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ABSTRACT

We analyze networks that feature reputational learning: how
links are initially formed by agents under incomplete infor-
mation, how agents learn about their neighbors through these
links, and how links may ultimately become broken. We
show that the type of information agents have access to, and
the speed at which agents learn about each other, can have
tremendous repercussions for the network evolution and the
overall network social welfare. Specifically, faster learning
can often be harmful for networks as a whole if agents are
myopic, because agents fail to fully internalize the benefits of
experimentation and break off links too quickly. As a result,
preventing two agents from linking with each other can be
socially beneficial, even if the two agents are initially believed
to be of high quality. This is due to the fact that having fewer
connections slows the rate of learning about these agents,
which can be socially beneficial. Another method of solv-
ing the informational problem is to impose costs for breaking
links, in order to incentivize agents to experiment more care-
fully.

1. INTRODUCTION

Optimally locating agents within networks is an important
problem for many applications, such as organizational struc-
turing, social networks, academic networks, etc [1]. Since
agents have costs associated with maintaining links, it is opti-
mal for agents to be connected only if the agents are of suffi-
ciently high quality [2]. But the problem of designing optimal
networks is compounded by incomplete information, as the
true qualities of agents are often not known [3]. For instance,
there is usually only incomplete initial information aboutthe
true value of a worker in a company or of a friend in a social
network. Even if the initial belief about an agent’s qualityis
favorable, it could turn out that the agent is actually of low
quality after more information is learned.

Learning about quality will naturally occur over time
as agents form links with each other and send information
[3]. As a worker collaborates with his peers and produces
some output for example, other workers and the company can
update their assessments of his quality. Thus when design-
ing a network, it is necessary to consider both the initial
beliefs about agent quality as well as how agents will learn
about each other once the network is formed. Such learn-
ing can have a strong impact on the resulting network evolu-

tion [4][5]. In our model, we study scenarios in which agents
learn about each other and break off links with agents with
bad qualities, but are unable to create links with good agents
due to physical constraints.

Likewise, the shape of the network also strongly affects
the rate of learning [6]. Agents who have many links will send
more information than agents who have few links, because
they are producing more signals. It is easier to learn about
the quality of a person who interacts with many other people
than a person that interacts with few. And if an agent devel-
ops a bad reputation and has all its neighbors sever the links
to itself, then learning about this agent can stop completely.
Such agents are ostracized from the community as no one is
willing to connect with them, and as such these agents have
no opportunity to send further information to improve their
reputations. Thus the evolution of a network and the learn-
ing within that network are intricately intertwined, with one
having a direct impact on the other.

Given the close nature of network evolution and learning,
it is important to consider the implications that learning has
on welfare, both at the individual agent level as well as for
the overall network. In our model, we can compute welfare
explicitly for any initial network. We show that learning can
actually have a negative impact on social welfare in a wide
variety of cases, the reason being that faster learning causes
agents to disconnect with their neighbors faster if their neigh-
bors send bad information. While this is good for the agent
itself, this is bad for the neighbor as the neighbor would now
get ostracized from the community and be unable to reap the
benefits of the network. On aggregate, this can also be bad
for network welfare as a whole: if everyone is learning faster
about others, then everyone has the potential to be kicked out
of the network sooner themselves as well.

Because of the negative effect of learning, it may be opti-
mal to prevent two agents from linking with each other, even
if such agents have initial expected qualities higher than the
linking cost. If such agents did decide to link, then they
would increase the rate at which the other sends information.
Thus each agent, as well as the overall network, may become
worse off through the formation of this link due to the faster
learning caused by the link. Thus, it is important to carefully
consider which agents are connected with which other agents
when designing a network and only considering the connec-
tivity degree is not sufficient. In some cases, a star or a core-



periphery network would generate higher social welfare than
a complete network [7][8][9].

A potential method of addressing the negative effect of
learning is to impose costs on the agents for breaking links
with others. For example, this could be introduced in the
form of a social stigma, or a deliberate company punish-
ment. By imposing costs on the agents, agents will only cut
off links with neighbors once their neighbor’s reputation falls
extremely low, not just to a moderately low level. Now if a
link gets broken and an agent becomes ostracized, it will only
be because that agent’s contribution to the network is indeed
very low, and so the social welfare of the network as a whole
can improve as learning becomes faster.

