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ABSTRACT

For many networks (e.g. opinion consensus, cooperative estimation,
distributed learning and adaptation etc.) to proliferate and efficiently
operate, the participating agents need to collaborate with each other
by repeatedly sharing information which is often costly while brings
no direct immediate benefit for the agents. In this paper, we de-
velop a systematic framework for designing distributed rating pro-
tocols aimed at incentivizing the strategic agents to collaborate with
each other by sharing information. The proposed incentive protocols
exploit the ongoing nature of the agents’ interactions to assign rat-
ings and through them, determine future rewards and punishments
through social reciprocation. Unlike existing rating protocols, the
proposed protocol operates in a distributed manner, and takes into
consideration the underlying interconnectivity of agents as well as
their heterogeneity. We prove that in many deployment scenarios
adopting the proposed rating protocols achieves full efficiency (i.e.
price of anarchy is one) even with strategic agents.

Index Terms— Information sharing, repeated games, distribut-
ed rating protocol.

1. INTRODUCTION

In recent years, extensive research efforts have been devoted to s-
tudying cooperative networks where agents interact with each other
over a topology repeatedly, by sharing information such as measure-
ments, beliefs, or opinions, in order to solve important tasks in an
efficient and distributed manner such as target tracking, resource al-
location, learning, and estimation [1]-[3]. However, in many sce-
narios, participating in the cooperative process entails costs to the
agents, such as the cost of transmitting and sharing information with
their neighbors. For networks where agents are strategic, meaning
that they aim to maximize their own utilities by strategically choos-
ing their actions, the agents will choose to participate in the collab-
orative process only if they believe this action is beneficial to their
current and long-term interests. A distinct feature of the network un-
der consideration is that agents’ incentives can be coupled in a pos-
sibly extremely complex way due to the underlying topology. Thus,
a key challenge to ensure the survivability and efficient operation
of networks in the presence of selfish agents is the design of incen-
tive schemes that adapt to the network topology and encourage the
agents’ cooperation in accordance with the network objective.

We propose to resolve the above incentive problem by exploit-
ing the repeated interactions among agents to enable social recipro-
cation, by deploying a distributed rating protocol. Such rating pro-
tocols are designed and implemented in a distributed manner and are
tailored to the underlying topologies. The rating protocol, via the
(non-strategic) software clients through which agents are interacting,
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recommends (in a distributed way) to each agent the levels of infor-
mation it should share with it neighbors depending on the neighbor’s
current rating as well as the network topology. We refer to this rec-
ommendation as the recommended strategy. Agents have the free-
dom to follow or deviate from this strategy and hence, an important
goal is to design the protocol to be incentive-compatible, meaning
that agents have incentives to follow it. The agent’s rating is then
increased/decreased by the the software client based on its current
rating, and whether it has followed/deviated from the recommend-
ed strategy. We refer to this as the rating update rule. High/Low-
rated agents will be rewarded/punished – the protocol recommends
more/less information sharing by their neighbors and hence they re-
ceive more/less benefit in the future.

We highlight two distinct features of the problem under consid-
eration and the resulting key challenges for designing rating proto-
cols for agents to cooperate. The first feature is that agents inter-
act over an underlying topology and hence, agents’ incentives are
coupled in a complex manner. This is in stark contrast with ex-
isting works which assume that the agents are randomly matched
[10][11][12]. Secondly, the considered networks are information-
ally decentralized, in the sense that communication can only occur
between neighboring agents (and software clients) and there is not a
central entity that knows everything. Decentralization prevents rat-
ing protocols proposed in prior works [11][12] from being applicable
since they are designed and implemented in a centralized manner.

