a given cost, whether there exists
a (or some) threshold strategy to make it optimal and this is
not obvious by Proposition 2.

Proposition 3: There exists a maximal value of the cost c0
such that ∀0 < c ≤ c0, there exists a unique K, such that σK

is the optimal strategy for c.
Proposition 3 suggests that there is a mapping from the costs

to the threshold strategies such that the threshold strategies
are optimal. Importantly, the threshold is unique for any cost.
Denote the mapping by K : (0, c0] → N. This is important for
understanding the relay transceivers’ strategic behavior when
they need to decide whether or not to forward traffic at a cost
when they already have a certain number of tokens. Hence,
the transceiver takes joint considerations of the number k of
tokens that it already has and the cost c that incurs by relaying
the traffic. The optimal strategy is then a mapping from σ :
N× (0, c0] → A, and

σ (k, c) =

{
1, if k < K (c)
0, if k ≥ K (c)

(6)

IV. OPTIMAL TOKEN SUPPLY

In the previous section, we show that relay transceivers do
not cooperate, i.e. forward the traffic all the time, because they
have incentives to stop accumulating tokens after accumulating
a certain treasury. This suggests that if all transceivers already
have many tokens, they stop forwarding traffic when they be-
come relays. On the contrary, it is obvious that if there are too
few tokens in the network, relay requests are seldom initiated
because few transceivers have tokens to pay when they are
receivers. Therefore, it seems there must be an optimal token
supply in the network that maximizes the system efficiency,
i.e. the probability that a relay transmission successfully takes
place when needed.

Because the transceiver population is usually very large,
we approximate it by a continuum model (mass 1). Under
this continuum model, the token supply is described by the
average token number per transceiver α = W/N . Let ηK(k)
be the fraction of relay transceivers who has k tokens and the
cost for whom to relay traffic is c ∈ {c : K(c) = K} , then
the fraction of relay transceivers who deny forwarding traffic
is calculated by

ηd =

∞∑
i=0

w (i)
∑
k≥i

ηi (k) (7)

where w(k) is the fraction of relay transceivers the cost for
whom to relay traffic is c ∈ {c : K(c) = k}. Let η0 be the
fraction of receiving transceivers who has 0 tokens and hence,
they cannot request relay service from other transceivers when
relay transmissions are needed.

ηo =
∞∑
i=0

w (i) ηi (0) (8)

Therefore, the probability that the relay transmission suc-
cessfully takes places is

E = (1− ηd) (1− ηo) (9)

Because the network is dynamic, ηd, η0 vary over time and
are difficult to compute. However, we are able to explicitly
derive the optimal token supply if the cost and the demand
rate are homogeneous. By taking the homogeneous cost as the
average cost for relaying traffic and the homogeneous demand
rate as the average demand rate, we obtain a suboptimal token
supply for the relay system while the complexity is significant-
ly reduced. In the simulations, we will show the performance
of this suboptimal choice of token supply compared to the
optimal one.

A. Token holding distribution and optimal supply

For the homogeneous cost c, all transceivers use a same
threshold strategy in all periods. As we know from the last
section, there is a unique threshold K = K(c) strategy that the
transceivers adopt. Therefore, no transceivers hold more than
K tokens. Hence, there are two feasibility conditions that the
token distribution must satisfy

K∑
k=0

η (k) = 1,
K∑

k=0

kη (k) = α (10)

Moreover, it is simply that η0 = η(0), ηd = η(K).
If the current token distribution is η and the transceivers

follow the strategy with threshold K, the token distribution
in the next time period can be calculated in a straightforward
way.

η+ (0) = λ (1− η (K)) η (1) + (1 + λ (η (0)− 1)) η (0)
η+ (k) = λ (1− η (0)) η (k − 1)

+ λ (1− η (K)) η (k + 1)
+ (1 + λ (η (0) + η (K)− 2)) η (k) , 1 ≤ k ≤ K − 1

η+ (K) = λ (1− η (0)) η (K − 1)
+ (1 + λ (η (K)− 1)) η (K)

(11)
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The transceivers with k tokens in the next period consist of:
(1) transceivers who have k − 1 tokens in the current period
become the relay transceivers and get a token; (2) transceivers
who have k + 1 tokens in the current period become the
receiver transceivers and lose a token; (3) transceivers who
have k tokens and do not get or lose tokens. If the token
distribution remains the same in the next period, then we say
that the token distribution is invariant, i.e. η+ = η. The next
proposition characterizes the invariant distribution by solving
η+ = η according to (11).

