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Distributed Multi-Agent Online Learning Based on
Global Feedback

Jie Xu, Cem Tekin, Simpson Zhang, and Mihaela van der Schaar

Abstract—In many types of multi-agent systems, distributed
agents cooperate with each other to take actions with the goal of
maximizing an overall system reward. However, in many of these
systems, agents only receive a (perhaps noisy) global feedback
about the realized overall reward rather than individualized
feedback about the relative merit of their own actions with
respect to the overall reward. If the contribution of an agent’s
actions to the overall reward is unknown a priori, it is crucial
for the agents to utilize a distributed algorithm that still allows
them to learn their best actions. In this paper, we rigorously
formalize this problem and develop online learning algorithms
which enable the agents to cooperatively learn how to maximize
the overall reward in these global feedback scenarios without
exchanging any information among themselves. We prove that,
if the agents observe the global feedback without errors, the
distributed nature of the considered multi-agent system results
in no performance loss compared with the case where agents can
exchange information. When the agents’ individual observations
are erroneous, existing centralized algorithms, including popular
ones like UCB1, break down. To address this challenge, we
propose a novel class of distributed algorithms that are robust
to individual observation errors and whose performance can be
analytically bounded. We prove that our algorithms’ learning
regrets - the losses incurred by the algorithms due to uncertainty
- are logarithmically increasing in time and thus the time average
reward converges to the optimal average reward. Moreover, we
also illustrate how the regret depends on the size of the action
space, and we show that this relationship is influenced by the
informativeness of the reward structure with regard to each
agent’s individual action. We prove that when the overall reward
is fully informative, regret is linear in the total number of actions
of all the agents. When the reward function is not informative,
regret is linear in the number of joint actions. Our analytic and
numerical results show that the proposed learning algorithms
significantly outperform existing online learning solutions in
terms of regret and learning speed. We illustrate how our
theoretical framework can be used in practice by applying it to
online Big Data mining using distributed classifiers. However, our
framework can be applied to many other applications including
online distributed decision making in cooperative multi-agent
systems (e.g. packet routing or network coding in multi-hop
networks), cross-layer optimization (e.g. parameter selection in
different layers), multi-core processors etc.

Index Terms—Multi-agent learning, online learning, multi-
armed bandits, Big Data mining, distributed cooperative learning,
reward informativeness.

I. INTRODUCTION

In this paper, we consider a multi-agent decision making and
learning problem, in which a set of distributed agents select
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actions from their own action sets in order to maximize the
overall system reward which depends on the joint action of
all agents. In the considered scenario, agents do not know a
priori how their actions influence the overall system reward,
or how their influence may change dynamically over time.
Therefore, in order to maximize the overall system reward,
agents must dynamically learn how to select their best actions
over time. But agents can only observe/measure the overall
system performance and hence, they only obtain global feed-
back that depends on the joint actions of all agents. Since
individualized feedback about individual actions is absent,
it is impossible for the agents to learn how their actions
alone affect the overall performance without cooperating with
each other. However, because agents are distributed they are
unable to communicate and coordinate their action choices.
Moreover, agents’ observations of the global feedback may
be subject to individual errors, and thus it may be extremely
difficult for an agent to conjecture other agents’ actions
based solely on its own observed reward history. The fact
that individualized feedback is missing, communication is
not possible, and the global feedback is noisy makes the
development of efficient learning algorithms which maximize
the joint reward very challenging. Importantly, the considered
multi-agent learning scenario differs significantly from the
existing solutions [12][20][21], in which agents receive indi-
vidualized rewards. To help illustrate the differences, Figures
1(a) and (b) portray conventional learning in multi-agent
systems based on individualized feedback and the considered
learning in multi-agent systems based on global feedback with
individual noise, respectively. The considered problem has
many application scenarios. For instance, in a stream mining
system that uses multiple classifiers for event detection in
video streams, individual classifiers select operating points
to classify specific objects or actions of interest, the results
of which are synthesized to derive an event classification
result. If the global feedback is only about whether the event
classification is correct or not, individualized feedback about
individual contribution is not available. For another instance, in
a cooperative communication system, a set of wireless nodes
forward signals of the same message copy to a destination
node through noisy wireless channels. Each forwarding node
selects its transmission scheme (e.g. power level) and the des-
tination combines the forwarded signals to decode the original
message using, e.g., a maximal ratio combination scheme.
Since the message is only decoded using the combined signal
but not individual signals, only a global reward depending on
the joint effort of the forwarding nodes is available but not the
nodes’ individual contributions.
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Fig. 1. Learning in multi-agent systems with (a) individualized feedback;
(b) global feedback (this paper).

In this paper, we formalize for the first time the above multi-
agent decision making framework and propose a systematic
solution based on the theory of multi-armed bandits [9][10].
We propose multi-agent learning algorithms which enable the
various agents to individually learn how to make decisions
to maximize the overall system reward without exchanging
information with other agents. In order to quantify the loss
due to learning and operating in an unknown environment,
we define the regret of an online learning algorithm for the
set of agents as the difference between the expected reward
of the best joint action of all agents and the expected reward
of the algorithm used by the agents. We prove that, if the
global feedback is received without errors by the agents,
then all deterministic algorithms can be implemented in a
distributed manner without message exchanges. This implies
that the distributed nature of the system does not introduce
any performance loss compared with a centralized system
since there exist deterministic algorithms that are optimal.
Subsequently, we show that if agents receive the global feed-
back with different (individual) errors, existing deterministic
algorithms may break down and hence, there is a need for
novel distributed algorithms that are robust to such errors.
For this, we develop a class of algorithms which achieve
a logarithmic upper bound on the regret, implying that the
average reward converges to the optimal average reward1.
The upper bound on regret also gives a lower bound on
the convergence rate to the optimal average reward. For
our first algorithm, DisCo, we start without any additional
assumptions on the problem structure and show that the regret
is still logarithmic in time. Although, the time order of the
regret of the DisCo algorithm is logarithmic, due to its linear
dependence on the cardinality of the joint action space, which
increases exponentially with the number of agents, the regret
is large and the convergence rate is very slow with many
agents. Next, we define the informativeness of the overall
reward function based on how effectively agents are able
to distinguish the impact of their actions from the actions

