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Abstract

In this paper we present a novel online transfer learn-
ing approach to determine the set of tests to perform,
and the sequence in which they need to be performed,
in order to develop an accurate diagnosis while mini-
mizing the cost of performing the tests. Our learning
approach can be incorporated as part of a clinical deci-
sion support system (CDSS) with which clinicians can
interact. The approach builds on a contextual bandit
framework and uses online transfer learning to over-
come limitations with the availability of rich training
data sets that capture different conditions, context, test
results as well as outcomes. We exploit context infor-
mation to incrementally learn the performance of differ-
ent policies (sequences of tests) on different clusters of
the target population, and use that to develop context-
specific policies to reduce the diagnosis cost. We pro-
vide confidence bounds for our recommended policies,
which is essential in order to build the trust of clini-
cians. We evaluate the algorithm against different trans-
fer learning approaches using both simulated datasets
and on real-world patient alarm datasets collected from
Neurological Intensive Care Units (with reduced costs
by 20%). We also discuss the implications of these
improved results on patient diagnosis, and the applica-
bility of the approach in other domains.

Introduction
Recent advances in sensing and measurement technologies
are enabling us to monitor complex human, engineered,
physical, biological and chemical systems and processes in
many sophisticated ways. This enables improved ability to
understand the state of health of these systems, diagnose
problems, and use this to design interventions to maximize
health at varying timescales. However, while several such
measurements can be made (e.g. by performing different
tests on a patient), the decision on which test to perform and
when to perform it remains a very challenging problem.

Challenges stem from multiple factors: i) There are com-
plex relationships between different attributes that are being
measured. ii) Tests have varying degrees of costs associated
with them (e.g. some tests are very expensive). iii) Tests are
significantly impacted by context, i.e. the best set of tests,
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measurements and interventions may be different depending
on the context in which it takes place. For instance in a med-
ical diagnosis scenario, depending on their age and gender,
two different patients that exhibit the same apparent set of
symptoms may require a very different set of tests (with dif-
ferent costs and accuracies). iv) The determination of tests
is often challenged by the limited access to relevant data.
For instance, existing patients datasets often have distribu-
tions that do not necessarily capture the information needed
for the accurate diagnosis in a novel problem domain. Thus,
the resulting diagnosis policies may perform poorly. This
prompts the need for a system that can effectively perform
context-specific diagnosis that maximizes diagnosis accu-
racy and minimizes test costs even when highly relevant data
pertaining to the diagnosis decision is missing.

A large body of research in machine learning and plan-
ning has been dedicated to solving a variety of diagnosis
problems as well as providing decision support systems for
professionals (see Related Work section). However, many
of the existing techniques do not address many of the afore-
mentioned challenges. In this paper, we present a novel deci-
sion support system that addresses these challenges by trans-
ferring knowledge from multiple related problem domains
and incrementally learning the best policies (i.e. sequences
of test) to adopt depending on the context of the diagnosis
problem. These contexts can be exogenous facts or meta-
data about the problem. In the medical setting, they can
be patient’s age, gender and weight. Note that the con-
texts are different than the endogenous testing results. The
use of multiple related problem domains enables transfer-
ring knowledge from the most relevant domains for dif-
ferent diagnosis contexts; it also creates a way to measure
the semantic similarity between contexts: contexts are sim-
ilar if their most related existing domains are the same.
The learned semantic similarity is then used to develop
context-specific solutions in the novel problem domain. The
proposed approach is able to provide diagnosis confidence
bounds which are important to ensure the trust of domain
professionals.

Related Work
Support systems for decision making have been extensively
studied and we do not aimed to provide here a comprehen-
sive overview. Instead, we will focus on the most related
research. A first strand of related research focuses on cost-



sensitive learning and can be roughly divided into various
categories. The first category formalizes the diagnosis prob-
lem as a classification problem and aims to minimize mis-
classification errors while ignoring the test costs (Turney
2000)(Greiner, Grove, and Roth 2002)(Ling et al. 2004).
The second category jointly considers the misclassification
errors and test costs. A majority of works in this category
solve the diagnosis problem using decision tree induction
algorithms (Núñez 1991)(Tan 1993)(Norton 1989), while
others use Markov Decision Processes (MDP) (Zubek, Diet-
terich, and others 2004). Several heuristics are developed in
(Zubek, Dietterich, and others 2004) to reduce overall prob-
lem complexity and over-fitting when the datasets are small.
A disadvantage of these approaches is that they rely on train-
ing datasets to learn the appropriate model. In this paper, we
also model the diagnosis problem as an MDP but our focus
is on how to overcome the lack of initial training data by
using transfer of knowledge from relevant datasets.