Proposition 4: If all transceivers follow the same optimal
threshold strategy with the threshold K, the invariant token
holding distribution η is independent of the demand rate λ
and satisfies,

η (k) =

(
1− η (0)

1− η (K)

)k

η (0) , ∀k = 0, 1, ...,K (12)

The invariant token distribution is a restricted geometric dis-
tribution which only depends on the threshold that transceivers
use. There are no closed-form expressions of η(0) and η(K)
and hence, we cannot derive the closed form expression for the
system efficiency. Fortunately though, (12) provides sufficient
information to find the optimal token supply to maximize the
system efficiency.

Proposition 5: If all transceivers follow the same optimal
threshold strategy with the threshold K, the token supply α
that maximizes the system efficiency is K/2 per transceiver
on average. Moreover, the maximum efficiency is

E =

(
1− 1

K + 1

)2

(13)

Proposition 5 proves that there is an optimal token sup-
ply for the relay network where transceivers use the same
threshold strategy: it is not too small such that transceivers
do not have enough tokens to make relay requests nor too
large such that transceivers decide to not provide relay service
when they are needed for relaying. For the system designer
to efficiently operate the relay network, it needs to understand
the transceivers’ strategic behaviors and issue the appropriate
number of tokens. This brings up another important problem
for the system designer to determine the thresholds that the
transceivers want to use because, as we know from Proposition
5, the optimal token supply is half the threshold per transceiver
on average.

B. Determining the threshold

We already know that transceivers adopt threshold strategies
to maximize their utilities in Section III. In this subsection, we
provide an efficient algorithm to determine which threshold
strategy the transceivers may want to use for different network
conditions. One way to find out the threshold is to run a brute-
force algorithm on all threshold strategies to check whether
they are optimal for the given network conditions. A much
more efficient way is to perform a bisection search. To do
this, we need to establish an upper bound on the threshold
such that the strategy is optimal.

Proposition 6: Given the network conditions λ, β, b, c, if a
threshold strategy is optimal, then the threshold K is upper
bounded by

K < log 1−β+λβ
λβ

1− β + λβ

1− β + 2λβ

(
b

c
+ 1

)
∆
= K̄ (14)

With the upper bound on the threshold, the bisection-based
algorithm is constructed in Algorithm 1. When the threshold
is determined, the system designer simply issues K∗/2 tokens
per transceiver on average into the relay network. The induced
efficiency has been proven optimal if the cost is homogeneous
in the previous subsection. For the case that the cost is
heterogeneous, we rely on numerical methods to investigate
the performance in the next section.

ALGORITHM 1: Optimal Threshold Computation
Input: System parameters β, λ, b, c
Output: Optimal threshold K∗

Compute K̄ according to (14). Set KH = K̄,KL = 0. ;
repeat

Assign Ktest = (KH +KL)/2;
Compute the marginal utilities M(Ktest − 1) and
M(Ktest);
If M(Ktest − 1) < c/β, set KH = Ktest ;
IF M(Ktest) ≥ c/β, set KL = Ktest

until M(Ktest − 1) ≥ c/β,M(Ktest) < c/β;

V. SIMULATIONS

In this section, we provide illustrative results to highlight the
various design aspects of our proposed token framework. In the
simulations, N = 1500 transceivers are distributed in a square
area consisting of 100 smaller squares with size of 1km×1km.
At the center of each small square there is a fixed source
transceiver (e.g. an access point or a base station). In each time
period, each transceiver moves to a different location accord-
ing to the random waypoint mobility model and needs to re-
ceive data from the source of the square that it belongs to. We
consider path loss and shadow fading for the channel model
[32], Preceived = Ptransmitted−PL(d0)−10α log(d/d0)−χ,
where PL(d0) is the path loss of the reference distance d0,
d is the distance between the source and the destination, α
is the path loss factor, χ is a normally (Gaussian) distributed
random variable representing the effect of shadow fading. We
assume that the maximum transmission power of a transceiver
is 15dBm, the bandwidth of a channel is 10MHz and the target
data rate is 10Mbps. If by using the maximum power the
target data rate cannot be achieved for a receiving transceiver,
then a relay transmission is needed. Hence, using the above
parameter values, the relay transmission demand rate is about
λ = 0.1. The required relay transmission power is calculated
using equation (2). The (normalized) cost c is the ratio of the
relay transmission power Pr (in mW) to the expected benefit
Eb(rtarget) of achieving rtarget.