1It is shown in [9] that logarithmic regret is the best possible even for simple
single agent learning problems. However, convergence to the optimal reward is
a much weaker result than logarithmic regret. Any algorithm with a sublinear
bound on regret will converge to the optimal average reward asymptotically.

of others, and we exploit this informativeness in order to
design improved learning algorithms. When the overall reward
function is fully informative about the optimality of individual
actions, the improved learning algorithm Disco-FI achieves a
regret that is linear in the size of the action space of each
agent, and logarithmic in time. The crucial idea behind this
result is that, when the overall reward is fully informative,
instead of using the exact reward estimates of every joint
action, the agents can use the relative reward estimates of
each individual action to learn their optimal actions at a much
faster speed. Finally, we consider a more general setting where
the global rewards are only partially informative. Our third
algorithm (DisCo-PI) works when the overall reward function
is informative for a group of agents instead of each agent
individually, and it achieves a regret which is in between
the first two algorithms. As an application of our theoretical
framework, we then run simulations utilizing our algorithms
for the problem of online Big Data mining using distributed
classifiers [3][?][5][6]. We show that the proposed algorithms
achieve a very high classification accuracy when compared
with existing solutions. Our framework could also be similarly
applied to many other applications including online distributed
decision making in cooperative multi-agent systems such as
multi-path or multi-hop networks, cross-layer design, multi-
core processing systems, etc.

The remainder of this paper is organized as follows. In
Section II, we describe the related work and highlight the
differences from our work. In Section III, we build the system
model and define the regret of a learning algorithm with
respect to the optimal policy. In Section IV, we characterize
the class of algorithms that can be implemented by distributed
agents without errors, and we show that with errors centralized
algorithms may break down. In Section V, the basic distributed
cooperative learning algorithm is proposed and its regret
performance is analyzed. Two improved learning algorithms,
for fully informative and partially informative overall reward
functions, are developed and analyzed in Sections VI and VII.
Some discussions and extensions are provided in Section VIII.
In Section IX, we evaluate the proposed algorithms through
numerical results for the problem of Big Data stream mining.
Finally, the concluding remarks are given in Section X.

II. RELATED WORKS

The literature on multi-armed bandit problems can be traced
back to [7][8] which studies a Bayesian formulation and
requires priors over the unknown distributions. In our paper,
such information is not needed. A general policy based on
upper confidence bounds is presented in [9] that achieves
asymptotically logarithmic regret in time given that the re-
wards from each arm are drawn from an independent and
identically distributed (i.i.d.) process. It also shows that no
policy can do better than Ω(K ln t) 2 (i.e. linear in the number
of arms and logarithmic in time) and therefore, this policy
is order optimal in terms of time. In [10], upper confidence
bound (UCB) algorithms are presented which are proved to
achieve logarithmic regret uniformly over time, rather than

2 We adopt the standard asymptotic notations Ω(·) and O(·) as in [24].
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only asymptotically. These policies are shown to be order
optimal when the arm rewards are generated independently
of each other. When the rewards are generated by a Markov
process, algorithms with logarithmic regret with respect to the
best static policy are proposed in [14] and [15]. However, all of
these algorithms intrinsically assume that the reward process
of each arm is independent, and hence they do not exploit
any correlations that might be present between the rewards
of different arms. In this paper the rewards may be highly
correlated, and so it is important to design algorithms that
take this into account.

Another interesting bandit problem, in which the goal is
to exploit the correlations between the rewards, is the com-
binatorial bandit problem [23]. In this problem, the agent
chooses an action vector and receives a reward which depends
on some linear or non-linear combination of the individual
rewards of the actions. In a combinatorial bandit problem the
set of arms grows exponentially with the dimension of the
action vector; thus standard bandit policies like the one in
[10] will have a large regret. The idea in these problems is to
exploit the correlations between the rewards of different arms
to improve the learning rate and thereby reduce the regret
[11][12]. Most of the works on combinatorial bandits assume
that the expected reward of an arm is a linear function of
the chosen actions for that arm. For example [13] assumes
that after an action vector is selected, the individual rewards
for each non-zero element of the action vector are revealed.
Another work [22] considers combinatorial bandit problems
with more general reward functions, defines the approximation
regret and shows that it grows logarithmically in time. The
approximation regret compares the performance of the learning
algorithm with an oracle that acts approximately optimally,
while we compare our algorithm with the optimal policy. This
work also assumes that individual observations are available.
However, in this paper we assume that only global feedback is
available and individuals cannot observe each other’s actions.
Agents have to learn their optimal actions based only on
the feedback about the overall reward. Other bandit problems
which use linear reward models are studied in [14][15][16].
These consider the case where only the overall reward of the
action profile is revealed but not the individual rewards of each
action. However, our analysis is not restricted to linear reward
models, but instead much more general. In addition, in most
of the previous work on multi-armed bandits [9][10][11][12],
the rewards of the actions (arms) are assumed to come from an
unknown but fixed distribution. We also have this assumption
in most of our analysis in this paper. However, in Section VII
we propose learning algorithms which can be used when the
distribution over rewards is changing over time (i.e. exhibits
accuracy drift3).