2. RELATED WORKS

Existing works in the network formation literature have stud-
ied what networks are formed under complete information
when agents know each other’s qualities. For example, agents
of homogeneous qualities were studied in [10][2][3] and
agents of heterogeneous qualities were studied in [7][8][9].
In these models, agents are aware of all the payoff parame-
ters of the network and there is no learning. However, the
complete information assumption rarely holds in real world.
Few attempts [11] have been made towards studying network
formation under incomplete information. Prior work [11] pro-
poses a simplistic model and imposes strong assumptions. For
instance, once two agents meet, one agent knows the exact
quality of the other agent and also the exact qualities of all
indirectly linked agents including those whom it has not met
before. Moreover, no rigorous social welfare result is derived
due to the intractability of the model. In contrast, the tractabil-
ity of our proposed model allows us to explicitly compute
the social welfare of different network structures even with
incomplete information, which lets us compare the optimality
of different network structures.

This work is also related to a different strand of lit-
erature on social learning [12][13][14][15] and consen-
sus/gossip/diffusion algorithms [16][17][18][19]. Networks
in these works are exogenously determined. In contrast, net-
works in our work are endogenously determined over time as
agents are learning and form/sever links. Moreover, the goal
of learning in the literature is to learn an exogenous variable
such as the underlying environment state while the goal of
learning in our work is to learn neighboring agents’ qualities
to decide whether form or sever links with them.

3. SYSTEM MODEL

We consider an infinite horizon continuous time model with
a finite number of agents. LetV = {1, 2, ..., N} denote the
set of agents. Agents are initially connected according to a
networkG = {gij}i,j∈V wheregij = 1 if agenti andj are
connected with each other andgij = 0 otherwise. This initial

networkG may represent physical constraints and may also
be planned, e.g. by the human resource department in a com-
pany. Agents that are not linked initially can never become
linked. We say that agenti andj are neighbors ifgij = 1.
At each moment in timet ≥ 0, each agenti can break any
of its links unilaterally. Hence, the network will evolve over
time. LetGt be the network at timet andkti =

∑
j g

t
ij be the

number of links that agenti has at timet. Note thatG0 = G.
Linking with other agents is costly. An agenti must pay a
flow costc for each of its links, which represents the agent’s
cost of maintaining the link. Hence, at timet, the cost that
agenti must pay isktic.

Agents also obtain benefits from their links, depending
on the neighbors’ qualities. Each agenti in this network
has a fixed qualityqi that is determined at the start of the
game according to a commonly known normal distribution
Norm(µi, σ

2
i ) with µi > c. This qualityqi is not known to

all agents and we do not require that agenti knows its own
quality either. When agenti is linked, it generates (random)
flow benefitsbti for all agents that are linked with it at time
t and these benefits are (locally) publicly observable1. This
signal of flow benefits thus represents the information sent
by agenti from which other agents can learni’s true quality.
These benefits are noisy, and the evolution of these benefits
follows a Brownian motiondB(t) = qidt + vi(k

t
i)dZ(t)

where the drift rate is the true qualityqi, the instantaneous
volatility ratevi(kti) depends on the number of links agenti

has at timet andZ(t) is the standard Brownian motion with
zero-drift and unit-variance. In particular, the volatility rate
vi(k

t
i) = (ktiτi)

−1/2 whereτi is the base precision of the
Brownian motion of agenti’s benefit process. The more links
an agent has, the lower the volatility rate of its benefit Brow-
nian motion and hence, learning about its true qualityqi will
be faster. This captures the fact that agents who have many
links will send more information than agents who have few
links.

