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Abstract—Enabling accurate and low-cost classification of a
range of motion activities is of significant importance for wireless
health through body worn inertial sensors and smartphones, due
to the need by healthcare and fitness professonals to monitor
exercises for quality and compliance. This paper proposes a
novel contextual multi-armed bandits approach for large-scale
activity classification. The proposed method is able to address
the unique challenges arising from scaling, lack of training
data and adaptation by melding context augmentation and
continuous online learning into traditional activity classification.
We rigorously characterize the performance of the proposed
learning algorithm and prove that the learning regret (i.e. reward
loss) is sublinear in time, thereby ensuring fast convergence to
the optimal reward as well as providing short-term performance
guarantees. Our experiments show that the proposed algorithm
outperforms existing algorithms in terms of both providing high-
er classification accuracy as well as lower energy consumption.

I. INTRODUCTION

One of the biggest problems faced by many nations this
century is the staggering cost of health care and the ever
growing number of people suffering from disabilities requiring
continued rehabilitation in community. In just the United
States, stroke alone produces around 650,000 survivors each
year, most of whom require physical rehabilitation long after
discharge from a hospital [1]. Across all diseases, roughly 40%
of the elderly population experience one or more forms of
disabilities requiring rehabilitation and this number grows at
a significant rate [2][3].

The advent of microelectronics and powerful mobile devices
has created a number of new opportunities in wireless health
that allow us to address this serious challenge. In particular,
inexpensive and pervasive remote activity monitoring through
body worn inertial sensors and smartphones is now a key
strategy to provide monitoring and ensure compliance for
physical exercises prescribed to patients, regardless of their
ability to access health care professionals in person [4][5].
While much work done so far has focused on the accurate
detection of physical activities [6]-[11], many challenges re-
main that prevent the technique from being widely adopted:
1) Domain experts such as clinicians come from diverse
backgrounds with unique sets of activities of interest. As the
number of potential motions increase, traditional classifiers
suffer from degraded performance and reliability; 2) Most
activity classifiers’ performance directly relates to the amount

of training data the intended individual is able to provide. Our
in-field experience in conducting large scale international trials
[11] has demonstrated that this data is very difficult, if not
impossible to obtain due to lack of training from healthcare
professionals and patient’s inability to physically perform the
activities for the required training time; 3) State of the art
activity classifiers are often deployed without the means to
retrain and adapt to a user’s improving situation, significantly
reducing their usefulness after a few months.

In this paper, we present a novel contextual multi-armed
bandits (MAB) approach that enables efficient and large-scale
activity classification. This method is able to address the
challenges highlighted above by melding context augmentation
and continuous online learning into traditional activity classifi-
cation. The context information in this paper is defined as the
side information of physical activities, such as the location
where the activity takes place, the user profile such as his/her
age, gender weight etc. First, the use of context effectively
subdivides the potential activity search space at any given
time, making large activity classification models manageable
and provides additional distinguishing features. Second, the
use of continuous online learning allows the system to start
with classifiers that are trained using generic data sets (easy
to obtain) and gradually adapt to individual users. In this way,
the classifiers can also adapt themselves to a user’s improving
situation by selecting more suitable models and boot-strapping
the model with newer data. Finally, the analytical nature of
MAB allows us to rigorously characterize the performance
bounds of the models in use. We prove the regret (i.e. reward
loss due to learning) incurred by our algorithm is sublinear in
time, thereby ensuring fast convergence to the optimal reward
as well as providing short-term performance guarantees.

The rest of this paper is organized as follows. Section II
discusses related works. Section III describes the system model
and formulates the problem. Second IV proposes the online
learning algorithm for activity classification and bounds its
learning regret. Section V provides simulation results using
real-world data. Section VI concludes the paper.