Another line of work considers online optimization prob-
lems, where the goal is to minimize the loss due to learning
the optimal vector of actions which maximizes the expected
reward function. These works show sublinear (greater than
logarithmic) regret bounds for linear or submodular expected

3Accuracy drift is more general than concept drift and is formally defined
later in Section VIII.
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reward functions, when the rewards are generated by an
adversary to minimize the gain of the agent. The difference of
our work is that we consider a more general reward function
and prove logarithmic regret bounds. Recently, distributed
bandit algorithms are developed in [28] in network settings.
In that work, agents have the same set of arms with the
same unknown distributions and are allowed to communicate
with neighbors to share their observed rewards. In contrast,
in the current paper, agents have distinct sets of arms, the
reward depends on the joint action of agents and agents do
not communicate at run-time.

Table I summarizes the comparison with existing works on
bandits.

III. SYSTEM MODEL

There are N agents indexed by the setN = {1, 2, ..., N}. Each
agent has access to an action set An, with the cardinality of
the action set denoted by Kn = |An|. Since we model the
system using the multi-armed bandit framework, we will use
“arm” and “action” interchangeably in this paper. In addition
to the number of its own arms, each agent n knows the number
of arms Kj of all the other agents j ̸= n. The model is set
in discrete time t = 1, 2, ..., T . In each time slot, each agent
selects a single one of its own arms an(t) ∈ An. Agents are
distributed and thus cannot observe the arm selections of the
other agents. We denote by a(t) the vector of arm selections
by all the agents at time t, which we call the joint arm that is
selected at time t.

Given any joint arm selection, a random reward rt(a(t))
will be generated according to an unknown distribution, with
a dynamic range bounded by a value D′. For now, we will as-
sume that this global reward is i.i.d. across time. We denote the
expected reward given a selection a(t) by µ(a)=E[rt(a(t))].
The agents do not know the reward function rt(a(t)) initially
and must learn it over time. Every period each agent n
privately observes a signal rnt = rt + ϵnt , equal to the global
reward rt plus a random noise term ϵnt . We assume that ϵnt
has zero mean, is bounded in magnitude by D′′ and i.i.d.
across time, but it does not need to be i.i.d. across agents.
Let D = D′ + D′′. Agents cannot communicate, so at any
time t each agent has access to only its own history of noisy
reward observations Hn

t = {rnτ }tτ=1.
Agents operate according to an algorithm πn(Hn

t ), which
tells it which arm to choose after every history of observations.
This algorithm can be deterministic, meaning that given any
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history it will map to a unique arm, or probabilistic, meaning
that for some histories it will map to a probability distribution
over arms. Let π(H1

t , ...,HN
t )={π1(H1

t ), ..., πN (HN
t )} denote

the joint algorithm that is used by all agents after every possi-
ble history of observations. Since agents cannot communicate,
the joint algorithm may only select actions for each agent
based on that agent’s private observation history. We denote
the joint arm selected at time t given the joint algorithm
as aπ(t). Fixing any joint algorithm, we can compute the
expected reward at time 0 as E

∑T
t=1 rt(a

π(t)).
This paper will propose a group of joint algorithms that can

achieve sublinear regret in time given different restrictions on
the expected reward function µ(a). Denote the optimal joint
action by a∗ := argmax

a
µ(a). We will always assume that the

optimal joint action is unique. The regret of a joint algorithm
π(H1

t , ...,HN
t ) is given by

R(T ;π) := Tµ(a∗)− E
T∑

t=1

rt(a
π(t)) (1)

Regret gives the convergence rate of the total expected
reward of the learning algorithm to the value of the optimal so-
lution. Any algorithm whose regret is sublinear will converge
to the optimal solution in terms of the average reward.

IV. ROBUSTNESS OF ALGORITHMS WITH DISTRIBUTED
IMPLEMENTATION

In the considered setting, there is no individual reward
observation associated with each individual arm but only an
overall reward which depends on the arms selected by all
agents. Therefore agents have to learn how their individual
arm selections influence the overall reward, and choose the
best joint set of arms in a cooperative but isolated manner.
In general, agents may observe different noisy versions of the
overall reward realization at each time, so we would like the
algorithms to be robust to errors and perform efficiently in a
noisy environment. But we will start by considering situations
where there are no errors, and show that in this case agents
are able to achieve the optimal expected reward even if they
are distributed and unable to communicate.
A. Scenarios without individual observation errors

Let Πc be the set of algorithms that can be implemented in
a scenario where agents are allowed to exchange messages
(reward observations, selected arms etc.) at run-time. Let
Πd be the set of algorithms that can be implemented in
scenarios where agents cannot exchange messages at run-
time. Obviously Πd ⊆ Πc. At the first sight, it seems that
the restrictions on communication may result in efficiency
loss compared to the scenario where agents can exchange
messages. Next, we prove a perhaps surprising result – there is
no efficiency loss even if agents cannot exchange messages at
run-time as long as the agents observe the same overall reward
realization in each time slot. Such a result is thus applicable
if there are no errors, or even if the error terms, ϵt , are the
same for every agent at every time t.

Theorem 1: If agents observe the same reward realization
in each time slot, then min

π∈Πc
R(T ;π) = min

π∈Πd
R(T ;π), ∀T .

Proof: See Appendix A in [31].
Theorem 1 reveals that even if agents are distributed and not

able to exchange messages at run-time, all existing determin-
istic algorithms proposed for centralized scenarios can still be
used when agents observe the same reward realizations. The
reason is that even though agents cannot directly communicate,
as long as they know the algorithms of the other agents before
runtime they can correctly predict which arms the other agents
will choose based on the global reward history. In particular,
the classic UCB1 algorithm can be implemented in distributed
scenarios without loss of performance.