Figure 3 provides an illustrative snapshot of a part of the
network (9 square areas out of 100 squares) in one time period.
The star nodes are the receiving transceivers that need the help
of relay transmissions. We can see that these transceivers are
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Fig. 3. Snapshot of a part of the simulated network.
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Fig. 4. Optimal threshold for various costs.

usually at the border of the squares where the received signal
strength from the source transceiver is low. The circle nodes
are the candidate relay transceivers selected based the lowest
relay transmission power criterion using equation (2). These
transceivers are usually between the source transceivers and
the receiving transceivers. (Since there is the shadowing effect,
this may not be always true.) The nodes represented by simple
dots are the remaining transceivers.

Figure 4 illustrates the mapping from the normalized cost
to the optimal threshold K(c) given . For each threshold k,
there is a continuous cost interval that makes the corresponding
threshold strategy σk optimal. For all costs that are less than
c0 = 0.952, the optimal threshold is unique for each cost.
Moreover if c ≤ c′, then K(c) ≥ K(c′). This means that the
transceivers are more willing to provide the relaying service
if its required relay transmission power is lower.

In this set of simulations, we investigate the impact of
the token supply on the system efficiency, i.e. the probability
that the relay transmission successfully takes place. With the
relay selection criterion being the least relay transmission
power, the average required relay transmission power is about
10dBm. Hence, the average normalized cost is about c̄ = 0.1.
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Fig. 5. Optimal token supply.

According to Figure 4, the optimal threshold is Kopt = 12
for c̄ = 0.1. If we use this average normalized cost to
derive the suboptimal token supply, then the optimal token
supply is α = Kopt/2 = 6 tokens per transceiver on average
which corresponds to W = 9000 tokens in total. In Figure
5, we vary the number of tokens issued in the system and
compare the simulated system efficiency (computed using the
actual heterogeneous costs) to the theoretical system efficiency
(computed using the homogeneous cost as the average cost).
Several observations are notable. First, we can see from
these experiments that the optimal token supply is very close
to the derived suboptimal token supply (W = 9000 using
the homogeneous approximation). Second, when the token
supply is small, the theoretical system efficiency using the
homogenous cost approximation is very close to the true
simulated efficiency with heterogeneous costs. Third, when the
token supply is large, the true simulated efficiency exhibits a
long-tail effect compared to the theoretical estimation. This
is because in the homogeneous cost scenario, if the supplied
tokens are more than the threshold (in our case, more than
12 × 1500 = 18000 tokens), then no transceiver will ever
want to provide the relaying service and hence, the efficiency
is 0. However, in the heterogeneous cost case, sometimes
transceivers may want to use very high thresholds if the cost
is very small and hence, even with a very large token supply,
there still is a probability that relay transmissions take place.
We can expect that as the costs become more heterogeneous,
the long-tail effect is more obvious.

Next, we illustrate the throughput improvement by adopting
the relay transmission among mobile transceivers. Specifically,
we compare the data rate achieved by the relay transmission
with that achieved by the direct transmission. Since there
are multiple simultaneous relay transmissions going on in
the system, the co-channel interference may have a signifi-
cant impact on the throughput performance. Therefore, two
interference models are considered to quantify this impact:
perfect orthogonal channels and random channel assignment
for various numbers of available orthogonal channels. In the
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Interference 
Model 

Random Channel Assignment Orthogonal 
Channels 1 CH 2 CHs 3 CHs 4 CHs 5 CHs 

Data Rate 
(Mbps) 

7.13 8.37 8.89 9.13 9.3 10 

 TABLE II
ACHIEVED DATA RATE FOR VARIOUS INTERFERENCE MODELS.
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Fig. 6. Impact of the discount factor and the relay demand rate on system
efficiency.

perfect orthogonal channels model, all relay transmissions take
place on orthogonal channels. In the random channel assign-
ment, each relay transmission randomly picks one channel
from a number of orthogonal channels. Our simulation shows
that the average data rate of the direct transmission is 5.8
Mbps and the achieved date rates under various interference
models are shown in Table II. Hence, the relay transmission
significantly improves the throughput. Even if we consider
co-channel interference between relay transmissions, using a
small number of channels is able to achieve performance that
is close to that by perfectly orthogonal channels. Note that
we used a very simple channel assignment scheme and other
advanced channel assignment schemes may be able to achieve
even better performance.