Agents are myopic and will maintain the link if and only
if they believe that the current benefit of linking with another
agent exceeds the link maintenance cost. Since the flow
benefits are (locally) publicly observable, neighbors of agent
i will have a common belief of any agenti’s quality. We
define the agent’s benefit history as the history of all previ-
ous benefits,Ht

i = {bt
′

i }
t
t′=0. If at a timet all links of agent

i are severed, then no benefit will be produced by agenti and
this will be denoted asbti = ∅. Note that in this case no infor-
mation is added and hence, the Brownian motion of agenti

is stopped at the current level. As mentioned, agents have a
prior belief of an agenti’s qualityNorm(µi, σ

2
i ) and update

this belief in a Bayesian fashion in light of the observations
of flow benefits. This signal combined with the prior qual-
ity distribution will result in a posterior belief distribution of
agenti’s quality f(qi|Ht

i) which is also normally distributed

1We only require these benefits be observed by direct neighbors.



[20]. An agentj will choose to maintain the link with agent
i if and only if E[qi|Ht

i] > c with the expectation taken over
the posterior belief distribution. We denoteµt

i , E[qi|Ht
i]

and call it thereputationof agenti at timet. It can be shown
[21] thatµt

i is a martingale given the information available to
agents and hence the belief is correct.

In this model, agents’ true qualities are unknown a priori
and their generated flow benefits represent incomplete infor-
mation from which other agents can learn their true qualities.
This learning leads to network evolution in which links are
broken over time and the flow benefits thus change, affecting
both individual agent welfare as well as the overall network
welfare. In the next sections, we will study the table net-
works, the implications that learning has on welfare, and how
the shape of the initial network affects the rate of learningand
the welfare.

4. STABLE NETWORKS

The networkGt is evolving over time due to agents breaking
links with each other. We call the limiting network structure
when t tends to infinity, denoted byG∞, a stablenetwork.
Because all neighbors of an agenti break the link withi at the
same time due to the common belief, once the links ofi are
broken, agenti will be ostracized from the network forever in
the future since its reputation will stay at the current level and
will never go up. Therefore, the network is always shrinking,
i.e. Gt ⊇ Gt′ , ∀t < t′. However,G∞ is not always an empty
network as we will show shortly.

To understand whatG∞ can be, we need to investigate
whether a linklij , ∀i, j still exists att = ∞. A link lij still
exists if and only if neither agenti’s or j’s reputation hitsc
beforet = ∞ (otherwise, the link is severed by eitheri or j
unilaterally). Letεti denote the event that agenti’ reputation
hits c at timet. Then the probability that a linklij exists in
a stable network isP (ε∞i )P (ε∞j ). Using standard mathemat-
ical results of Brownian motion hitting probabilities,P (ε∞i )
can be shown to be independent of the initial network struc-
ture and can be explicitly calculated [22].

Theorem 1. A network structureG∞ can be a stable network
if and only ifG∞ ⊆ G0 andg∞ij = 1(ε∞i )1(ε∞i ). Moreover,
if this condition is satisfied, thenG∞ will be a stable network
with probability

∏
i P (ε∞i ).

5. IMPACTS OF LEARNING

5.1. Welfare

Each agent generates flow benefits for its link(s) and at the
same time also sends implicit information about its true qual-
ity. The speed of sending information and hence the speed
of learning is determined by the base precision of an agent’s
Brownian motion. The higher the precision, the faster the
information diffuses. In this section, we study how learning
in terms of agents’ base precision affects the welfare.

The individual welfare of an agenti is theex anteexpected
long-term payoff that it obtains from all of its links. Letj be
i’s initial neighbor, we denoteWij as theex anteexpected
long-term payoff obtained by agenti from the link with agent
j, which can be computed as

Wij =

∫
∞

−∞

∫
∞

0

e−ρt(qi − c)P (ltij |q, G)dtφ(q)dq (1)

whereφ(q) is the joint normal distribution of all agents’
quality q, P (ltij |q, G) is the survival probability of the link
betweeni andj andρ > 0 is the discount rate. Hence, agent
i’s welfare isWi =

∑
j:gij=1 Wij .

The next theorem shows how agenti’s base precisionτi
affects its own welfare.

Theorem 2. For any initial networkG, an agenti’s welfare
is decreasing in its own base precisionτi.