Transfer learning is used to improve learning in a target
task (i.e. the task for which the solution/policy needs to be
learned) by leveraging existing knowledge from different
source tasks (i.e. tasks for which the dataset is sufficiently
large and the solution/policy has already been derived).
The majority of this literature assumes a single source task
from which knowledge can be transferred. (Marx et al.
2005)(Raina, Ng, and Koller 2006)(Singleton et al. 2014).
Transfer learning from multiple source tasks is much more
challenging; most works aiming to address this problem
focus on classification problems (Duan et al. 2009)(Gao et
al. 2008)(Ge et al. 2014)(Luo et al. 2008)(Yao and Doretto
2010). Moreover, the target classifier is built offline using
a training dataset for the target problem. In contrast, in
our considered setting, the target data arrives sequentially
and the features are not given but need to be discovered
(by performing various tests). In the scenario when the
task data becomes available sequentially online, imitation-
type transfer learning techniques are often adopted where
source policies are applied to the target task initially, while
the target task solution is learned gradually (Madden and
Howley 2004)(Fernández and Veloso 2006)(Torrey et al.
2008b)(Torrey et al. 2008a) However, such works only con-
sider the availability of a single source task, while our work
focuses on multiple source tasks.

Our solution builds on the contextual bandit framework
(Slivkins 2009)(Li et al. 2010)(Tekin, Zhang, and van der
Schaar 2014) to boost learning using policies from source
tasks (e.g. similar diseases or datasets of patients with a sim-
ilar demography) but provides numerous innovations. For
instance, while conventional works on multi-armed bandits
focus on learning the best policy (or policies) among an
fixed set, our algorithm uses the learned semantic similar-
ity between contexts to produce new context-specific target
policies (which may be distinct from existing policies) using
the data accumulated so far for the target domain.

Finally, there has also been work on AI planning based
diagnosis (Sohrabi, Baier, and McIlraith 2010) that models
the process being monitored as a discrete dynamical system
with an associated underlying state transition representation.
These approaches use planning based algorithms to develop
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Figure 1: Computer-aided diagnosis system

diagnoses in the form of posited events that explain a given
set of observations. These approaches do not focus on devel-
oping the schedule of tests and measurements to perform;
instead they observe the results of these tests and aim to
determine the most appropriate diagnosis. In our paper, we
focus on designing the diagnosis policy that determines the
sequence of tests that maximize the diagnosis accuracy and
minimize the test cost.

Table 1 summarizes the comparison with existing works.

Computer-aided Diagnosis System
Figure 1 depicts a generic computer-aided diagnosis sys-
tem designed to help domain experts provide accurate diag-
nosis in a cost effective way. In a cyber-security setting,
the domain expert is a cyber-analyst attempting to diagnose
problems in a computer network in a cost effective man-
ner. In a healthcare setting, the domain expert is a physi-
cian. The entity being analyzed for diagnosis is a patient.
We use θ ∈ Θ to denote the initial exogenous meta infor-
mation about the entity being analyzed, such as the patient’s
basic symptoms and personal medical profile (e.g. gender,
age, weight, medical history etc.). We call θ the context
information about the entity. In our problem formulation, we
assume that the set of possible tests that can be ordered by
the domain expert is finite. LetQ = {1, 2, ..., N} denote this
space, N <∞. We further assume that each test q ∈ Q has
a finite set of possible results, denoted byOq . We also define
an “unknown” test result to be assigned to tests that have not
been performed and that do not provide any information that
can be used for diagnosis.