Various incentive schemes were proposed in literature to en-
courage cooperation among agents (see e.g. [5] for a review of
different game theoretic solutions). Pricing schemes [6][7] often
require complex accounting and monitoring infrastructures, which
introduce substantial communication and computation overhead and
hence, they are not suitable for the considered networks. Differential
service provided by the network operator is not suitable either since
such a centralized network operator does not exist. Alternatively,
differential services can also be provided by the other agents partici-
pating in the network since agents in the considered applications de-
rive their utilities from their interactions with other agents [8]-[12].
Among them, direct (personal) reciprocation schemes (e.g. the wide-
ly adopted Tit-for-Tat strategy [8]) only work when two interacting
agents have common interests. In social reciprocation schemes [9]-
[12], individual agents obtain some (public) information about oth-
er individuals (e.g. their ratings) and decide their behavior toward
other agents based on this information. These schemes are often s-
tudied using the familiar framework of repeated games. In [9], the
information sharing game is studied in a narrower context of coop-
erative spectrum sensing where the agents’ knowledge of the net-
work is complete and symmetric but the investigated various simple
strategies will fail to work for arbitrary topologies where agents have
incomplete and asymmetric knowledge of the entire network. Rat-
ing/reputation mechanisms are proposed as another promising solu-
tion to implement social reciprocation. Many of the existing works



on reputation mechanism are concerned with practical implementa-
tion details [13] or determining the impact of reputation on a seller’s
prices and sales [14]. The few works providing theoretical results on
rating protocol design consider either one (or a few) long-lived agen-
t(s) interacting with many short-lived agents [15][16] or anonymous,
homogeneous and unconnected agents selected to interact with each
other using random matching [10][11][12].

The rest of this paper is organized as follows. Section 2 builds
the system model and formulates the protocol design problem. Sec-
tion 3 unravels the structure of the rating protocol under considera-
tion, design the optimal rating protocol to maximize the social wel-
fare. Section 4 provides numerical results. Finally, we conclude this
paper in Section 5. All proofs in this paper can be found in [19].

2. SYSTEM MODEL

We consider a network of N agents, indexed by {1, 2, ..., N} =
N . Agents are connected subject to an underlying topology G =
{gij}i,j∈N with gij = gji = 1 representing agent i and j being
connected (e.g. there is a communication channel between them)
and gij = gji = 0 otherwise. We set gii = 0. We assume a fixed
topology G in this paper but certain types of time-varying topolo-
gies can also be allowed in our framework. Time is discrete with
infinite horizon. In each time period, each agent i chooses an infor-
mation sharing action with respect to each of its neighbors j, denoted
by aij ∈ [0, 1]. For example, action can represent the information
sharing effort. We collect notations and write ai = {aij}j:gij=1.
Denote a = (a1, ...,aN ) as the action profile of all agents and
a−i = (a1, ...,ai−1,ai+1, ...,aN ) as the action profile of agents
except i. Let Ai = [0, 1]di be the action space of agent i where
di =

∑
j gij and A = ×i∈NAi be the action space of all a-

gents. Agents obtain benefits from neighbors’ sharing actions, i.e.
âi={aji}j:gij=1 for agent i. Let bi(âi) denote the benefit 1. Shar-
ing information is costly and the cost ci(ai) depends on an agent i’s
own actions ai. Hence, given the action profile a of all agents, the
utility of agent i is ui(a) = bi(âi)− ci(ai).

Assumption: For each i, (1) bi(âi) is non-decreasing in each
aij , ∀j : gij = 1 and is concave in âi; (2) the cost is linear in the
sum of actions, i.e. ci(ai) = ‖ai‖1 =

∑
j:gij

aij .

The above assumption states that (1) agents receive decreasing
marginal benefits of information acquisition, which captures the fact
that agents become more or less “satiated” when they possess suf-
ficient information; (2) the cost incurred by an agent is equal to the
sum of effort of collaboration with all its neighbors.