II. RELATED WORKS

The benefits of activity monitoring through sensors have
been demonstrated in many existing works [7]-[11]. For in-
stance, one system for measuring home-based physical reha-
bilitation has been described in [7]. Using a signature detection
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algorithm and accelerometer’s signal vector magnitude as a
feature, the system detects if a user has performed a set of
rehabilitation exercises accurately, and provides appropriate
feedback. In [8], a human activity classification system was
developed for promoting exercises in an effort to reduce
injuries. The system uses multiple on body accelerometers, and
a large number of binary classifiers each trained to recognize
specific activities. A series of optimizations link the individual
classifiers to produce a final output. Most methods confront
the challenge of classifying a specific motion among many
possibilities at any observation time [11]. As the number of
potential motions increase, the classifier model complexity
increases and classification performance and reliability are
degraded. In addition, these systems do not address the issue
of rapid adaptation to the demands of large heterogeneous
user communities, where different activities are of interest,
requiring separate models, classification methods and features.
This paper develops online algorithms for learning the best
activity classifiers by exploiting the contextual information of
the unclassified motions, thereby improving the classification
performance. The proposed algorithm is developed under the
contextual multi-armed bandits (MAB) framework. Previously,
MAB methods were applied to solve problems in clinical
trials [12][13], multi-user communication networks [14], web
advertising [15], recommender systems [16][17] and stream
mining systems [18][19]. A key advantage of MAB methods
as compared to other online learning methods is that they
can provide a bound on the convergence speed as well as
a bound on the loss due to learning compared to an oracle
solution which requires knowledge of the stochastic model
of the system, which is named regret. To the authors’ best
knowledge, it is the first time that MAB methods are applied
to solve activity classification problems in eHealth systems.

III. SYSTEM MODEL

A. System Architecture

We consider a wireless activity monitoring system shown
in Figure 1. Healthcare providers prescribe individualized
exercise plans dependent on a subject’s needs and monitor
them for quality and compliance. At the end-user side, a set
of Bluetooth sensors is needed with a smart mobile device to
provide data to a backend server through wifi/cellular, where
context and activity classification decisions are made. The
returned results can be consumed by third party applications.
In this architecture, the server components mainly include a
Context Classification Module (CCM) and an Activity Classi-
fication Module (ACM). In this paper, we focus on the activity
classification problem using the context information provided
by the CCM.

B. Activity Classification Module

We assume that time is divided into discrete slots t =
1, 2, .... At the beginning of each time slot t, the ACM on
the server receives one activity classification request along
with the context information from the wireless sensors of
a user. The context information is provided by the CCM
and can include information about the location in which this
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Fig. 1. System architecture.

unclassified activity takes place as well as information about
the user profile such as age, gender and weight etc. We abstract
the context information at time t using the notation θt ∈ Θ
with Θ being a d-dimensional metric space.

The ACM maintains a finite set of K activity classifiers
F = {f1, ..., fK}. Each classifier fk takes input using the
activity data from a specific set of sensors with respect to fk
and outputs a classification result. That is, fk is a function
fk : Xfk → Y where Xfk is the sensor data value space with
respect to fk-specific sensor set and Y is the activity value
space. Because different classifiers require the input data from
different sets of sensors, invoking them incurs different costs
such as sensing and wireless transmission energy consumption.

At each time slot t, given the context information θt, the
ACM chooses one classifier f t from the set F to perform
the activity classification. Depending on the model selected, a
specific set of sensors is invoked, incurring a cost of ct which
is reported to the ACM at the end of the time slot. Once the
sensor data xt ∈ Xft is collected and provided to the ACM,
the ACM uses f t to classify the activity. Let the classification
result be yt ∈ Y . We assume that at the end of time slot t, the
ground-truth label of activity ŷt ∈ Y is revealed. This label
may be provided by the end-user himself/herself or by the
physicians. It can be erroneous, provided occasionally and/or
with delay. For the sake of analysis simplicity, we will assume
that the label is provided immediately at the end of each
period. Let at = I(yt = ŷt) be the classification accuracy
where I(·) is the indicator function. Thus, the problem under
consideration features a supervised online learning problem:
after selecting a classifier ft, a realized classification reward
rt which jointly takes into account the classification accuracy
at and the associated classification cost ct (e.g. sensing and
wireless transmission energy consumption) is revealed to the
ACM. For example, the classification reward can be a linear
combination of accuracy and cost, i.e. rt = at − γct where γ
is a trade-off parameter.