At any point in time, an entity is assigned with a state



s that represents the known test results that have been per-
formed on that entity. For instance, at any point in time,
a patient may be associated with a state s reflecting the
knowledge gained by performing a series of medical tests on
him/her. In this case, this state does not reflect the patient’s
medical condition but rather the knowledge about the patient
with respect to the medical tests. This state evolves as more
medical tests are executed. Specifically, the cardinality of a
state s is N and each entry sq is the test result to test q. Let
S denote the state space. The initial state of an entity appear-
ing in our system is sinit

q = unknown, ∀q ∈ Q. Depending on
the current entity state s, the computer-aided diagnostic sys-
tem either recommends new tests to be performed to extract
more knowledge needed for an accurate diagnosis or rec-
ommends a diagnosis decision if it has enough information
about the entity. Let the action space be A = {Q,D} where
a ∈ Q represents the recommendation to execute a new test
and a ∈ D represents a recommended diagnosis; they are
kept fixed. We assume that if the expert follows a ∈ D, then
the diagnosis for the current entity case is closed and subse-
quent intervention actions follow. Let ∅ be a special terminal
state which denotes that the case is closed. For an entity k,
let {qk1 , ..., qknk} be the sequence of tests that are executed
and dk be the final diagnosis decision. The diagnosis cost ck
for this entity is defined as ck =

∑
i∈{1,...,nk}

ck(qki )+βck(dk)

where ck(qki ),∀i = 1, ..., nk are the costs incurred by exe-
cuting the tests, ck(dk) is the costs due to incorrect diagno-
sis and β ∈ [0, 1] is a trade-off factor. Our goal is to develop
diagnosis policies that minimize the diagnosis cost.

A diagnostic policy is defined as a set of actions that are
recommended to the domain expert in the various states.
Specifically, a policy is denoted by π = {a(s)}s∈S . Hence,
given a diagnostic policy, after observing the entity state, the
diagnostic system can recommend an action to the domain
expert. Note that during a medical diagnosis process, these
actions are merely recommendations to the experts who
may follow the recommendation or choose different actions
based on their own domain expertise and experience. How-
ever, we will make the assumption in the remaining part of
this paper that the domain expert always follows the recom-
mendation to facilitate our analysis.

At any point in time, the execution of tests on entities
provides additional information on the entities. Such state
transitions are probabilistic and specific to the domain. Let
p(s′|s, q) denote the transition probability from state s to s′

when test q is executed. Note that s and s′ should differ only
in the q-th entry; otherwise p(s′|s, q) = 0. Since taking an
action d ∈ D always leads to a diagnosis and closes the cur-
rent case, we have p(ϕ|s, d) = 1, ∀d ∈ D. Let c(q|s) denote
the expected cost of performing test q on entities in state
s. Let c(d|s) denote the expected cost of making a diag-
nose d on entities in state s. We unify these two types of
costs in a cost function c : A × S → R as a mapping from
the action space and the state space to a real value. In sum,
we call the set of transition probabilities p and the diagnosis
cost function c the problem parameters. These parameters
are Markovian; they depend only on the last state. This is

a reasonable approximation since a state represents all the
knowledge revealed about the entity so far.

Diagnostic policy construction
The optimal diagnostic policy that minimizes the expected
diagnostic cost in each state is defined using the Bell-
man equation:J(a|s) = c(a|s) +

∑
s′

p(s′|s, a)V (s′) where

V (s′) = mina′ J(s′|a′). Thus πopt = {aopt(s)}s∈S such
that ∀s, aopt(s) = argmina J(a|s). Since the entity comes
with the initial state sinit = {unknown}q∈Q, the expected
diagnostic reward is V (sinit). With abuse of notation, we let
V (π) = V (sinit|π) denote the diagnostic cost by using π.

The optimal diagnostic policy making problem can be
solved by backward induction using the estimated prob-
lem parameters from an existing dataset. This is because
when the entity is in a level-n state (i.e. a state in which
n test results are revealed), executing any not yet executed
tests makes the state transition into a level-(n + 1) state.
Since state space size is exponential in the test set size, the
complexity grows as the number of tests increases. Reduc-
ing the solution complexity of this problem is not the main
focus of the present paper; we refer readers interested in this
topic to existing work that provides efficient heuristics algo-
rithms such as (Zubek, Dietterich, and others 2004)(Bonet
and Geffner 2012).

