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Abstract—With the availability of traffic sensors data, vari-
ous techniques have been proposed to make congestion predic-
tion by utilizing those datasets. One key challenge in predicting
traffic congestion is how much to rely on the historical data v.s.
the real-time data. To better utilize both the historical and real-
time data, in this paper we propose a novel online framework
that could learn the current situation from the real-time data
and predict the future using the most effective predictor in
this situation from a set of predictors that are trained using
historical data. In particular, the proposed framework uses a
set of base predictors (e.g. a Support Vector Machine or a Bayes
classifier) and learns in real-time the most effective one to use
in different contexts (e.g. time, location, weather condition). As
real-time traffic data arrives, the context space is adaptively
partitioned in order to efficiently estimate the effectiveness of
each predictor in different contexts. We obtain and prove both
short-term and long-term performance guarantees (bounds)
for our online algorithm. Our experiments with real-world
data in real-life conditions show that the proposed approach
significantly outperforms existing solutions.

I. INTRODUCTION

Traffic congestion is caused when the traffic demand
approaches or exceeds the available capacity of the traffic
system. Fortunately, due to thorough sensor instrumentations
of road networks, a large volume of real-time and historical
traffic data at very high spatial and temporal resolutions
has become available. One challenge in predicting traffic
is how much to rely on the historical data vs. the real-time
data. Previous studies [1] [2] showed that depending on the
situation one dataset may be more useful than the other but
there is no holistic approach on when to switch from one
dataset to the other for a more effective prediction. This
becomes even more challenging when considering different
causes for congestions. Our main thesis in this paper is that
we try to learn the current situation from the real-time data
and then predict the future by matching the current situation
to the most similar situation we have seen in the past
(using the historical data). We achieve this in two phases.
First, in an off-line phase, we categorize the historical data
into classes of similar “situations”, for each of which we
train one or more predictors (e.g., an SVM and a Bayes-
Classifier). Next, in an on-line phase, suppose we would
like to predict speed at a location X . We learn which
situation the location X is similar with and choose the most
effective predictors. To identify the most similar situation
and select the most effective predictor, we utilize the context

information of the traffic incidents such as location, time,
weather condition, number of lanes, area type (e.g., business
district, residential), etc. The context can be meta-data but
can also be subsets or functions of features of the data.
The context space is adaptively partitioned online based on
the dimensions and the domain of each feature in order
to efficiently estimate the “reward” of each predictor in
different contexts where the reward is calculated based on
how accurate each predictor has been in predicting, say,
speed value, given the actual speed values we have observed
in the recent past via the real-time data.

Our approach has three important byproducts. First, since
the reward is continuously being updated/aggregated, we
are utilizing what we learn in real-time to adapt to both
short-term and long-term changes. Second, our approach is
agnostic to the congestion cause. Finally, since location and
time are two features of our context space, our approach is
inherently spatiotemporal and takes into consideration the
sensor readings that are spatially and temporally closest to
the target location.

The majority of traffic prediction techniques focused on
predicting traffic in typical conditions (e.g., morning rush
hours) [1], [3]–[5], and more recently in the presence
of accidents (e.g., [3], [6]. Existing techniques are only
applicable to predict one of the scenarios. Moreover, the
model used for prediction is learned offline and thus can-
not adapt (and learn from) dynamically changing traffic
conditions. In our model, the system has access to many
predictors (or classifiers). When there are many classifiers,
another approach is to use ensemble learning [7] [8] [9] [10],
including weighted majority based algorithms [11] [12] [13].
However, most of them provide algorithms which are asymp-
totically converging to an optimal or locally-optimal solution
without providing any rates of convergence. On the contrary,
we prove regret bounds that hold uniformly over time;
the proving technique is adapted from contextual multi-
armed bandits (MAB) framework [14]. Since the learner can
observe the rewards of all classifiers, the considered problem
is more related to prediction with expert advice (PWEA)
[15]. However, we focus on how contextual specialization
of classifiers can be discovered over time to create a strong
classifier from many weak classifiers while existing works
ignore the context information.