2.1. Obedient Agents - Benchmark

It is useful to first study how obedient agents (i.e. non-strategic a-
gents who follow any prescribed strategy) interact in order to obtain
a better understanding of the interactions and the achievable perfor-
mance. The objective is to maximize the social welfare of the net-
work, which is defined as the time-average sum utility of all agents,
i.e. V = lim

T→∞
1
T

∑∞
t=0

∑
i ui(a(t)) where a(t) is the action pro-

file in period t. If agents are obedient, then the system designer can
assign socially optimal actions, denoted by aopt(t), ∀t, to agents and
then agents will simply take these actions. Determining the socially
optimal actions involves solving the following problem:

maximize
a

V

subject to aij(t) ∈ [0, 1], ∀i, j : gij = 1, ∀t (1)

1 In principle, an agent can obtain benefits from the information sharing
over indirect links relayed by its neighbor. In this case, the action will also
include the relaying action.

which can be easily solved: any action profile aopt that satisfies
âopt
i (t) ∈ argmaxâ bi(âi(t))− ‖âi(t)‖ is its solution. We denote

the optimal social welfare by V opt. The structure of problem (1)
lends itself to a fully decentralized implementation: each software
client can compute the optimal actions âopt

i for its neighbors and
send the solution to their neighboring software clients. Obedient
agents take the actions solved by the software clients and hence, the
social welfare is maximized.

2.2. Strategic Agents

When agents are strategic, we formally define the network informa-
tion sharing game below.

Definition 1: A (one-shot) network information sharing (NIS)
game is a tuple G = 〈N ,A, {ui(·)}i∈N ;G〉 where N is the set
of players, A is the action space of all players, ui(·) is the utility
function of player i and G is the underlying topology.

Theorem 1. There exists a unique Nash equilibrium (NE) aNE = 0
in the (one-shot) NIS game.

In the repeated game, the (one-shot) NIS game is played in every
period t = 0, 1, 2, .... Let yt

i ∈ Y be the public monitoring signal
related to agent i’s actions ai(t) at time t. A public history of length
t is a sequence of public signals (y0, y1, ..., yt−1) ∈ Y t. We note
that in the considered network setting, public signals are “locally
public” in the sense that agents only observe the public signals within
their own neighborhood but not all public signals. We write Hi(t)
for the set of local public histories for agent i of length t and Hi =⋃∞

t=0 Hi(t) for the set of all public histories of all finite lengths. A
(local) public strategy of agent i is σi : Hi → Ai. We write σ as
the collection of public strategies for all agents. Since interactions
are on-going, each agent i cares about its long-term utility which is
defined as Ui(t) = ui(a(t))+δui(a(t+1))+δ2ui(a(t+2))+ ...
where δ ∈ (0, 1) is the discount factor of agents. Perfect Public
Equilibrium [17] is used as our solution concept for the repeated
game.

Definition 1: (Perfect Public Equilibrium) A strategy profile σ
is a perfect public equilibrium if ∀h ∈ H,∀i, Ui(σi, σ−i;h) ≥
Ui(σ

′
i, σ−i;h), ∀σ′

i 	= σi.

3. DISTRIBUTED OPTIMAL PROTOCOL DESIGN

3.1. Proposed Rating Protocol
We describe the proposed distributed rating protocol and its opera-
tion in a distributed network. Keep in mind that software clients are
non-strategic and design and implement the rating protocol but the
agents are strategic in choosing the information sharing actions (i.e.
they will selfishly decide whether or not to follow the strategy rec-
ommended by the software) such that their own utility is maximized.
A rating protocol consists of three components – a set of ratings, a
set of recommended strategies to agents, and a rating update rule.

(1) We consider a finite set of ratings Θ = {1, 2, ...,K}. Agent
i’s rating in period t is θi(t) ∈ Θ and its neighbors’ ratings are

θ̂i = {θj}j:gij=1. K serves as an upper bound of the rating set size.

(2) The software clients determine the recommended (public)
strategy profile in a distributed manner and recommend actions to
their own agent depending on neighbors’ ratings σ : N ×N ×Θ →
[0, 1], where σij(θj) represents the recommended action of agen-
t i with respect to j if j’s rating is θj . Since high/low-rated a-
gents should be rewarded/punished, σij(θ) ≤ σij(θ

′) if θ < θ′.
We collect notations σi(θ̂i) = {σij(θj)}j:gij=1 and σ̂i(θi) =
{σji(θi)}j:gij=1.