Proof Sketch.Consider anyex post realization of agents’
reputation hitting time eventsε = (εt11 , ..., εtNN ). The long-
term payoff of agenti depends on the hitting timeti of itself
and its neighbors whose reputations never hitc before infinity.
For neighbors whose reputations do hitc before infinity, the
expected value of linking with them would be zeros, so they
can be ignored. Increasing agenti’s own precision decreases
its own hitting time but does not change the set of neigh-
bors whose reputations never hitc. This weakly decreases the
long-term payoff of agenti in any ex postrealization, with
the decrease being strict if the eventǫtii with ti < ∞ occurs.
Therefore, agenti’s welfare is strictly decreasing in its own
precisionτi.

Theorem 2 proves that increasing one’s precision (hence
the information diffusion speed) is harmful to its own welfare.
This is because, in anyex postrealization, the hitting time of
its reputation againstc becomes sooner and hence the agent
is ostracized from the network sooner.

An agent’s information sending speed also affects other
agents’ welfare in the network. Faster learning about agenti’s
quality causes agenti to disconnect with its neighbors sooner.
However, whether learning abouti leads to greater or lower
welfare for i’s neighbors depends on the specific network.
Theorem 3 shows that for any networkG without cycles, any
agent’s information sending speed has a positive impact on its
neighbors’ welfare.

Theorem 3. For any initial network without cycles, increas-
ing any agenti’s base precisionτi increases its neighborj’s
welfare.

Proof Sketch.Supposei andj are any two neighbors. Since
there are no cycles in the initial network, there is no other
path connectingi and j except their direct link. Hence,G
can be partitioned into two subnetworksGi andGj where
i ∈ Gi, j ∈ Gj and there is no overlap betweenGi andGj



(expect thati andj are linked). Consider anyex postreal-
ization ε = (εt11 , ..., εtNN ). In the case oftj = ∞, chang-
ing agenti’ precisionτi does not affect agentj’ hitting time
and hence has no impact on the hitting times of agents in
Gj . Therefore, agentj’s payoff is not affected. In the case
of tj < ∞, increasingτi decreases agenti’s hitting time
which results in one link of agentj being severed sooner. This
leads a slower learning of agentj’s quality and hence its hit-
ting time becomes later. Therefore, agentj’s payoff becomes
larger.

Networks without cycles, such as stars and trees, are com-
mon networks in practice. In such networks, the result of
losing a link with a neighbor is to reduce one of its neigh-
bor’s links and thereby reduce the rate at which the neighbor
sends information. This in turn increases the welfare of that
neighbor. However, when cycles are present in a network,
information sending and link breaking has a more compli-
cated impact on the learning rates of other agents’ qualities.
Thus the result in Theorem 3 may not hold. A counter exam-
ple is a network with many relay agents with very low initial
expected qualities as shown in Figure 1. Suppose agent 3’s
initial expected qualityµ3 is very high and the initial expected
qualities of agent 4 toK are very close toc. In this net-
work, increasing agent 1’s precision makes its reputation hit-
ting time sooner and thus slows down the learning about agent
4 to K ’s qualities. Therefore, agent 2 has many links for a
longer time which makes the learning about its quality faster
overall. Hence, agent 2’s long-term payoff becomes smaller
with the increase of agent 1’s precision.

Theorem 4. For initial networks with cycles, it is possible
that increasing some agenti’s base precisionτi decreases its
neighborj’s welfare.

Proof. An informal proof uses the above example.

Now we study how learning affects the network welfare,
which is defined as the sum of individual welfareW =∑

i Wj .

Theorem 5. Given any networkG, multiplying all agents’
base precisions by the same numberd > 1 decreases the net-
work welfare.

1 

2 

3 

4 K . . . 

Fig. 1. An illustrative example of networks with cycles.

Proof. This is a direct result of Theorem 2.

Theorem 5 is due to the fact that if everyone is learn-
ing faster about others, then everyone has the potential to be
kicked out of the network sooner themselves as well, which
decreases the network welfare. Thus the theorem implies that
learning actually has a negative impact on network welfare.