Transfer Learning in Diagnosis
One of the key challenges for many diagnosis systems is
that access to relevant data is limited. In a medical setting,
existing patient datasets often have distributions that do not
necessarily capture the information needed for the accurate
diagnosis in a novel problem domain. The resulting diagno-
sis policies constructed may perform poorly. To address this
issue, we propose to efficiently reuse and transfer knowl-
edge from other older domains to minimize as much as pos-
sible the diagnosis cost in the new domain. In what follows,
we call the diagnosis problem in the new domain the target
problem and the diagnosis problem in the old domain the
source problem.

Algorithm Overview
We consider an online setting where data on entities in
the target domain are received in sequence, indexed by
{1, 2, ..., k, ...}. Due to the lack of a training dataset in the
new domain, it is initially impossible to construct a good
policy for the target problem. Instead, we have a set of K
source policies Π constructed for K related source prob-
lems (e.g. similar diseases or datasets of patients with a sim-
ilar demography). However, the exact relationship and the
effectiveness of these source policies on the target problem
are unknown a priori. Our algorithm begins by exploring the
source policies for entities in the target domain. After accu-
mulating sufficient data on entities for the target problem, it
builds the target policy using the information extracted from
applying the source policies. The algorithm is provided next.
The parameter ρk ∈ [0, 1] is used to control when to adopt
source policies and when to use the newly built target poli-
cies; it is decreasing in k and lim

k→∞
ρk = 0.



Algorithm 1 Transfer Learning with Multiple Sources
1: for each entity k do
2: With probability ρk

3: Select a source policy to apply
4: With probability 1− ρk

5: Apply the target policy
6: After the current case is closed
7: Build the target policy using received data
8: end for

In Algorithm 1, there are two major questions that remain
to be addressed: which source policy to apply (line 3) and
how to build the target policy (line 7). Ideally, we would like
to always apply the most effective source policy. However,
this is impossible since we cannot evaluate the effective-
ness of source policies before the system starts as data is not
available initially. Thus, we learn the effectiveness of differ-
ent source policies online. Moreover, since the source poli-
cies may lead to a different performance on different entities,
we adaptively cluster entities according to the effectiveness
of different source policies in order to further improve the
diagnosis performance. In a medical setting, the algorithm
first learns the best source policy for patients within a larger
range of ages, e.g. patients aged between 10 and 80, and
then based on the learned results, gradually partitions this
age range into smaller intervals. This adaptive clustering of
entities has two functions. First, learning is refined for each
cluster so that diagnosis performance is improved when the
source policy is applied. Second, contexts that are similar to
each other can be learned through this clustering and hence,
context-specific target policies can be constructed using the
data accumulated so far for the target domain.

Source policy selection and adaptive clustering
Let (k1, k2, ..., kt, ...) be the subsequence of received entity
cases where a source policy is adopted according to Algo-
rithm 1. Without loss of generality, we normalize the entity
context space to be Θ ∈ [0, 1]W where W is the context
space dimension. We introduce some concepts of the algo-
rithm as follows: 1) Entity cluster. An entity cluster is rep-
resented by the range of context information that is associ-
ated with entities in the cluster. In this paper, we will con-
sider clusters with the form [iw2

−(l−1)w, (iw + 1)2−(l−1)w]
where iw ∈ {0, 1, ..., 2(l−1)w − 1} for each context dimen-
sion w = 1, ...,W for some positive integer l. Such a clus-
ter is called a level-l cluster. At each time kt when source
policies are applied, the algorithm keeps a set of mutually
exclusive clusters that cover the entire context space. We call
these clusters the active clusters, and denote this set by Ht.
Clearly, we have ∪C∈Ht = Θ, ∀t. 2) Counters. For each
active cluster C, the algorithm maintains several counters:
for each source policy π ∈ Π, MC(π) records the number
of entity cases so far in which π is applied. 3) Diagnosis
cost estimates. For each active cluster C, the algorithm also
maintains the sample mean diagnosis cost estimate r̄C(π)
for each source policy π ∈ Π, using the observed diagnosis
costs of cases that belong to C so far.