(3) The software of agent i updates agent i’s rating at the end of
each period. Let yi ∈ Y = [0, 1] be the monitoring signal with re-

spect to agent i’s action. Specifically, yi = 1{ai(t) = σi(θ̂i(t))}.
The rating update rule is therefore a mapping τ : N × Θ × Y →
Δ(Θ), where τi(θ

+
i ; θi, yi) is the probability that the updated rat-

ing is θ+i if agent i’s current rating is θi and the public signal is yi.
In particular, we consider the following parameterized rating update
rule, for agent i, if θi = k,

τi(θ
+
i ; θi, y) =

⎧⎪⎪⎨
⎪⎪⎩

αi,k, if θ+i = max{1, k − 1}, yi = 0
1− αi,k, if θ+i = k, yi = 0
βi,k, if θ+i = min{K, k + 1}, yi = 1
1− βi,k, if θ+i = k, yi = 1

(2)
In words, compliant agents are rewarded by receiving a higher rat-
ing with some probability while deviating agents are punished by
receiving a lower rating with some (other) probability.

To sum up, the rating protocol is uniquely determined by the

recommended strategies σi(θ̂i), ∀i, ∀θ̂i and the rating update prob-
abilities αi,k, βi,k, ∀i, ∀k. We denote the rating protocol by π =
(Θ,σ,α,β) and the achievable social welfare by adopting the rat-
ing protocol by V (π). The rating protocol design problem thus is

maximize
π=(Θ,σ,α,β)

V (π)

subject to σ constitutes a PPE
(3)

The operation of the rating protocol comprises two phases: the
design phase and the implementation phase. In the design phase, the
software clients determine in a distributed way the recommended
strategy and rating update rules according to the network topology,
and the agents do nothing. In the implementation phase (run-time),
the agents (freely and selfishly) choose their actions in each period
in order to maximize their own utility. Depending on whether the
agents are following or deviating from the recommended strategy,
each software executes the rating update of its agent and sends the
new ratings of its agent to the neighboring software clients.

3.2. Distributed Computation of the Recommended Strategy
If a rating protocol constitutes a PPE, then all agents will find it in
their self-interests to follow the recommended strategie and eventu-
ally all agents will have the highest ratings forever (assuming no up-
date errors). Therefore, the social welfare is asymptotically the same
as the sum of utility of all agents when they have the highest ratings
and follow the recommended strategy, i.e. V =

∑
i(bi(σ̂i(K)) −

‖σi(K)‖). This means that the recommended strategies for the
highest ratings determine the social welfare that can be achieved
by the rating protocol. However, in the presence of strategic a-
gents, these strategies, together with the other components of a rating
protocol, need to satisfy the equilibrium constraint such that self-
interested agents have incentives to follow the recommended strate-
gies. In Theorem 2, we identify a sufficient and necessary condition
on σ(K) (i.e. the recommended strategies when agents have the
highest ratings) such that an equilibrium rating protocol can be con-
structed. With this, the software clients are able to determine the
optimal rating protocol in a distributed way in order to maximize the
social welfare.

Theorem 2. Given the rating protocol structure and the network
structure (topology and individual utility functions), there exists at
least one PPE (of the rating protocol) if and only if δbi(σ̂i(K)) ≥
ci(σi(K)), ∀i.

The optimal values of σ(K) can be determined by solving the
following optimal recommended strategy design (ORSD) problem:

maximize
σ

∑
i(bi(σ̂i(K))− ci(σi(K)))

subject to ci(σi(K)) ≤ δbi(σ̂i(K)), ∀i (4)

Note that this problem implicitly depends on the network topology
since both σ̂i(K) and σi(K), ∀i are topology-dependent (since for
each agent i, the strategy is only with respect to its neighbors). In
this subsection, we will write σi(K) as σi and σ̂i(K) as σ̂i to keep
the notations simple.