In the next set of simulations, we investigate the impact
of the discount factor β and the relay transmission demand
rate λ on the system performance. Figure 6 shows that the
system efficiency is increasing with the discount factor and
the relay transmission demand. This is because tokens become
more valuable and transceivers tend to use strategies with
higher thresholds in order to accumulate more tokens. Hence,
the system designer can supply a larger amount of tokens
that leads to both a lower probability that transceivers cannot
request the relaying service and a lower probability that relays
do not provide the relaying service. Therefore, the mobile relay
technique is more helpful when the relay transmission demand
is higher and transceivers stay in the system for a longer time.

Finally, we investigate the performance of our token system
design in scenarios where transceivers have heterogeneous
relay demand probabilities. The relay demand probability in
this simulation is uniformly distributed between [0.05 0.15]
with the mean relay demand probability of λ̄ = 0.1. In Table
III, we report the simulated and theoretically estimated system

Token Supply 4500 6000 7500 9000 10500 12000 13500 

Efficiency 
Sim. 0.72 0.80 0.83 0.86 0.85 0.83 0.81 

Est. 0.76 0.81 0.84 0.85 0.84 0.81 0.76 

 TABLE III
SYSTEM EFFICIENCY FOR HETEROGENEOUS RELAY DEMAND

PROBABILITIES.

efficiency by deploying various numbers of tokens. It is shown
that the estimated efficiency using the mean relay demand
probability is close to the simulated efficiency. Moreover,
the derived optimal token supply for the homogeneous relay
demand probability scenario corresponds to that when the
relay demand probabilities are heterogeneous for transceivers.

VI. CONCLUSION

In this paper, we propose a novel mechanism for providing
self-interested transceivers with incentives to relay traffic for
other wireless transceivers using a token system. The design
of the token system is formulated as a two-level optimization
problem where the transceiver-level problem determines the
transceivers’ optimal strategy and the designer-level problem
determines the optimal token supply in the network. Impor-
tantly, in this paper, we rigorously characterize the structural
properties exhibited by the optimal strategies adopted by the
transceivers and prove that they are threshold strategies. We
also formally characterize the relation between the thresholds
and the network parameters, such as the relay transmission
cost. This threshold property allows a better understanding of
transceivers’ strategic behaviors when facing different costs.
The token supply was often a neglected parameter when
designing similar token systems in existing literature. Our find-
ings in this paper emphasize that the token supply represents
a critical design parameter affecting the system efficiency.

APPENDIX A
PROOF OF LEMMA

For k ≤ Kσ, the value functions are

V (0) = (1− λ)βV (0) + λ (−c+ βV (1))
V (k) = (1− 2λ)βV (k) + λ (−c+ βV (k + 1))

+ λ (b+ βV (k − 1))
V (Kσ) = (1− λ)βV (Kσ) + λ (b+ βV (Kσ − 1))

(15)

These are second-order homogeneous difference equations.
However, the solution expression is complicated and does not
provide any direct results of the property of the marginal util-
ities. Therefore, we study these equations using an alternative
way. Rearranging the terms and replacing with M(k), ∀k ≤
Kσ yields

ΦM = u (16)

where

Φ =


ϕ1 ϕ2 0 · · · 0

ϕ2 ϕ1 ϕ2
. . .

...
0 ϕ2 ϕ1 ϕ2 0
...

. . . . . . . . . . . .
0 · · · 0 ϕ2 ϕ1

 , u =


λb
0
...
0
λc

 (17)

and ϕ1 = 1− (1− 2λ)β, ϕ2 = −λβ.
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(1) Suppose ∃k∗ ≤ Kσ − 2, such that M(k∗) ≤ 0. We first
show that neither M(k∗ − 1) nor M(k∗ + 1) is non-positive
and then show they also cannot be positive. With this, we find
a contradiction to conclude that M(k) > 0, ∀k ≤ Kσ .

For “neither M(k∗−1) nor M(k∗+1) is non-positive”, we
study two cases.

Case 1: 0 ≥ M(k∗ − 1) ≥ M(k∗) (and 0 ≥ M(k∗) ≥
M(k∗ + 1)). By ΦM = u,

M (k∗ + 1) = ϕ2M(k∗−1)+ϕ1M(k∗)
−ϕ2

≤ (ϕ1+ϕ2)M(k∗)
−ϕ2

≤ M (k∗)
(18)

Recursively, it should be M(Kσ−1) ≤ M(Kσ−2) ≤ ... ≤
M(k∗) ≤ M(k∗ − 1) ≤ 0. However, it is not true because
otherwise we will get

ϕ1M (Kσ1 − 1) = λc− ϕ2M (Kσ − 2)
> −ϕ2M (Kσ − 2) ≥ −ϕ2M (Kσ − 1)

(19)

Therefore, ϕ1 < −ϕ2. This is a contradiction. With similar
arguments, 0 ≥ M(k∗) ≥ M(k∗ + 1) is not true.