Algorithm 2 Policy Selection and Adaptive Clustering
1: InitializeH = Θ, r̄Θ(π) = 0,MΘ(π) = 0, ∀π ∈ Π.
2: for each entity kt do
3: Determine active cluster C ∈ Ht such that θt ∈ C
4: Case 1: ∃π ∈ Π such that MC(π) < γ(t)
5: Randomly select among such policies σt = π
6: Case 2: ∀π ∈ Π, MC(π) ≥ γ(t)
7: Select σt = argmin

π∈Π
r̄C(π).

8: Set MC(σ
t)←MC(σ

t) + 1
9: (The diagnosis reward rt is observed.)

10: Update r̄C(σ
t)

11: Update
∑

π∈Π MC(π) using all past cases.
12: if

∑
π∈Π MC(π) ≥ ζ(l) then

13: Uniformly partition C into 2W level-(l + 1)
14: clusters.
15: Update the set of active clustersHt.
16: Update the counters and cost estimates for all
17: new clusters using the entity cases received
18: so far.
19: end if
20: end for

The algorithm (Algorithm 2) works as follows. When an
entity case kt is received, the algorithm first checks which
active cluster C ∈ Ht it belongs to. Then it investigates
counter MC(π) for all π ∈ Π to see if there exists any
under-explored source policy π such that MC(π) ≤ γ(t, l)
where γ(t, l) is a time- and level-dependent control func-
tion. If there exists such an under-explored policy π, then
the algorithm selects this policy for the current entity case.
This is called an exploration step. If there does not exist any
under-explored policy, then the algorithm selects the policy
with the lowest cost estimate argmin

π∈Π
r̄C(π). This is called

an exploitation step. After the diagnosis cost of the current
entity case is observed, the cost estimate of the selected pol-
icy is updated. Moreover, if

∑
π∈Π

MC(π) ≥ ζ(l), where ζ(l)

is a level-dependent control function, the current cluster C
is partitioned in to 2W level-(l + 1) clusters. From the next
entity case on, C is deactivated and the new level-(l + 1)
clusters are activated. We will show how to select the con-
trol functions γ(t, l) and ζ(l) in the next section.

Cluster-specific target policy construction
Entity clusters for which the estimated best source policies
are the same are considered to be similar and hence, they are
grouped together to form a dataset from which the problem
parameters can be estimated. Using these K set of parame-
ters, we can produce K context-specific target policies.

Prior knowledge
1) The current algorithm assumes that, before the system
starts, there is no data about entities for the target task.
Our algorithm can easily incorporate this information if it
becomes available. Specifically, the reward estimates and
counters are initialized using the existing entity cases instead



of zeros. 2) The current algorithm also assumes the per-
formance of the source policies are unknown for all entity
cases. Therefore, for each entity cluster, all source policies
have to be explored to learn their performance. However, if
we have prior knowledge about the source policies in differ-
ent clusters, then only a subset of the source policies needs
to be learned. For instance, if we know that the source pol-
icy π1 does not perform well for an entity in cluster C, then
there is no need to explore it for all entities in C.

Domain expert overriding
As mentioned, the computer-aided diagnostic system only
makes diagnostic recommendations to the domain expert
who has the option to override the recommended diagnos-
tic policies when he/she has a high confidence of the best
way to execute tests and diagnose based on his/her own
expertise. The proposed system allows such overrides and
the algorithm can be easily modified to incorporate such
changes. Specifically in a medical setting, the counter and
reward update steps can be skipped when the doctor decides
to override the recommendation and uses a different diag-
nostic policy.

Theoretical Performance Evaluation
In this section, we evaluate the performance of the policy
selection and entity clustering algorithm, which is the core
of our transfer learning approach.

Learning regret bound
Let π∗

θ ∈ Π be the best source policy that minimizes
the diagnosis cost for entity cases with context θ. Then
the expected diagnosis cost for the beginning T entity
cases where source policies are adopted is R∗(T ) =
T∑

t=1
Ert(π∗

θt) =
T∑

t=1
Vθt(π∗

θt). By following a learning

strategy σ, the expected diagnosis cost is Rσ(T ) =

E
T∑

t=1
rt(πσ

θt) =
T∑

t=1
Ert(πσ

θt). We use learning regret as the

performance metric, which is the marginal diagnosis cost of
the learning algorithm with respect to the optimal diagnosis
cost, i.e. Reg(T ) = Rσ(T )−R∗(T ).