II. PROBLEM FORMULATION

A. Problem setting

We consider a set of locations L where traffic sensors
are deployed. These locations can be either on the highways
or arterial streets. In the following, we will fix a location
lo and focus on predicting the traffic at this location when
incidents occur in its vicinity V(lo). We consider an infinite
horizon discrete time system t = 1, 2, ... in which traffic
incidents (e.g. accidents, road construction, road closure and
etc.) occur over time at some location lte ∈ V(lo). Note
that here t is not the absolute time but only represents
the relative sequence order of traffic incidents. The incident
causes immediate effects on the traffic at location lte, which
is summarized in xt ∈ X . The goal is to predict the traffic
impact at location lo in the near future and/or in the long
term.

The system maintains a set of K (weak) base predictors
f ∈ F that can take input of xt and output the traffic
prediction f(xt) ∈ Y for location lo. The prediction space
Y depends on the specific objectives of the system. These
base predictors are constructed using historical data before
the system operates and hence, they may not perform well
online since the transportation environment may change. Our
idea is to build a strong ensemble predictor using these
possibly weak base predictors by exploiting the incident
context information, such as incident time, location and other
attributes. This context information can better characterize
the “situation” of an incident than other features of the traffic
data such as traffic speed. We use θt ∈ Θ to denote the
context information associated with the t-th incident where
Θ is a D-dimensional space and D is the number of types
of context used. Without loss of generality, we normalize
the context space Θ to be [0, 1]D. For each incident, based
on the context information, the system selects the prediction
of one of the base predictors as the final traffic prediction,
denoted by yt ∈ Y . Note again that since t is only the
sequence order of the incidents, yt represents the future
traffic of the t-th incident. Eventually, the real traffic pattern
at location lo is revealed for the t-th incident, denoted by
ŷt ∈ Y . By comparing the prediction yt and the realization
ŷt, a reward rt is obtained according to any general reward
rt = R(yt, ŷt). The key idea is that even though the base
predictors do not work well in all contexts, they may work
well in certain contexts. By exploiting the multi-predictor
diversity, a strong ensemble predictor can be constructed.

B. Performance metric for our algorithm

The goal of the system is to maximize the prediction
rewards by using the best predictor for each traffic incident.
Since we do not have the complete knowledge of the per-
formance of all base predictors for all contexts in the online
environment, we will develop online learning algorithms
that learn to select the best predictors for different contests
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Figure 1. Traffic impact prediction system block.

over time. The benchmark when evaluating the performance
of learning algorithms is the optimal solution in which
the system follows the prediction of the best predictors
in F , i.e. the predictor with the highest expected reward
for context θ(t), at time t. Let πf (θ) = E{R(f(x), ŷ)|θ}
be the expected reward (e.g. accuracy) of a predictor f
conditional on the context information θ. Given context
θ, the optimal strong predictor followed by the complete
knowledge benchmark is f∗(θ) := argmax

f∈F
πf (θ), ∀θ ∈ Θ.

Let σ be a learning algorithm and fσ(t) be the predic-
tor selected by σ at time t, then the regret of learning

by time T is defined as Reg(T ) :=
T∑

t=1
πf∗(θt)(θ

t) −

E

[
T∑

t=1
R(fσ(t)(xt), ŷt)

]
where the expectation is taken with

respect to the randomness of the prediction, true traffic
pattern and predictors selected. The regret characterizes the
loss incurred due to the unknown system dynamics and
gives the convergence rate of the total expected reward of
the learning algorithm to the value of the optimal strong
predictor. Any algorithm whose regret is sublinear, i.e.
Reg(T ) = O(T γ) such that γ < 1, will converge to the
optimal solution in terms of the average reward. The regret
of learning also gives a measure for the rate of learning. l