Case 2: 0 ≥ M(k∗) ≥ M(k∗ − 1) (and 0 ≥ M(k∗ + 1) ≥
M(k∗)). This case is similar to the first case except that we
go in the other direction of . The above two cases exclude
the possibility that either M(k∗ + 1) or M(k∗ − 1) can be
non-positive.

For “neither M(k∗ − 1) nor M(k∗ + 1) is positive”, it is
obviously not true because otherwise

ϕ2M (k∗ − 1) + ϕ1M (k∗) + ϕ2M (k∗ + 1) < 0 (20)

This completes the proof for the first part of Lemma.
(2) It is sufficient to prove there does not exist any k∗ ≤

Kσ − 2, such that

M (k∗ − 1) ≤ M (k∗) ≥ M (k∗ + 1) (21)

Suppose this is true, then

M (k) = −ϕ2M(k−1)−ϕ2M(k+1)
ϕ1

≤ −2ϕ2

ϕ1
M (k) < M (k)

(22)

which is a contradiction.
(3) By the second part of this lemma, if M(k) is not a

decreasing sequence, then it must be M(Kσ − 1) ≥ M(Kσ −
2). This is not true because otherwise

λc = ϕ2M (Kσ − 2) + ϕ1M (Kσ − 1) ≥
(ϕ2 + ϕ1)M (Kσ − 1) ≥ (ϕ2 + ϕ1)

c
β > λc

(23)

which is a contradiction. Therefore M(k) is a decreasing
sequence.

APPENDIX B
PROOF OF PROPOSITION 1

We instead show that a non-threshold strategy is not optimal.
For a non-threshold strategy, there must exist K1,K2(K2 >
K1) such that

σ(k) = 1,∀k < K1

σ(k) = 0,∀K1 ≤ k < K2

σ(k) = 1, k = K2

(24)

For the strategy to be optimal, we also need to check
whether M (K2 − 1) ≤ c/β,M (K2) ≥ c/β hold. We then
show that these two conditions do not hold at the same time.
In particular, we prove that if M(K2) ≥ c/β, then it must
be M(K2 − 1) > c/β following the value equations given by
(15).

We discuss the following two cases.
Case 1: σ(K2 + 1) = 0. We have the following relation,

−λβM (K2 − 1) + (1− (1− 2λ)β)M (K2) = λc (25)

which further yields

λβM (K2 − 1)= (1− (1− 2λ)β)M (K2)−λc
≥ (1− (1− 2λ)β) c/β − λc = (1− β) c/β + λc > λc

(26)
Therefore, M(K2 − 1) > c/β.
Case 2: σ(K2+1) = 1. And there exists K3 > K2 such that

∀K2 ≤ k < K3, σ(k) = 1. Then following similar arguments
in Lemma, we have

M (K2) > M (K2 + 1) > ... > M (K3 − 1) ≥ c/β (27)

Because of the relation

ϕ2M (K2 − 1) + ϕ1M (K2) + ϕ2M (K2 + 1) = 0 (28)

The marginal utility M(K2 − 1) satisfies

λβM (K2 − 1) = (1− (1− 2λ)β)M (K2)− λβM (K2 + 1)
> (1− (1− λ)β)M (K2) ≥ (1− (1− λ)β) c/β > λc

(29)
Therefore M(K2 − 1) > c/β. This completes the proof.

APPENDIX C
PROOF OF PROPOSITION 2

Denote M(k|c) as the marginal utility of holding k tokens
when the cost is c. We will use the following result: For
given λ, β, b and a threshold strategy σK with threshold K,
the normalized marginal utility M(k|c)/c decreases with the
cost.

To prove this, consider two costs c1 > c2. Using the
marginal utility equation (16),

Φ(M2/c2 −M1/c1) = u2/c2 − u1/c1
= (λ(b/c2 − b/c1) 0 ... 0)T

(30)

By Lemma part (1),

M2/c2 −M1/c1 ≻ 0 (31)

This is the result that we need.
Write the normalized marginal utility by M̃ .
(1) We first prove that there exists cH , such that ∀c ≤ cH ,

M̃(K − 1) ≥ 1/β. By Lemma 2, F (c) = M̃(K − 1|c)− 1/β
is a decreasing function in c. We check the signs of F (b) and
F (0) in the following.