B. Scenarios with individual observation errors

When agents observe different noisy versions of the reward
realizations, it is difficult for them to infer the correct actions
of other agents based on their own private reward histories
since their beliefs about others could be wrong and incon-
sistent. For instance, one agent may observe a high reward
for a joint arm, while another agent observes a low reward.
Then the first agent may decide to keep playing that joint
arm, and believe that the other agent is also still playing
it, while in actuality the other agent has already moved on
to testing other joint arms. In such scenarios, even a single
small observation error could cause inconsistent beliefs among
agents and lead to error propagation that is never corrected in
the future. In Proposition 1, we show this effect for the classic
UCB1 algorithm and prove that UCB1 is not robust to errors
when implemented in a distributed way.

Proposition 1: In distributed networks where agents do not
exchange messages at run-time, if the observations of the
overall reward realization are subject to individual errors,
then the expected regret of the distributed version of UCB1
algorithm, in which each agent keeps an instance of UCB1 for
its own actions and N −1 different instances of UCB1 for the
actions of other agents, can be linear.

Proof: See Appendix B in [31].
Proposition 1 implies that even if we implement existing

deterministic algorithms such as UCB1 for distributed agents
using the reward history, there is no guarantee on their per-
formance when individual observation errors exist. Therefore,
there is a need to develop new algorithms that are robust to
errors in distributed scenarios. In the next few sections, we will
propose such a class of algorithms that are robust to individual
errors and can achieve logarithmic regret in time even in the
noisy environment.

V. DISTRIBUTED COOPERATIVE LEARNING ALGORITHM

In this section, we propose the basic distributed cooperative
learning (DisCo) algorithm which is suitable for any overall re-
ward function. The proposed learning algorithm achieves log-
arithmic regret (i.e. R(T ) = O(

∏N
n=1 Kn lnT )). In Sections

VI and VII, we will identify some useful reward structures and
exploit them to design improved learning algorithms (DisCo-
FI and DisCo-PI algorithms) which achieve even better regret
results.
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A. Description of the Algorithm

The DisCo algorithm is divided into phases: exploration and
exploitation. Each agent using DisCo will alternate between
these two phases, in a way that at any time t, either all agents
are exploring or all are exploiting. In the exploration phase,
each agent selects an arm only to learn about the effects on the
expected reward, without considering reward maximization,
and updates the reward estimates of the arm it selected. In the
exploitation phase, each agent exploits the best (estimated)
arm to maximize the overall reward.

Knowledge, Counters and Estimates: There is a determin-
istic control function ζ(t) of the form ζ(t) = A ln t commonly
known by all agents. This function will be designed and deter-
mined before run-time, and thus is an input of the algorithm.
Each exploration phase has a fixed length of L1 =

∏N
n=1 Kn

slots, equal to the total number of joint arms. Each agent main-
tains two counters 4. The first counter γ(t) records the number
of exploration phases that they have experienced by time
slot t. The second counter E(t) ∈ {0, 1, ..., L1} represents
whether the current slot is an exploration slot and, if yes, which
relative position it is at. Specifically, E(t) = 0 means that the
current slot is an exploitation slot; E(t) > 0 means that the
current slot is the E(t)-th slot in the current exploration phase.
Both counters are initialized to zero: γ(0) = 0, E(0) = 0.
Each agent n maintains L1 sample mean reward estimates
r̄n(l) ∀l ∈ {1, ..., L1}, one for each relative slot position
in an exploration phase. Let bnl denote the arm selected by
agent n in the l-th position in an exploration phase. These
reward estimates are initialized to be r̄n(l) = 0 and will
be updated over time using the realized rewards (the exact
updating method will be explained shortly).

Phase Transition: Whether a new slot t is an exploration
slot or an exploitation slot will be determined by the values
of ζ(t), γ(t) and E(t). At the beginning of each slot t, the
agents first check the counter E(t) to see whether they are
still in the exploration phase: if E(t) > 0, then the slot is an
exploration slot; if E(t) = 0, whether the slot is an exploration
slot or an exploitation slot will then be determined by γ(t) and

4Agents maintain these counters by themselves, γn(t), En(t) ∀n. How-
ever, since agents update these counters in the same way, the superscript for
the agent index is neglected in our analysis.

ζ(t). If γ(t) ≤ ζ(t), then the agents start a new exploration
phase, and at this point E(t) is set to be E(t) = 1. If γ(t) >
ζ(t), then the slot is an exploitation slot. At the end of each
exploration slot, counter E(t+1) for the next slot is updated to
be E(t+1)← mod(E(t)+1, L1+1). When E(t+1) = 0, the
current exploration phase ends, and hence the counter γ(t+1)
for the next slot is updated to be γ(t+1)← γ(t)+1. Figure 2
provides the flowchart of the phase transition for the algorithm.

Prescribed Actions: The algorithm prescribes different
actions for agents in different slots and in different phases.

(i) Exploration phase: As clear from the Phase Transition,
an exploration phase consists of L1 slots. In each phase,
the agents select their own arms in such a way that every
joint arm is selected exactly once. This is possible without
communication if agents agree on a selection order for the
joint arms before run-time. At the end of each exploration
slot (the lth slot), r̄n(l) is updated to

r̄n(l)← (γ(t)− 1)r̄n(l) + rnt
γ(t)

(2)

Note that the observed reward realization rnt at time t may
be different for different agents due to errors.