III. CONTEXT-AWARE ADAPTIVE TRAFFIC PREDICTION

A. Algorithm description

First we introduce several useful concepts for describing
the proposed algorithm: i) Context subspace. A context
subspace C is a subspace of the entire context space Θ,
i.e. C ⊆ Θ. In this paper, we will consider only context
subspaces that are created by uniformly partitioning the con-
text space on each dimension, which is enough to guarantee
sublinear learning regrets. Thus, each context subspace is
a D-dimensional hypercube with side length being 2−l for
some l. We call such a hypercube a level-l subspace. ii)
Context space partition. A context space partition P is a set
of non-overlapping context subspaces that cover the entire
context space. Since our algorithm will adaptively partition
the context space by adaptively removing subspaces from
the partition and adding new subspaces into the partition,
the context space partition is time-varying depending on the
context arrival process of the traffic incidents. Initially, the



context space partition includes only the entire context space,
i.e. P0 = {Θ}. iii) Active context subspace. A context
subspace C is active if it is in the current context space
partition Pt, at time t. For each active context subspace
C ∈ Pt, the algorithm maintains the sample mean reward
estimates r̄tf (C) for each for the predictor for the context
arrivals to this subspace. For each active subspace C ∈ Pt,
the algorithm also maintains a counter M t

C that records the
number of context arrivals to C.

The algorithm works as follows (See Algorithm 1). We
will describe the algorithm in two parts. The first part
(line 3 - 8) is the predictor selection and reward estimates
update. When an incident occurs, the data xt representing
the immediate traffic sensor data along with the incident
context information θt are sent to the system. The algorithm
first checks to which active subspace Ct ∈ Pt in the
current partition Pt the context θt belongs (line 3). Next,
the algorithm activates all predictors and obtain all their
predictions f(xt),∀f ∈ F given the input xt (line 4).
However, it selects only one of the prediction as the final
prediction yt, according to the selection as follows (line 5)

yt = f∗(xt) where f∗ = argmax
f

r̄tf (C
t) (1)

In words, the selected predictor has the highest reward
estimate for the context subspace Ct among all predictors.
This is an intuitive selection based on the sample mean
rewards. Next the counter M t

C steps by 1 since we have
one more sample in C. When the true traffic pattern ŷt is
revealed (line 6), the sample mean reward estimates for all
predictors are then updated (line 7-8).

The second part of the algorithm, namely the adaptive
context partitioning, is the key of our algorithm (line 9 -
11). At the end of each slot t, the algorithm decides whether
to further partition the current subspace Ct, depending on
whether we have seen sufficiently many incident arrivals
in Ct. More specifically, if M t

C ≥ A2lp, then Ct will be
further partitioned (line 9), where l is the subspace level
of Ct, A > 0 and p > 0 are two design parameters.
When partitioning is needed, Ct is uniformly partitioned
into 2D smaller hypercubes (each hypercube is a level-l+1
subspace with side-length half of that of Ct). Then Ct is
removed from the active context subspace set P and the
new subspaces are added into P (line 11). In this way,
P is still a partition whose subspaces are non-overlapping
and cover the entire context space. Intuitively, the context
space partitioning process can help refine the learning in
smaller subspaces. In the next subsection, we will show
that by carefully choosing the design parameters A and
p, we can achieve sublinear learning regret in time, which
implies the optimal time-average prediction performance can
be achieved.

Algorithm 1 Context-aware Traffic Prediction (CATP)
1: Initialize P0 = {Θ}, r̄f (Θ) = 0, ∀f ∈ F , M0

Θ = 0.
2: for each traffic incident (time slot t) do
3: Determine Ct ∈ Pt such that θt ∈ Ct.
4: Generate the predictions results for all predictors

f(xt),∀f .
5: Select the final prediction yt = f∗(xt) according to

(1).
6: The true traffic pattern ŷt is revealed.
7: Update the sample mean reward r̄f (C

t), ∀f .
8: M t

C = M t
C + 1.

9: if M t
C ≥ A2pl then

10: Ct is further partitioned.
11: end if
12: end for

B. Learning regret analysis

In this subsection, we analyze the regret of the proposed
traffic prediction algorithm. The following technical assump-
tion is needed

Assumption 1: For each f ∈ F , there exists L > 0, α > 0
such that for all θ, θ′ ∈ Θ, we have

πf (θ)− πf (θ
′)| ≤ L∥θ − θ′∥α (2)

This states each predictor achieves similar expected rewards
(accuracies) for similar contexts.

The following theorem establishes the regret bound when
the context arrivals are uniformly distributed over the context
space, which is the worst case arrival process for regret
minimization.