5.2. Implications for Network Planning

As we have shown, the shape of the network affects the rate of
learning and hence the achievable social welfare, so it is natu-
ral to study which initial network structure yields the highest
social welfare. This is an important topic for organizational
structuring, social networks, academic networks etc., when
the exact qualities of agents are unknown but only the dis-
tributions of the qualities are known. Here we show that a
complete network in which all agents are connected with each
other is not necessarily the optimal structure in the presence
of incomplete information and learning, no matter how many
agents there are.

Theorem 6. For any numberN of agents, a complete initial
network may not be the optimal initial network.

Proof Sketch.We prove by constructing a counter example.
Suppose that the initial expected quality of agent1 µ1 is
very large and the initial expected qualities of other agents
µi ≈ c, ∀i 6= 1. Hence, linking with agent 1 produces
high payoffs while linking with the remaining agents pro-
duces negligible payoff. Consider anyex postrealization of
agents’ reputationε = (εt11 , ..., εtNN ) in a complete network.

Let ε′ = (ε
t′
1

1 , ..., ε
t′N
N ) be the corresponding realization in a

star network with agent1 being at the center. It can be shown
thatt′1 ≤ t1 andt′i ≥ ti, ∀i 6= 1. Since the initial mean qual-
ity of agenti 6= 1 is low, having a shortert′1 does not decrease
agent 1’s welfare much. However, the remaining agents’ wel-
fare can be significantly improved because of the increase in
t′i and the fact that agent 1’s quality is very high. Therefore
the star network can yield a higher social welfare than the
complete network.

Under the proposed model, many other implications on
the network planning can be derived. For example, the
core-periphery network in which agents with high initial
expected qualities compose the core and agents with low ini-
tial expected qualities compose the periphery can be better
than the complete network in some cases.

5.3. Cost for Breaking Links

If the agents do not observe any information about each
other, then agents do not learn each other’s true quality and
hence all initial links would remain connected forever. There-
fore the social welfare without learning can be computed as



∑
lij

∫
∞

0
e−ρt(µi + µj − 2c)dt. We have shown that learn-

ing actually has a negative impact on the network welfare in
Theorem 5. A potential method of addressing the negative
effect of learning is to impose costs on the agents for break-
ing links with others. For example, this could be introduced
in the form of a social stigma, or a deliberate company pun-
ishment. Let∆ be such an instantaneous (infinitesimal) cost.
In this case, agents will only cut off links with neighbors once
their neighbors’ reputation falls belowc−∆.

Theorem 7. For any network, there exists∆ large enough
such that the achievable social welfare with learning is
greater than that without learning.

Proof Sketch.The social welfare with learning can be com-
puted by

W =
∑

lij

∫
∞

0
e−ρt(µi + µj − 2c)dt

−
∑

lij
Eζ(t∗

i
)[
∫
∞

t∗
i

e−ρtEqi,qj [(qi + qj − 2c|t ≥ t∗i )]dt]

−
∑

lij
Eζ(t∗

j
)[
∫
∞

t∗
j

e−ρtEqi,qj [(qi + qj − 2c|t ≥ t∗j )]dt]

(2)
whereζ(t∗i ) is the event in which agenti’s reputation hits
c − ∆ before agentj at timet∗i . Since the achievable social
welfare without learning is

∑
lij

∫
∞

0
e−ρt(µi+µj−2c)dt, in

order to makeW greater, we need to make the last two terms
negative. Fix at∗i , thenE(qi|t ≥ t∗i ) = µ

t∗i
i = c − ∆ and

E(qj |t ≥ t∗i ) is bounded above. Hence, by choosing∆ large,
we can ensure thatE(qi + qj − 2c|t ≥ t∗i ) is negative for all
t∗i > 0. Therefore the social welfare with learning is greater
than that without learning.

6. CONCLUSION

This paper studies a framework for network evolution with
incomplete information and learning. We showed what the
stable networks could be and how learning affects both the
individual and the social welfare when agents’ qualities are
unknown and must be learned through past observations.
Some important implications on optimal network planning
in the presence of incomplete information and learning are
also revealed but many more can be derived using the current
model.
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