(ii) Exploitation phase: Each exploitation phase has a vari-
able length which depends on the control function ζ(t) and
counter γ(t). At each exploitation slot t, each agent n selects
an = {bnl∗ : l∗ = argmax

l
r̄n(l)}. That is, each agent n

selects the arm with the best reward estimate among r̄n(l),
∀l ∈ {1, ..., L1}. Note that in the exploitation slots, an agent
n does not need to know other agents’ selected arms. Since
agents have individual observation noises, it is also possible
that l∗ is different for different agents.
B. Analysis of the regret

At any exploitation slot, agents need sufficiently many
reward observations from all sets of arms in order to estimate
the best joint arm correctly with a probability high enough
such that the expected number of mistakes is small. On the
other hand, if the agents spend too much time in explor-
ing, then the regret will be too large because they are not
exploiting the best joint arm sufficiently often. The control
function ζ(t) determines when the agents should explore and
when they should exploit and hence balances exploration and
exploitation. In Theorem 2, we will establish conditions on the
control function ζ(t) such that the expected regret bound of the
proposed DisCo algorithm is logarithmic in time. Let ∆max =
max
a ̸=a∗

{µ(a∗)−µ(a)} be the maximum reward loss by selecting

any suboptimal joint arm, and let ∆min = min{
a ̸=a∗

µ(a∗)−µ(a)}

be the reward difference between the best joint arm and the
second-best joint arm.

Theorem 2: If ζ(t) = A ln t with A > 2
(

D
∆min

)2
, then the

expected regret of the DisCo algorithm after any number T
periods is bounded by

R(T ) ≤ AL1∆
max lnT +B1 (3)

where B1 = L1∆
max +

∑∞
t 2NL1∆

maxt
−A

2

(
∆min

D

)2

is a
constant.

Proof: See Appendix C in [31].
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The regret bound proved in Theorem 2 is logarithmic in
time which guarantees convergence in terms of the average
reward, i.e. lim

T→∞
E[R(T )]/T = 0. In fact, the order of the

regret bound, i.e. O(L1 lnT ), is the lowest possible that can
be achieved [9]. However, since the impact of individual arms
on the overall (expected) reward is unknown and may be
coupled in a complex way, it is necessary to explore every
possible joint arm to learn its performance. This leads to a
large constant that multiplies lnT which is on the order of
L1 =

∏N
n=1 Kn. If there are many agents, then

∏N
n=1 Kn will

be very large and hence, a large reward loss will be incurred in
the exploration phases. This motivates us to design improved
learning algorithms which do not require exploring all possible
joint arms in order to improve the learning regret. In the next
section, we will explore the informativeness (defined formally
later) of the expected reward function to develop improved
learning algorithms based on the basic DisCo algorithm. We
first consider the best case (Full Informativeness) and then
extend to the more general case (Partial Informativeness).

VI. A LEARNING ALGORITHM FOR FULLY INFORMATIVE
REWARDS

In many application scenarios, even if we do not know ex-
actly how the actions of agents determine the expected overall
rewards, some structural properties of the overall reward func-
tion may be known. For example, in the classification problem
which uses multiple classifiers [?], the overall classification
accuracy is increasing in each individual classifier’s accuracy,
even though each individual’s optimal action is unknown a
priori. Thus, some overall reward functions may provide higher
levels of informativeness about the optimality of individual
actions. In this section, we will develop learning algorithms
that achieve improved regret results and faster learning speed
by exploiting such information.

A. Reward Informativeness

We first define the informativeness of an expected overall
reward function.

Definition 1: (Informativeness) An expected overall reward
function µ(a) is said to be informative with respect to agent
n if there exists a unique arm a∗n ∈ An such that ∀a−n,,
a∗n = argmax

an

µ(an,a−n).
In words, if the reward is informative with respect to agent n,
then for any choices of arms selected by other agents, agent
n’s best arms in terms of the expected overall reward is the
same. Lemma 1 helps explain why such a reward function is
“informative”.

Lemma 1: Suppose that µ(a) is informative with respect to
agent n and the unique optimal arm is a∗n, then the following
is true:

a∗n = argmax
an

∑
a−n

θa−nµ(an,a−n), ∀θa−n ≥ 0,
∑
a−n

θa−n = 1

(4)
Proof: This is a direct result of the Definition 1.

Lemma 1 states that, for an agent n, the weighted average
of the expected overall reward over all possible choices of
arms by other agents is maximized at the optimal arm a∗n.

Moreover, the optimal arm is the same for all possible weights
θa−n , ∀a−n. It further implies that instead of using the exact
expected overall reward estimate r̄n(an,a−n) to evaluate the
optimality of an arm an, agent n can also use the relative
overall reward estimate (i.e. the weighted average reward
estimate). In this way, agent n needs to maintain only Kn

relative overall reward estimates r̄n(an) by selecting the arm
an and can use these estimates to learn and select the optimal
arm. In particular, let wan,a−n

be the number of times that the
joint arm (an,a−n) is selected in the exploration slots that are
used to estimate r̄(an). Then,

Er̄n(an) =
∑

a−n
wan,a−nµ(an,a−n)∑
a−n

wan,a−n

(5)

If wan,a−n = wãn,a−n , ∀an, ãn, ∀a−n, then we have
wan,a−n∑

a−n
wan,a−n

, θa−n , ∀an. Note that we don’t need to
know the exact value of wan,a−nas long as wan,a−n =
wãn,a−n ,∀an, ãn, ∀a−n. Therefore, the relative reward esti-
mates r̄n(an) can be used to learn the optimal action a∗n even
if agents are not exactly sure what arms have been played by
other agents.

Definition 2: (Fully Informative) An expected overall re-
ward function µ(a) is said to be fully informative if it is
informative with respect to all agents.

If the overall reward function is fully informative, then the
agents only need to record the relative overall reward estimates
instead of the exact overall reward estimates. Therefore, the
key design problem of the learning algorithm is, for each agent
n, to ensure that the weights in (4) are the same for the relative
reward estimates of all its arms so that it is sufficient for agent
n to learn the optimal arm using only these relative reward
estimates.