C. Classification Reward and Learning Regret

For each context θ ∈ Θ, selecting a classifier f yields an
(unknown) expected classification reward µθ(f) = Erθ(f).
Notice that for each specific activity classification request with
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context information θ, the realized reward rθ(f) by selecting
the classifier f is a random variable drawn from an unknown
distribution with mean µθ(f) which is also unknown. Let
f∗(θ) := argmaxf∈F µθ(f) and µ∗

θ := µθ(f
∗(θ)). We call

f∗(θ) the best oracle classifier for context θ. Notice that the
best oracle classifiers are not known by the ACM but instead
need to be learned.

A learning algorithm σ selects for the context information
θt at each time slot t a classifier σt ∈ F to use. The regret
(learning loss) of a learning algorithm used by the ACM with
respect to the oracle benchmark by time T is given by

Reg(T ) =
T∑

t=1

µ∗
θt − E

[
T∑

t=1

rtθt(σt)

]
(1)

Regret gives the convergence rate of the total expected clas-
sification reward of the learning algorithm to the value of the
optimal solution. Any algorithm whose regret is sublinear, i.e.
Reg(T ) = O(T γ) such that γ < 1, will converge to the
optimal solution in terms of the average reward. The goal
of the ACM is to minimize its regret, which is equivalent
to maximizing the total reward by time T .

In the next section, we will propose an efficient learning
algorithm that learns the optimal classifiers with sublinear
regret bounds. To enable rigorous regret analysis, we will make
the following widely adopted technical assumption.

Assumption. (Lipschitz) For each f ∈ F , there exists
L > 0, α > 0 such that for all θ, θ′ ∈ Θ, we have
|µθ(f)− µθ′(f)| ≤ L∥θ, θ′∥αΘ.

The above assumption states that if context information
is similar, then the expected reward by selecting the same
classifier is also similar.

IV. CONTEXT-DRIVEN ACTIVITY CLASSIFICATION

The basic idea of our online learning algorithm is as follows.
The algorithm alternates between two phases over time. In the
exploration phases, different classifiers are explored to learn
their expected classification reward. In the exploitation phases,
the classifier with the best estimated classification reward is
selected in order to maximize the classification reward. This
learning problem would be simple if there was no context
information. However, without using the context information
the performance of the learning algorithm can be poor because
the best oracle classifiers can be very different for different
context information. However, since the context space Θ can
be very large and even continuous, learning the best oracle
classifier for each individual context θ ∈ Θ is extremely
difficult, if not impossible, for a finite number T of activity
classification requests. To overcome this obstacle, our learning
algorithm will exploit the similarity information of contexts,
adaptively and dynamically partition the context space into
smaller subspaces and learn the best oracle classifier within
each subspace.

A. Algorithm Description

In this subsection, we describe the proposed online learning
algorithm for activity classification. For analysis simplicity, we

normalize the context space to be Θ = [0, 1]d. The following
notions are important for the proposed algorithm.

• Context Space Partition. By uniformly partitioning the
context space on each dimension by l, we create 2ld

context subspaces, each of which is a d-dimensional
hypercube with side length being 2−l. We call this
partition a level l partition Pl and clearly |Pl| = 2ld.
Note that P0 contains only a single hypercube which is
the entire context space Θ. Let P := ∪∞l=0Pl denote the
set of all possible such subspaces.

• Active Context Subspace. In each time slot, the al-
gorithm keeps a set of mutually exclusive context sub-
spaces that cover the entire context space. We call these
subspaces the active subspaces, and denote the set of
active subspaces at time t by At. Clearly we have
∪s∈At = Θ, ∀t.

• Activation, Partitioning and Deactivation. Once a sub-
space C ∈ P is activated, we maintain a counter NC

that records the number of times that context arrives to
C. A level l subspace C will stay active until the first
time t such that NC ≥ A2pl where p > 0 and A > 0
are algorithm design parameters. At this point, the level
l subspace C is further partitioned into 2d smaller l + 1
subspaces that constitutes C. Then C becomes inactivate
and these smaller subspaces become active and 2d new
counters are created.