For c = b, suppose F (b) ≥ 0. By Lemma, M̃(k|c) ≥
1/β,∀k ≤ K−1. However, this is not true because otherwise

λ (1 + b/c)

= (1− (1− λ)β) M̃ (0|c)

+ (1− β)
K−2∑
k=1

M̃ (k|c)

+ (1− (1− λ)β) M̃ (K − 1|c)
< K (1− β)M + 2λβM ≤ ∞

(32)
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which is a contradiction. Therefore, there exists a unique cH

such that for all c < cH , M̃(K − 1) ≥ 1/β.
(2) Next we prove that there exists a cL < cH , such that

∀c > cL, M̃(K) < 1/β. According to (16), it is equivalent to
show that

M̃ (K − 1) <
ϕ1 + ϕ2

−ϕ2

1

β
(33)

Write
G (c) = M̃ (K − 1|c)− ϕ1 + ϕ2

−ϕ2

1

β
(34)

G(c) is decreasing in c. We check the signs of G(cH) and
G(0). For c = cH . It is easy to see G(cH) < 0. For c →
0, with similar arguments for finding cH , G(c → 0) > 0.
Therefore, there exists a unique cL such that for all c > cL,
M̃(K) < 1/β. Combining both parts, we complete the proof.

APPENDIX D
PROOF OF PROPOSITION 3

According to Proposition 2, for any threshold strategy, there
is a continuous interval of c such that it is optimal, it is suf-
ficient to prove that the intervals overlap for two consecutive
threshold strategies. In particular, we only need to prove that
for two consecutive thresholds K1,K2(K2 = K1+1), and the
corresponding cost intervals (cL1 , c

H
1 ], (cL2 , c

H
2 ], the following

holds: cL1 = cH2 .
We need to show that if c = cH2 , the strategy with the

threshold K1 must have

M1 (K1 − 1)=
ϕ1 + ϕ2

−ϕ2

cH2
β

(35)

Because M2(K2 − 1) = cH2 /β, and we use this to eliminate
the last row in (17). The coefficient matrix reduces by 1 and
is identical to that for K1. Moreover, the right-hand side is
also identical to what we need to solve. Therefore,

M1 (K1 − 1) = M2 (K2 − 2)

=
ϕ1M2(K2−1)−λcH2

−ϕ2
= ϕ1+ϕ2

−ϕ2

cH2
β

(36)

Therefore cL1 = cH2 . And c0 is chosen as the upper boundary
value for K = 1.

APPENDIX E
PROOF OF PROPOSITION 5

It is convenient to first solve the following maximization
problem

maximize (1− x1)(1− x2) = 1− x1 − x2 + x1x2

subject to x1(1− x1)
K = x2(1− x2)

K

0 ≤ x1, x2 ≤ 1
(37)

To solve this problem, set f(x) = x(1− x)K , a straightfor-
ward calculus exercise shows that if 0 ≤ x1 ≤ 1/(K + 1) ≤
x2 ≤ 1 and f(x1) = f(x2) then,

(a) x1 + x2 ≥ 1/(K + 1) with equality achieved only at
x1 = x2 = 1/(K + 1).

(b) x1x2 ≤ 1/(K +1) with equality achieved only at x1 =
x2 = 1/(K + 1).

Putting (a) and (b) together shows that the optimal solution
to the maximization problem is to have x1 = x2 = 1/(K+1)
and the maximized objective function value is

max (1− x1) (1− x2) =

(
1− 1

K + 1

)2

(38)

Now consider the threshold K strategy and let η be the
corresponding invariant distribution. If we take x1 = ηo, x2 =
ηd then our characterization of the invariant distribution shows
that f(x1) = f(x2). By definition, E = (1− x1)(1− x2) so

E =

(
1− 1

K + 1

)2

(39)

Taken together, these are the assertions which were to be
proved.

APPENDIX F
PROOF OF PROPOSITION 6

If the strategy is optimal, simple algebra and induction on
(17) show that the marginal utilities satisfy

M (k) ≥
(
1 + (λ− 1)β

λβ

)K−1−k
c

β
(40)

Because

λ (b+ c)=λβ (M (0) +M (K − 1))

+ (1− β) (1 + 1/K)
K−1∑
k=0

M (k)
(41)

Substitute (40) into (41), we establish the desired upper bound.
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