We emphasize the importance of the weights θa−n , ∀a−n

being the same for all an ∈ An of each agent n even though
agent n does not need to know these weights exactly. If the
weights are different for different an, then it is possible that
r̄n(a′n) > r̄n(a∗n) merely because other agents are using their
good arms when agent n is selecting a suboptimal arm an
while other agents are using their bad arms when agent n
is selecting the optimal arm a∗n. Hence, simply relying on
the relative reward estimates does not guarantee obtaining the
correct information needed to find the optimal arm.

Reward functions that are fully informative exist for many
applications. We identify a class of overall reward functions
that are fully informative below.

Fully Informative Reward Functions: For each agent n,
if there exists a function fn : An → R, such that for all joint
arms a, the expected reward can be expressed as a function
F : RN → R where µ(a) = F (f1(a1), ..., fN (aN )) and µ is
monotone in fn, ∀f−n, ∀n, then µ(a) is fully informative.

We provide two concrete examples below.
(1) Classification with multiple classifiers. In the prob-

lem of event classification using multiple classifiers, each
classifier is in charge of the classification problem of one
specific feature of the target event [3][?][5][6]. The event is
accurately classified if and only if all classifiers have their
corresponding features classified correctly. Let fn(an) be the
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unknown feature classification accuracy of classifier n by
selecting the operating point an. Assuming that the features
are independent, then the event classification accuracy can be
expressed as µ(a) =

∏N
n=1 f(an) given the selection of the

joint operating points a of all classifiers. Hence the event
classification accuracy is fully informative.

(2) Network security monitoring using distributed learning:
A set of distributed learners (each in charge of monitoring a
specific sub-network) make predictions about a potential secu-
rity attack based on their own observed data (e.g. packets from
different IP addresses to their corresponding sub-networks).
Let the prediction of learner n be ỹn(t|an(t)) ∈ {1,−1} at
time t by choosing a classification function an. Based on these
predictions, an ensemble learner uses a weighted majority
vote rule [27] to make the final prediction, i.e. ŷ(t|a(t)) =
sgn(w · ỹ(t|an(t))), and takes the security measures accord-
ingly. In the end, the distributed learners observe the outcome
rtn(a(t)) of the system which depends on the accuracy of
the prediction, i.e. |y(t)− ŷ(t|a(t))| with y(t) being the true
security condition. Let fn(an) = E{|ỹn(an) − ŷ|} be the
accuracy of learner n by choosing a classification function
an. The reward function µ(a) is also monotone in fn(an)
and hence is fully informative.

We note that in the first example different agents have or-
thogonal learning tasks (classification with respect to different
features) while in the second example different agents have the
same learning task (detecting the security attack). However,
both examples exhibit the fully informative property and our
proposed learning algorithms handle both cases effectively.
The difference comes from the speed of learning. When agents
have orthogonal learning tasks, they are more pivotal and so
their actions have a greater influence on the rewards, which
allows them to learn faster as well. This is highlighted in our
simulation results in Section IX, where it is shown that when
an agent becomes more pivotal it discovers its optimal action
quicker.

B. Description of the Algorithm

In this subsection, we describe an improved learning al-
gorithm. We call this new algorithm the DisCo-FI algorithm
where “FI” stands for “Fully Informative” 5. The key differ-
ence from the basic DisCo algorithm is that, in DisCo-FI, the
agents will maintain relative reward estimates instead of the
exact reward estimates.

Knowledge, Counters and Estimates: Agents know a
common deterministic function ζ(t) and maintain two counters
γ(t) and E(t). Now each exploration phase has a fixed length
of L2 =

∑N
n=1 Kn slots and hence, E(t) ∈ {0, 1, ..., L2} with

E(t) = 0 representing that the slot is an exploitation slot and
E(t) > 0 representing that it is the E(t)-th relative slot in the
current exploration phase. As before, both counters are initial-
ized to be γ(0) = 0, E(0) = 0. Each agent n maintains Kn

sample mean (relative) reward estimates r̄n(an), ∀an ∈ An,
one for each one of its own arms. These (relative) reward
estimates are initialized to be r̄n(an) = 0 and will be updated
over time using the realized rewards.

5The algorithm can run in the general case, but we bound its regret only
when the overall reward function is fully informative.

1 2 3 1 2 3 1 2 31 1 13 3 3 3 3 32 2 2 2 2 23 3 3Subphase 1 Subphase 2 Subphase 3Agent 1Agent 2Agent 3 Agent 1 updates its best arm (to 2) Agent 2 updates its best arm (to 3)
Fig. 3. Illustration of one exploration phase with 3 agents, each of which
having 3 arms.

Phase Transition: The transition between exploration phas-
es and exploitation phases are almost identical to that in the
DisCo algorithm. The only difference is that at the end of
each exploration slot, the counter E(t+1) for the next slot is
updated to be E(t+1)← mod(E(t)+ 1, L2 +1). Hence, we
ensure that each exploration phase has only L2 slots.

Prescribed Actions: The algorithm prescribes different
actions for agents in different slots and in different phases.

(i) Exploration phase: As clear from the Phase Transition, an
exploration phase consists of L2 slots. These slots are further
divided into N subphases and the length of the nth subphase
is Kn. In the nth subphase, agents take actions as follows
(Figure 3 provides an illustration):

1) Agent n selects each of its arms an ∈ An in turn, each
arm for one slot. At the end of each slot in this subphase,
it updates its reward estimate using the realized reward
in this slot as follows,

r̄n(an)←
γ(t)r̄n(an) + rnt

γ(t) + 1
(6)

2) Agent i ̸= n selects the arm with the highest reward
estimate for every slot in this subphase, i.e. ai(t) =
arg max

ai∈Ai

r̄i(ai).