• Reward Estimates. For each active context subspace C,
the algorithm maintains the estimated rewards r̄C(f) for
all classifiers for the context arrivals to this subspace.

• Counters. For each active context subspace C, the algo-
rithm maintains several counters. The first counter MC

records the number of context arrivals to C which is
used for context subspace partitioning. For each subspace
C, the algorithm also maintains for each classifier f a
counter NC(f) that records the number of times f is se-
lected to classify the request. Clearly, MC =

∑
f∈F

NC(f)

at any moment in time.
• Control Function. The algorithm uses a control function

D(t) which takes time as the input and outputs a real
number. The control function has the form of D(t) =
tz ln t.

The algorithm works as follows. When an activity classifi-
cation request with context information θt comes at time t, the
algorithm checks to which active subspace C ∈ At it belongs.
Then it investigates counters NC(f) for all classifiers to see
if there exists any classifier f such that NC(f) ≤ D(t). There
are two cases:

• If there exists such a classifier f , then the algorithm
selects this classifier for the current request, i.e. σt = f .
(Exploration)

• If there does not exist such a classifier, then the algorithm
selects the classifier with the highest reward estimate
σt = argmax

f∈F
r̄C(f). (Exploitation)

At the end of time t, the actual classification reward is
revealed to be rt which then is used to update the reward
estimate r̄C(f). If the context arrival counter for this context
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subspace NC exceeds A2pl, then the context subspace is
further partitioned. The formal description is presented in
Algorithm 1. A pictorial illustration is provided in Figure 2.

Algorithm 1 Online Learning for Activity Classification
Initialize A1 = P0, MΘ = 0, r̄Θ(f) = 0, ∀f ∈ F .
for each activity classification request at time t do

Determine C ∈ At such that θ ∈ C.
if ∃f ∈ F such that NC(f) < D(t) then

Select σt = f . (Exploration)
else

Select σt = argmax
f∈F

r̄C(f). (Exploitation)

end if
Set NC(σ

t)← NC(f
t) + 1

(The activity classification reward rt is revealed.)
Update r̄C(σ

t).
Set MC ←MC + 1.
if MC ≥ A2pl then

Set At+1 = (At\C) ∪ Pl+1(C)
end if

end for

B. Learning Regret Analysis

In this subsection, we analyze the regret of the proposed
learning algorithm for activity classification.

The following notations will be useful for our analysis.
Let ∆ = max

θ∈Θ
{µ∗

θ − min
f∈F

µθ(f)} be the maximized reward

difference between the best oracle classifier and a non-optimal
classifier. Without loss of generality, we normalize ∆ = 1. Let
EtC(f) be the set of rewards collected by selecting classifier
f by time t for active subspace C. For each subspace C
let f∗(C) be the classifier which is optimal for the center
context of that subspace, and let µ̄C(f) := supθ∈C µθ(f) and
µ
C
(f) := infθ∈C µθ(f). For a level l subspace C, we define

the set of sub-optimal classifiers to be

LC(B) := {f : µ
C
(f∗)− µ̄C(f) > BLdα/22−lα} (2)

where B is a constant. Finally, let βa :=
∞∑
t=1

1/ta.

We decompose the regret of learning into three parts

Reg(T ) = Rege(T ) + Regs(T ) + Regn(T ) (3)

where Rege(T ) is the regret due to exploration, Regs(T ) is the
regret due to sub-optimal classifier selections in exploitation
and Regn(T ) is the regret due to near-optimal classifier

selections in exploitation. The following series of lemmas
bound each of these terms separately.

We start with a simple lemma which gives an upper bound
on the highest level subspace that is active at any time t.

Lemma 1. All active subspaces in At at time t have a level
of at most (log2 t)/p+ 1.

Proof: Let l + 1 be the highest level. According to the

partitioning process, we must have
l∑

j=1

A2pj < k, otherwise

the highest level will be less than l+1. From this, for t > A,
we have l < log2(t)/p.

The next three lemmas bound the regret for any level l
context subspace.

Lemma 2. If D(t) = tz ln t, then for any level l subspace,
the regret due to exploration by time t is bounded above by
K(tz ln t+ 1).