Algorithm: Distributed Computation of the Recommended Strat-
egy (DCRS) (Run by each software client of agent i)
Input: Connectivity and utility function of agent i.
Output: σi(K) = {σij(K)}j:gij=1

Initialization: q = 0; λi(q) = 0
Repeat:
Send λi(q) to neighbor j, ∀j : gij = 1. (Obtain λj(q) from j)
Solve (6) using λi(q), {λj(q)}j:gij=1 to obtain σ̂i(λ(q)).
Send σji(λ(q)) to neighbor j, ∀j : gij = 1.
(Obtain σij(λ(q)) from j)

Update λi(q + 1) according to (8).
Stop until ‖λji(q + 1)− λji(q)‖2 < ελ

Since there is no central entity that knows the entire topology,
we propose a distributed algorithm to compute these recommended
strategies. The ORSD problem is decomposed into N sub-problems,
each of which is solved locally by the software clients. Note that un-
like the case with obedient agents, these sub-problems have coupled
constraints. Therefore, software clients will need to go through an
iterative process to exchange messages (the Lagrangians) with their
neighboring software clients such that their local solutions converge
to the global optimal solution. We perform dual decomposition on
(4) and relax the constraints as follows:

maximize
σ

∑
i

(bi(σ̂i)−‖σi‖)−
∑
i

λi(‖σi‖− δbi(σ̂i)) (5)

where λi ≥ 0, ∀i are the Lagrangian multipliers. The optimization
thus separates into two levels of optimization. At the lower level, we
have the sub-problems (one for each software client), ∀i

maximize
σ̂i

(1 + λiδ)bi(σ̂i)−
∑

j:gij=1

(1 + λj)σji (6)

It is easy to see that the optimal solution to these subproblems is also
the optimal solution to the relaxed problem (5). At the higher level,
the master dual problem is in charge of updating the dual variables,

minimize
λ

g(λ) =
∑

i gi(λ)

subject to λi ≥ 0, ∀i
(7)

where gi(λ) is the maximum value of the Lagrangian (6) given λ
and g(λ) is the maximum value of the Lagrangian (5) of the primal
problem. The following subgradient method is used to update λ,

λi(q + 1) = [λi(q) + w(‖σi‖ − δbi(σ̂i))]
+ , ∀i (8)

where q is the iteration index, w > 0 is a sufficiently small posi-
tive step-size. Because (4) is a convex optimization problem, such
an iterative algorithm will converge [18] to the dual optimal λ∗ as
q → ∞ and the primal variable σ∗(λ(q)) will also converge to
the primal optimal σ∗. This iterative process can be made fully
distributed which requires only limited message exchange between
neighboring software clients. We present the Distributed Computa-
tion of the Recommended Strategy (DCRS) Algorithm below which
is run locally by each software of the agents.



3.3. Computing the Remaining Components
There are many possible rating protocols that can constitute PPE giv-
en the obtained recommended strategies. In fact, the constructional
proof of Theorem 2 has already provided one way to compute these
remaining components. In this subsection, we provide the optimal
design given a binary rating set Θ = {1, 2} when the rating update
is subject to small monitoring errors. We set σij(θ = 1) = 0, ∀i, j :
gij = 1.

Proposition 1. Given a binary rating protocol Θ = {1, 2},
σij(2), ∀i, j : gij = 1 determined by the DCRS Algorithm and
σij(1) = 0, ∀i, j : gij = 1, when the monitoring error ε > 0, the
optimal rating update probability that maximize the social welfare
is, ∀i, β∗

i,1 = 1, α∗
i,2 = ‖σi(2)‖

δbi(σ̂i(2))

It is worth noting that these probabilities can be computed local-
ly by the software of the agents which do not require any information
from other agents.