To enable rigorous regret analysis, we make the following
widely adopted technical assumption below; however, this is
not needed for running the algorithm.

Assumption. (Lipschitz) For each π ∈ Π, there exists L >
0, α > 0 such that for all θ, θ′ ∈ Θ, we have |Vθ(π) −
Vθ′(π′)| ≤ L∥θ, θ′∥α.

The above assumption states that if the entity context
information is similar, then the expected diagnosis cost by
selecting the same diagnostic policy is also similar.

The regret bound depends on the entity context arrival
process. Let Yl(T ) be the number of level-l clusters that
are activated at time T . Let Zl(T ) be the number of level-l
active clusters at time T and lmax(T ) be the maximum level
of clusters for entity kT .

Theorem. Let γ(t, l) = 22αl ln t and ζ(l) = A2pl,
then Reg(T ) ≤

∑lmax(T )
l=1 [Zl(T )K22αl lnT +

Yl(T )(K
∑∞

t=1 t
−2 +A(2LWα/2 + 2)2(p−α)l)].

Proof sketch. We break down the learning regret into
three parts Reg(T ) = Reg1(T ) + Reg2(T ) + Reg3(T )
that are respective regrets due to exploration, selec-
tion of suboptimal policies in exploitation and selection
of near-optimal policies in exploitation. Then we pro-
vide a bound for each of these three parts. Reg1(T )
can be bounded by

∑lmax(T )
l=1 [Zl(T )K22αl lnT ] since the

number of exploration steps increases sublinearly in T .
Reg2(T ) can be bounded by

∑lmax(T )
l=1 Yl(T )K

∑∞
t=1 t

−2

since the probability of choosing a suboptimal policy in
exploitation steps decreases sufficiently rapidly using a
Chernoff-Hoeffding bound. Reg3(T ) can be bounded by∑lmax(T )

l=1 Yl(T )A(2LW
α/2+2)2(p−α)l since marginal cost

of selecting a near-optimal policy decreases sufficiently
rapidly because of our definition of near-optimal poli-
cies.

Corollary. If the entity context arrivals by time kT
is uniformly distributed over Θ, we have Reg(T ) <

T
2α+W
3α+W [K(lnT +

∑∞
t=1 t

−2) + (LWα/2 + 2)22α+W ]

As we can see, the regret bound is sublinear in T and
hence, if T is sufficiently large, then the average regret will
be close to 0, which means that the minimal average diagno-
sis cost is achieved for entity cases in which source policies
are applied.

Diagnosis confidence
Initially, the effectiveness of source policies on the target
problem is unknown. As more entity cases are received, the
effectiveness is gradually learned. We can derive a confi-
dence level of the learned effectiveness of diagnosis policies
as follows:
Proposition. For any active level-l context cluster C, at
any time when policy π has been adopted for MC times on
entities which belong to C, then for any individual context
θ ∈ C, the following confidence relation between the esti-
mated diagnosis reward and the true diagnosis reward holds
P (|r̄C − Vθ| > L(

√
W/2−l)α + ϵ) < e−2ϵ2MC .

Experiments
In this section, we report experimental results using both
synthetic data and real-world patient data. Experiments on
synthetic data are performed to verify the theoretical results
presented above while experiments on real-world data are
performed to assess the efficacy of the proposed algorithm.

Synthetic data
Our algorithm works online and adapts to the accumulating
target cases over time. We have proven the convergence of
its performance to the optimal performance in the last sec-
tion. Now, we use a synthetic dataset to illustrate its fast con-
vergence to the optimal solution. In this simulation, we use
4 tests with binary results. We create two datasets with dif-
ferent state transition probabilities and cost functions. We
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then create a target dataset in which the cases are gener-
ated using these two sets of problem parameters. In partic-
ular, cases with context θ ∈ {[0, 1/4], (1/2, 3/4]} are gen-
erated using one set of parameters while cases with context
θ ∈ {(1/4, 1/2], (3/4, 1]} are generated using the other set.
Figure 2 shows the time-averaging diagnosis cost achieved
by the proposed algorithm. We observe that it converges
quickly to the optimal solution that knows the complete dis-
tribution and similarity information. Figure 3 illustrates the
cost estimates of different source policies during the cluster-
ing process. The estimates gradually become more accurate
and can provide experts with higher confidence in the differ-
ent policies’ performance.