Proof: Time slot t is an exploration slot if and only if
there exists f such that N t

C(f) ≤ D(t). Therefore, up to
time T , there can be at most tz ln t+1 exploration time slots
for each classifier f . Since there are a total number of K
classifiers, the number of exploration slots is upper bounded
by K(tz ln t+ 1).

Lemma 3. Let B = 2
Ldα/22−α + 2. If p > 0, 2αp ≤ z < 1,

D(t) = tz ln t, then for any level l subspace C, the regret
due to choosing sub-optimal classifiers in exploitation steps is
bounded by 2Kβ2.

Proof: Let Ω denote the space of all possible outcomes,
and w be a sample path. The event that the algorithm exploits
in C at time t is given by

Wt
C := {w : NC(f) > D(t), ∀f ; θt ∈ C;C ∈ At} (4)

We will bound the probability that the algorithm chooses a
sub-optimal classifier in an exploitation step in subspace C,
and then bound the expected number of times a sub-optimal
classifier is chosen by the algorithm. Recall that the loss in
every slot is at most ∆ = 1. Let Vt

C(f) be the event that a
sub-optimal classifier f is chosen. Then

RegC,s(T ) ≤
T∑

t=1

∑
f∈LC(B)

P (Vt
C(f),Wt

C) (5)

For any classifier f , we have

{Vt
C(f),Wt

C} (6)
⊂{r̄C(f) ≥ µ̄C(f) +Ht,Wt

C} (7)
∪ {r̄C(f∗) ≤ µ

C
(f∗)−Ht,Wt

C} (8)

∪ {r̄C(f) ≥ r̄C(f
∗), r̄C(f) < µ̄C(f) +Ht, (9)

r̄C(f
∗) > µ

C
(f∗)−Ht,Wt

C} (10)
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for some Ht > 0. This implies

P (Vt
C(f),Wt

C)

≤P (r̄bestC (NC(f)) ≥ µ̄C(f) +Ht + Ldα/22−lα,Wt
C)

+P (r̄worst
C (NC(f

∗)) ≤ µ
C
(f∗)−Ht − Ldα/22−lα,Wt

C)

+P (r̄bestC (NC(f)) ≥ r̄worst
C (MC(f

∗)),

r̄bestC (NC(f)) < µ̄C(f) +Ht,

r̄worst
C (NC(f

∗)) > µ
C
(f∗)−Ht,Wt

C)

Consider the last term in the above equation. In order to
make it 0, we need 2Ht ≤ (B − 2)Ldα/22−lα. This holds
when 2Ht ≤ (B − 2)Ldα/22−αt−α/p. Therefore, for Ht =
t−z/2, z ≥ 2α/p and B = 2

Ldα/22−α + 2, the last term is 0.
Then, by using a Chernoff- bound, for any f ∈ LC(B), since
on the event Wt

C , NC(f) ≥ tz ln t, the first two terms in the
last line in the above equation are both bounded by

e−2(Ht)
2tz ln t ≤ t−2 (11)

Therefore RegC,s(T ) ≤
T∑

t=1

∑
f∈∈LC(B)

t−2 ≤ Kβ2.

Lemma 4. Let B = 2
Ldα/22−α + 2. If p > 0, 2αp ≤ z < 1,

D(t) = tz ln t, then for any level l subspace C, the regret
due to choosing near-optimal classifiers in exploitation slots
is bounded above by 2ABLdα/22(p−α)l.

Proof: The one-slot regret of any near-optimal classifier
f is bounded by 2BLdα/22−lα. Since C remains active for at
most A2pl context arrivals, we obtain the desired bound.

In order to obtain the regret bound of the proposed online
activity classification algorithm, we need to consider how
many subspaces of each level is formed up to time T . The
number of such subspaces explicitly depends on the context
information arrival process. Therefore, we investigate the
regret for different context arrival scenarios.

Definition. We call the context arrival process the worst
case arrival process if it is uniformly distributed inside the
context space, with minimum distance between any two context
samples being T−1/d, and the best case arrival process if
xt ∈ C, ∀t for some level ⌈log2(T )/p⌉+ 1 subspace C.