Theorem 1: If the context arrival by time T is uniformly
distributed over the context space, the regret is upper-
bounded by T

D+2α
D+3α 2(D+2α)l(2LDα/2 + 2 + log(T )) +

T
D

D+3α 2Dl2K
∞∑
t=0

t−2).

We have shown that the regret upper bound is sublinear
in time, implying that the average traffic prediction rewards
(e.g. accuracy) achieves the optimal reward as time goes to
infinity. Moreover, it also provides performance bounds for
any finite time T rather than the asymptotic result. Ensuring
a fast convergence rate is important for the algorithm to
quickly adapt to the dynamically changing environment.

IV. EXPERIMENTS

A. Experimental setup

1) Dataset: Our experiment utilizes a real-world traf-
fic dataset, which includes both real-time and historically
archived data since 2010. The dataset consists of two parts:
(i) Traffic sensor data from loop-detectors. There are totally
9300 sensors located on the highways and arterial streets
of Los Angeles County (covering 5400 miles cumulatively)
collecting several main traffic parameters such as occupancy,



Proposed NB SVM WM PAN
Upstream highway 0.72 0.65 0.55 0.59 0.66
Inter highway 0.70 0.61 0.61 0.55 0.57
Arterial way 0.92 0.84 0.57 0.76 0.86

Table I
PREDICTION ACCURACY COMPARISON FOR λ = 0.5

volume and speed at the rate of 1 reading per sensor per
minute; (ii) Traffic incidents data. This dataset contains
the traffic incident information in the same area as in the
traffic sensor dataset. On average, 400 incidents occur per
day and the dataset includes detailed information of each
incident, including the severity and location information of
the incident as well as the incident type etc.

2) Evaluation methods: We will evaluate the prediction
accuracy in different spatial settings, including the upstream
stretch of the highway, its adjacent arterial way and the
intersected highway. For each spatial setting, we choose the
traffic sensors located at around 100 locations, and retrieve
the accidents from its nearby highway from 2012 to 2013
(around 300 for each location. The system aims to predict
whether a nearby incident has an impact of the selected
location. If the traffic speed drop exceeds λ (in percentage),
then the location is labeled as being affected by the nearby
incident. We will show the results for different values of
λ. The context information that we use in the experiments
include the incident start time (peak hour or off-peak hour,
weekdays or weekends), incident type (vehicle collision,
hazard, etc.) and the distance between the incident location
and the selected location for traffic prediction. We use the
simple binary reward function for evaluation. That is, the
system obtains a reward of 1 if the prediction is correct and
0 otherwise.

3) Base predictors and baseline approaches: We con-
struct base predictors in typical settings using Support
Vector Machine (SVM) and Naive Bayes (NB). The baseline
approaches that we compare against include the single base
predictors using SVM and NB and ensemble learning tech-
niques based weighted majority [11]–[13]. We also compare
with our prior work [1], labeled by “PAN”.

B. Results

We compare the prediction accuracy of the proposed
algorithm against the various baseline solutions in Table I
and II for three types of spatiotemporal prediction problems.
The impact threshold is set to be λ = 0.5, 0.3, respec-
tively. It can be seen that our proposed method performs
consistently better than the baseline approaches. Although
the accuracy of offline benchmarks improves with a larger
training dataset, they are still worse than our proposed online
algorithm which can adapt to changes in transportation envi-
ronment online. Among the different types of spatiotemporal
prediction, the accuracy for the locations on arterial streets
is higher than those on upstream and intersected highway.

Proposed NB SVM WM PAN
Upstream highway 0.90 0.83 0.46 0.62 0.85
Inter highway 0.79 0.70 0.59 0.55 0.71
Arterial way 0.86 0.79 0.54 0.54 0.81

Table II
PERFORMANCE COMPARISON FOR λ = 0.3

V. CONCLUSIONS

In this paper, we proposed a framework for online traffic
prediction. The framework utilizes the real-time data to
select the most effective predictor in different contexts,
thereby self-adapting to the dynamically changing traffic
conditions. We systematically proved both short-term and
long-term performance guarantees for our algorithm and our
experiments on real-world dataset verified the efficacy of the
proposed approach. As a future work, we plan to also adapt
the individual base predictors using real-time data in addition
to selecting the most effective one to use.
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