Real-world patient dataset
We test our proposed algorithm using an alarm data set
obtained from the Columbia Medical Center neurological
Intensive Care Unit (ICU). This dataset contains over a mil-
lion alarm events produced by patient monitoring systems
for 581 patients.

Methodology
We artificially treat the patient alarm dataset on each day as
a separate dataset. K such datasets are picked as the source
datasets and another one is picked as the target dataset.
Moreover, the target data is made available to the system
in sequence. We treat each alarm as a medical test. Hence,
only when the test is performed, the corresponding alarm
status is revealed. In the experiments, we focus on predict-
ing whether the patient will have at least one of the two sec-
ondary complications: Pneumonia and Respiratory failure.
The set of tests (alarms) that we consider includes Brady-
cardia, Tachycardia, High Blood Pressure, Low Blood Pres-
sure, High Respiratory Rate. We assign different costs to dif-
feren types of prediction errors. Specifically, we normalized
the cost of a miss detection to be 1 and the cost of a false
alarm to be c1. A uniform cost c2 is assigned for the execu-
tion of any test. In the experiments, we use a single patient
context: the APACHE II (“Acute Physiology and Chronic
Health Evaluation II”) score that evaluates the severity of
illness of our patients upon admission in the ICU.

Baseline approaches
1) Empirical Diagnosis (EM): All medical tests are exe-
cuted and all alarms are revealed. It predicts the complica-
tion if any of the alarms are positive. 2) Average Trans-
fer (AT): In this approach, we combine all source datasets
to estimate the average problem parameters and construct a
new diagnostic policy. This average source policy is applied
to the target cases while the target policy is gradually learnt.
3) MultiSourceTriAdaBoost (MSTAB): This is a modi-
fied version of the state-of-the-art MultiSourceTriAdaBoost
algorithm in (Yao and Doretto 2010) for transfer learning
with multiple sources. We modified the weight update struc-
ture to incorporate the diagnosis cost instead of a plain diag-
nosis accuracy. Since the original algorithm is an offline
algorithm that assumes a training set for the target problem,
we also extended it to produce an online version using batch
updates as more target cases are received.

Results
We report the diagnosis cost results for three sets of experi-
ments in Table 2 for various parameters. The diagnosis cost
is computed by averaging the diagnosis cost of patient cases
from the target patient case set. In all experiments, the pro-
posed transfer learning algorithm significantly outperforms
the baseline approaches by reducing the diagnosis cost up
to 20% against the best baseline approach. We also inves-
tigate the impact of different choices of contexts on the
diagnosis performance. Table 3 shows the achieved diagno-
sis cost by using different contexts for K = 2, c1 = 0.3
and c2 = 0.005. The experiment results indicate that the
ApacheII score is the best context in our problem. Neverthe-
less, the diagnosis cost by using any context is lower than
those achieved by the baseline approaches.

 c2 EM AT MSTAB Proposed 

K = 2, 
c1 = 0.3 

0.01 0.299 0.259 0.246 0.212 
0.005 0.268 0.241 0.231 0.193 
0.001 0.245 0.233 0.224 0.187 

K = 2, 
c1 = 0.5 

0.01 0.357 0.309 0.312 0.292 
0.005 0.332 0.290 0.282 0.267 
0.001 0.302 0.277 0.262 0.260 

K = 3, 
c1 = 0.3 

0.01 0.274 0.260 0.265 0.218 
0.005 0.258 0.239 0.232 0.191 
0.001 0.250 0.226 0.224 0.192 � Table 2: Diagnosis cost comparison

Context Age GCS ApacheII ApachePhys 
Diag. cost 0.222 0.225 0.193 0.205 � Table 3: Impact of contexts

Conclusion
In this paper, we proposed an online transfer learn-
ing approach for differential diagnosis determination and
showed how it can be incorporated as part of a clinical deci-
sion support system to improve the diagnosis performance.
We envision that the proposed methodology can also be used
in other complex diagnosis systems besides clinical diagno-
sis, such as cyber-security, biological and mechanical diag-
nosis.
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