The following theorems determine the finite time, uniform
regret bounds for the online activity classification algorithm.

Theorem 1. For the worst case arrival process, Reg(T ) =

O(T
d+α/2+

√
9α2+8αd/2

d+3α/2+
√

9α2+8αd/2 ) by choosing p = 3α+
√
9α2+8αd
2 and

z = 2α/p.

Proof: Let B = 2
Ldα/22−α +2. We first consider the worst

case. It can be shown that in the worst case the highest level
subspace has level at most 1+log2p+d T . The total number of
subspaces is bounded by

1+log
2p+d T∑

l=0

2dl ≤ 22dT
d

d+p (12)

According to Lemma 4, the regret from choosing a near
optimal classifier is

Regn(T ) ≤ 2ABLdα/2
1+log

2p+d T∑
l=0

2(p−α)l (13)

≤2ABLdα/222(d+p−α)T
d+p−α
d+p (14)

Hence, Regn(T ) is on the order of T
d+p−α
d+p . Moreover,

since the number of activated subspaces is on the order of
O(T

d
d+p ), according to Lemma 2, Rege(T ) is on the order of

O(T
d

d+p+z lnT ) and according to Lemma 3, Regs(T ) is on
the order of O(T

d
d+p+z), for z ≥ 2α

p . These three parts of the
regret are balanced when z = 2α/p and d+p−α

d+p = d
d+p + z.

Solving for p we get

p =
3α+

√
9α2 + 8αd

2
(15)

Therefore, the regret is Reg(T ) = O(T
d+α/2+

√
9α2+8αd/2

d+3α/2+
√

9α2+8αd/2 ).

Theorem 2. For the best case arrival process, Reg(T ) =
O(T 2/3) by choosing p = 3α and z = 2α/p.

Proof: Now we consider the best case, the number of
activated subspaces is upper bounded by log2 T/p+1, and by
the property of context arrivals all activated subspaces have
different levels. We calculate the regret from choosing near
optimal classifiers as

Regn(T ) ≤2ABLdα/2
1+log2 T/p∑

l=0

2p−αl (16)

≤2ABLdα/2
22(p−α)

2p−α
T

p−α
p (17)

The other regret parts are the same as the worst case. These
three parts are balanced by setting z = 2α/p, p = 3α.
Substituting these parameters we obtain Reg(T ) = O(T 2/3).

The regret bounds proved in Theorem 1 and 2 are sublinear
in time T which guarantee convergence in terms of the average
classification rewards, i.e. limT∈∞ Reg(T )/T = 0. Thus our
online learning algorithm makes the optimal classification as
sufficient classification requests have arrived. More important-
ly, the regret bound tells how much reward would have be lost
by running our learning algorithm for any finite time T . Hence,
it also provides a rigorous characterization on the short-term
learning performance.

C. Extensions

In the above analysis, we assumed that the true labels of the
user activity are revealed immediately at the end of every slot.
In practice, labels can be missing or received with a delay. In
the case of delayed labels, the proposed learning algorithm can
be easily modified to update the expected reward of classifiers
as soon as the label is received. In this way, if the delay is
finite, the regret orders given by Theorem 1 and 2 are not
affected. Only a constant term, which is a function of the
maximum delay is added to the regret. In the case of missing
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f1 f2 f3 f4
Upper right arm sensor X X
Lower right arm sensor X X
Lower right leg sensor X X X X

TABLE I
SENSORS REQUIRED FOR DIFFERENT CLASSIFIERS

labels, it can be shown analytically that, if the probability of
not receiving the label at any time t is q, the regret orders will
be scale by 1/(1− q) but the sublinearity with respect to time
is not affected either.

Next, we assess the computation and memory requirements
of the proposed algorithm. For each active subspace C ∈ At,
the algorithm needs to keep the sample mean reward estimates
of K classifiers. A level l active subspace becomes inactive
if the context arrivals to that subspace exceeds A2pl. For the
worst case arrival, the number of active subspace at time T
is upper bounded by O( d

(p+d)AT ). Thus, the memory require-
ment is O(K d

(p+d)AT ). For the best case arrival, the number of

active subspace at time T is upper bounded by O( 2
d

p log2 T ).