(ii) Exploitation phase: Each exploitation phase has a vari-
able length which depends on the control function ζ(t) and
counter γ(t). In each exploitation slot t, each agent n selects
an(t) = arg max

a∈An

r̄n(a).

C. Analysis of regret

We bound the regret of the DisCo-FI algorithm in Theorem
3. Let ∆min

n = min
an ̸=a∗

n,a−n

{µ(a∗n,a−n)− µ(an,a−n)} be the

reward difference of agent n’s best arm and its second-best
arm, and let ∆min

FI = min
n

∆min
n .

Theorem 3: Suppose µ(a) is fully informative. If ζ(t) =

A lnT with A ≥ 2
(

D
∆min

FI

)2

, then the expected regret of the
DisCo-FI algorithm after any number T slots is bounded by

R(T ) < AL2∆
max lnT +B2 (7)

where B2 = L2∆
max + 2L2∆

max
∑∞

t=1 t
−A

2

(
∆min

FI
D

)2

is a
constant number.

Proof: See Appendix D in [31].
The regret bound proved in Theorem 2 is also logarithmic

in time for any finite time horizon T . Therefore, the average
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reward is guaranteed to converge to the optimal reward when
the time horizon goes to infinity, i.e. lim

T→∞
E[R(T )]/T = 0.

Importantly, the proposed DisCo-FI algorithm exploits the
informativeness of the expected overall reward function and
achieves a much smaller constant that multiplies lnT . Instead
of learning every joint arm, agents can directly learn their own
optimal arm through the relative reward estimates.

VII. A LEARNING ALGORITHM FOR PARTIALLY
INFORMATIVE REWARDS

In the previous section, we developed the DisCo-FI algo-
rithm for reward functions that are fully informative. However,
in problems where the full informativeness property may not
hold, the DisCo-FI algorithm cannot guarantee a logarithmic
regret bound. In this section, we extend DisCo-FI to the
more general case where the full informativeness constraint
is relaxed. For example, in the classification problem which
uses multiple classifiers, each classifier consists of multiple
components each of which is considered as an independent
agent. The accuracy of each individual classifier may depend
on the configurations of these components in a complex
way but the overall classification accuracy is still increasing
in the accuracy of each individual classifier. Specifically, if
the accuracy of one of these classifiers is increased, then
the overall accuracy will increase independently of which
configuration of the components of that classifier are chosen.

A. Partially Informativeness

We define an agent group and a group partition first.
Definition 3: (Agent Group and Group partition) An agent

group g consists of a set of agents. A group partition G =
{g1, ..., gM} of size M is a set of M agent groups such that
each agent n ∈ N belongs to exactly one group.

We will call the set of arms selected by the agents in a group
gm a group-joint arm with respect to group gm, denoted by
am = {an}n∈gm

6. Denote the size of group gm by Nm. It is
clear that

∑M
m=1 Nm = N .

Definition 4: (Group-Informativeness) An expected over-
all reward function µ(a) is said to be informative with
respect to a group gm if there exists a unique group-
joint arm a∗

m ∈ ×n∈gmAn such that ∀a−m,a∗
m =

arg max
am∈×i∈gmAi

µ(am, a−m).

In words, for different choices of arms by other agents,
group gm’s best group-joint arm is the same. Note that this
is a generalization of Definition 1 because a group can also
consist of only a single agent. Lemma 2 immediately follows.

Lemma 2: If µ(a) is informative with respect to an agent
group gm and the unique group-joint optimal arm is a∗

m, then
the following is true:

a∗
m = argmax

∑
a−m

θa−mµ(am,a−m),

∀θa−m ≥ 0,
∑
a−m

θa−m = 1 (8)

Proof: This is a direct result of Definition 4.

6We abuse notation by using am agm . This should not introduce confusion
given specific contexts.

Lemma 2 states that for an agent group gm, the weighted
average of the expected reward over all possible choices of
arms by other agents is maximized at the optimal group-joint
arm am. Moreover, the optimal group-joint arm is the same
for all possible weights. Therefore, to evaluate the optimality
of a group-joint arm am, the agents in group gm (∀n ∈ gm)
can use the relative reward estimate for that group-joint arm
r̄n(am) instead of using the exact expected reward estimate
r̄n(am,a−m) as long as the weights θa−m

, ∀a−m, are the
same for all am.

Definition 5: (Partially Informative) An expected overall
reward function µ(a) is said to be partially informative with
respect to a group partition G = {g1, ..., gM} if it is informa-
tive with respect to all groups in G.

Consider a surveillance problem in a wireless sensor net-
work. Assume that there are multiple areas that are monitored
by clusters of sensors. Let m be the m-th cluster of sensors.
Each sensor selects a surveillance action. For instance, this
action can be the position of the video camera, channel listened
to by the sensor, etc. Let µm(am) be the reward of the joint
surveillance action taken by the sensors in cluster m. For
example, this reward can be the probability of detecting an
intruder that enters the area surveyed by the sensors in cluster
m, Then depending on the strategic importance of these areas,
the global reward is a linear combination of the rewards of
the clusters, i.e., µ(a) =

∑
m

wmµw(am). However, improving

each individual sensor’s action may not necessarily improve
the accuracy of the cluster. In this case, the global reward is
monotone in each cluster’s reward but may not be monotone
in each individual sensor’s action. Thus, the reward function
is partially informative.

If a reward function is fully informative, then it is also
partially informative with respect to any group partition of
the agents. On the other hand, if we take the entire agent
set as one single group, then any reward function is partially
informative with respect to this partition. Therefore, “Partial-
ly Informative” can apply to all possible reward functions
through defining the group partition appropriately.