3.4. Price of Anarchy
We denote the social welfare that can be achieved by the optimal rat-
ing protocol as V ∗ and use the price of anarchy (PoA), defined as
PoA = V opt/V ∗, as the performance measure of the rating proto-
col. Observe the social welfare maximization problems (1) and (4)
for obedient agents and strategic agents (by using rating protocol-
s), respectively. It is clear that V ∗ ≤ V opt due to the equilibrium
constraint; hence, i.e. PoA ≥ 1. The exact value of PoA will, in
general, depend on the specific network structure. In this subsec-
tion, we identify a sufficient condition for the connectivity degree
of the topology such that PoA is one. To simplify the analysis, we
assume bi(âi) = b(

∑
j:gij=1 aji). Let di =

∑
j gij be the num-

ber of neighbors of agent i. The degree of network G is defined as
d = max

i
di.

Proposition 2. Suppose bi(âi) = b(
∑

j:gij=1 aji), ∀i and aij is

upper-bounded, then there exists a d̄ such that if the connectivity
degree d is no larger than d̄, then V ∗ = V opt, i.e. PoA is one.

4. ILLUSTRATIVE RESULTS

In this section, we provide simulation results to illustrate the per-
formance of the rating protocol. In all simulations, agents’ utility
function takes the form of ui(a(t)) = [r2−MSEi(âi(t))]−ai(t)
which is an approximate utility for the network cooperative estima-
tion problem [3].

First we investigate how agents’ connectivity shapes agents’ in-
centives and influences the resulting social welfare. In Figure 1, we
investigate star topologies with different sizes (hence, different con-
nectivity degrees). As predicted by Proposition 2, when the connec-
tivity degree is small enough, the PoA equals one and hence, the
performance gap is zero. As the network size increases, the socially
optimal action requires the center agent to share more information
with the periphery agents but it becomes more and more difficult for
the center agent to have incentives to do so. Hence, the rating pro-
tocol recommends less information sharing from the center agent to
each periphery agent. However, incentives are provided at a cost of
reduced social welfare. In the next simulation, we study scale-free
networks in the imperfect monitoring scenarios. In scale-free net-
works, the number of neighboring agents is distributed as a power
law (denote the power law parameter by dSF ). Table 1 shows the
PoA achieved by the rating protocol for various values of dSF and
different monitoring error probabilities ε. As we can see, the pro-
posed rating protocol achieves close-to-optimal social welfare in all
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Fig. 1. Performance of the rating protocol for various connectivity
degrees in star topologies.(r2 = 8)

SFd  2 3 4 5 6 7 8 

PoA 
0� 0�  1.03 1.03 1.00 1.01 1.01 1.01 1.00 

0.05� 0.05�  1.04 1.04 1.02 1.02 1.03 1.02 1.01 
0.1� 0.1�  1.05 1.05 1.03 1.03 1.04 1.03 1.02 

Table 1. Performance of the rating protocol for various in scale-free
topologies.

the simulated environments. Finally, Figure 2 illustrates the PoA
achieved by the proposed rating protocol and the Tit-for-Tat strate-
gy. The rating protocol yields at least as much social welfare as the
Tit-for-Tat strategy. As the discount factor becomes smaller, agents’
incentives to cooperate become less and hence, the PoA is larger.

5. CONCLUSION

In this paper, we studied how to design distributed incentives proto-
cols (based on ratings) aimed at maximizing the social welfare of re-
peated information sharing among strategic agents in social network-
s. The proposed design framework enables an efficient way to imple-
ment social reciprocity in distributed information sharing network-
s with arbitrary topologies and achieve much higher social welfare
than existing incentive mechanisms. The proposed rating protocols
can be adopted in a wide range of applications where selfish behav-
ior arises due to cost-benefit considerations including problems in-
volving interactions over social networks, communication networks,
power networks, transportation networks, and computer networks.

2 4 6 8 10
1

1.2

1.4

1.6

1.8

connectivity degree d

Po
A

Rating Protocol δ = 0.8
Tit−for−Tatδ = 0.8
Rating Protocol δ = 0.6
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Rating Protocol δ = 0.4
Tit−for−Tatδ = 0.4

Fig. 2. Performance comparison with Tit-for-Tat. (r2 = 4)
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