Thus, the memory requirement is O(K 2d

p log2 T ). However,
the algorithm can be modified so that the available memory
provides an an upper bound the deepest level of the context
subspace.

V. SIMULATIONS

Our experiments are performed using real-world sensor data
collected from end-users. The end-user component is a phys-
ical package containing four IMUs with Velcro attachments,
a Nexus 7 tablet and associated applications. A more detailed
description of our system deployment can be found in [6].

The server continuously receives classification requests
from end-users through wifi/cellular. For each request, the
CCM first detects the context information associated with
the request. Then the ACM selects a classifier to perform
the classification using this context information. Since all
experiments are using data from the same location, the context
information which we use are the gender and age of the
end-user. We consider three possible activities: “Running”,
“Walking Normal” and “Walking Around”. Four pre-trained
classifiers are implemented, each requiring different sensors to
be activated and using different features as the input (see Table
I). The proposed learning algorithms (with and without using
the context information) are compared against two benchmark
solutions:

• Weighted majority (WM). The second benchmark is the
widely adopted weighted majority algorithm [20].

• AdaBoost. The third benchmark implements an online
version of the famous AdaBoost algorithm [21].

We note that for both benchmarks, since all classifiers are
used, all sensors need to be activated for all requests.

In all experiments, the reward function has the form of
rt = at − γct where at is the prediction accuracy and ct

depends on the number of sensors activated for classification.
Figure 3 shows the obtained average per period reward (nor-
malized to the optimal reward obtained by the oracle solution)
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Fig. 3. Normalized classification reward comparison for γ = 0.1.

Running Walking
Around

Walking
Normal

MAB w. context (proposed) 0.98 0.98 0.97
Weighted Majority 0.84 0.77 0.69

AdaBoost 0.85 0.80 0.70

TABLE II
NORMALIZED CLASSIFICATION REWARD FOR INDIVIDUAL ACTIVITIES

(γ = 0.1).

over time for γ = 0.1. The proposed learning algorithms
significantly outperform both benchmark solutions. Compared
with WM and Adaboost, the proposed learning algorithms
gain 15% more rewards. Since the context information used
in our experiments is limited (i.e. only age and gender), the
performance improvement by using the context information
is moderate. However, much more performance improvement
can be expected when more context information (e.g. location,
user weight) is available. In Table II, we take a closer
look at the classification results for each individual activities
(γ = 0.1). WM and AdaBoost perform moderately well for
the “Running” activity but the rewards for the two similar
activities, “Walking Around” and “Walking Normal”, are very
low. Instead, the proposed algorithm is able to achieve high
classification rewards for all three activities.

Finally, we investigate the trade-off between energy con-
sumption (i.e. classification cost) and classification accuracy.
Figure 4 illustrates the accuracy and energy consumption
trade-off curve of the proposed algorithm. The energy con-
sumption is normalized to the maximum power consumption
when all sensors are activated. Note that WM and AdaBoost
use all sensors for all requests and hence, they are not able to
make trade-off between energy consumption and accuracy. As
can be seen from the figure, higher accuracy can be obtained
at a cost of higher energy consumption for all three activities
as well the the overall performance.

VI. CONCLUSIONS

In this paper, we proposed a novel online learning method
for activity classification in wireless health systems using
wearable inertial sensors. We have shown by incorporating the



7

0.35 0.40 0.45 0.50
0.5

0.6

0.7

0.8

0.9

1

Normalized energy consumption

A
cc

ur
ac

y

 

 

Running
Walking around
Walking normal
Overall

Fig. 4. Trade-off between accuracy and energy consumption (normalized to
the maximum energy consumption).

contextual information, significantly better activity classifica-
tion performance can be achieved than existing approaches.
The proposed method does not require a priori training data,
self-adapts to a user’s improving situation and scales with a
large number of users. We also have systematically proved
sublinear regret bounds on the performance loss incurred by
our algorithm due to online learning, providing both long-term
and short-term performance guarantee.
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