B. Description of the Algorithm

In this subsection, we propose the improved algorithm
whose regret can be bounded for reward functions that are
partially informative. We call this new algorithm the DisCo-
PI algorithm where “PI” stands for “Partially Informative”.

Knowledge, Counters and Estimates: Agents know a
common deterministic function ζ(t) and maintain two counters
γ(t) and E(t). In the DisCo-PI algorithm, each exploration
phase has a fixed length of L3 =

∑M
m=1

∏
n∈gm

Kn slots and
hence, E(t) ∈ {0, 1, ..., L3} with E(t) = 0 representing that
the slot is not an exploration slot and E(t) > 0 representing
that it is the E(t)-th relative slot in the current exploration
phase. Both counters are initialized to be γ(0) = 0, E(0) = 0.
Each agent n in group gm maintains Sm =

∏
i∈gm

Ki reward
estimates r̄n(l), ∀l ∈ {1, 2, ..., Sm}. Let bnl ∈ An denote the
arm selected by agent n in the lth slot in an exploration
subphase. These (relative) reward estimates are initialized to
be r̄n(l) = 0 and will be updated over time using the realized
rewards.
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Phase Transition: The algorithm works in a similar way
as the first two algorithms in determining whether a slot is
an exploration slot or an exploitation slot. The only difference
is that the counter E(t + 1) is updated to be E(t + 1) ←
mod(E(t) + 1, L3 + 1). This ensures that each exploration
phase has L3 slots.

Prescribed Actions: The algorithm prescribes different
actions in different slots and in different phases.

(i) Exploration phase: An exploration phase consists of L3

slots. These slots are further divided into M subphases and
the length of the mth subphase is

∏
n∈gm

Kn. In the mth

subphase, agents take actions as follows:
1) Agents in group gm select the arms in such a way that

every group-joint arm am with respect to group gm is
selected exactly once in this exploration subphase. At the
end of the lth slot in the exploration subphase, r̄n(bnl ) is
updated to be

r̄n(l)← γ(t)r̄n(l) + rnt
γ(t) + 1

(9)

2) Agents i in group gj ̸= gm selects the component arm
that forms the group-joint arm with the highest reward
estimate, i.e. ai = {bil∗ : l∗ = argmax

l
r̄i(l)}, for every

slot in this subphase.
(ii) Exploitation phase: Each exploitation phase has a vari-

able length which depends on the control function ζ(t) and
counter γ(t). In each exploitation slot t, each agent n of group
gm selects an = {bnl∗ : l∗ = argmax

l
r̄n(l)}.

C. Analysis of regret
We bound the regret by running the DisCo-PI algorithm

in Theorem 4. Let ∆min
m = min

am ̸=am,a−m

{µ(a∗
m,a−m) −

µ(am,a−m)} be the reward difference of the best group-joint
arm of gm and the second-best group-joint arm of gm, and let
∆min

PI = min
m

∆min
m .

Theorem 4: Suppose µ(a) is partially informative with
respect to a group partition G. If ζ(t) = A lnT with A ≥
2
(

D
∆min

PI

)2

, then the expected regret of the DisCo-PI algorithm
after any number T slots is bounded by

R(T ) < AL3∆
max lnT +B3 (10)

where

B3 = L3∆
max + 2

M∑
m=1

Nm

∏
n∈gm

Kn∆
max

∞∑
t=1

t
−A

2

(
∆min

PI
D

)2

(11)
is a constant number.

Proof: See Appendix E in [31].
The regret bound proved in Theorem 4 is also logarithmic
in time for any finite time horizon T . Therefore, the average
reward is guaranteed to converge to the optimal reward when
the time horizon goes to infinity, i.e. lim

T→∞
E[R(T )]/T = 0.

However, instead of learning every joint arm like in DisCo,
agents in each group can learn just their own optimal group-
joint arm using the relative reward estimates. Note that the
constant that multiplies lnT is smaller than that of DisCo but
larger than DisCo-FI. Table II summarizes the characteristics
of the three proposed algorithms.

 DisCo DisCo-PI DisCo-FI 

Reward 
Informativeness Any Partially 

Informative 
Fully 

Informative 

Learning Speed Slow Medium Fast 

Regret order 1( ln )N nnO K T=∏  1 ln )( mM nn gm KO T∈=∑∏  1( ln )N nnO K T=∑  � TABLE II
COMPARISON OF THE PROPOSED THREE ALGORITHMS.

VIII. EXTENSIONS

A. Missing and Delayed Feedback

In the previous analysis, we assumed that the global feed-
back is provided to the agents immediately at the end of each
slot. In practice, this feedback may be missing or delayed and
the delay may also be different for different agents since agents
are distributed. We study the extension of our algorithm for
these two scenarios in this subsection.

Consider the missing feedback case where the global feed-
back at time t may be missing with probability 1 − p. For
instance, in the example of multiple classifiers, the ground
truth label used to compute the global reward is not always
available due to the high labeling cost and thus, the global
reward may be sometimes unavailable. Our proposed algorith-
m can be easily extended as follows: whenever the feedback
is missing in the exploration phase (which is observed by all
agents), the agents repeat their current actions in the next slot
until the feedback is received. Let R̄nm(T ) denote the regret
bound of the proposed algorithms when there is no missing
feedback and R̄m(T ) denote the regret bound of the modified
algorithm with missing feedback by time T . Then we have the
following proposition.

Proposition 2: R̄m(T ) = R̄nm(T ) + p−1
p (A lnT +

1)L∆max .
Proof: See Appendix F in [31].

Next, consider the delayed feedback case where the global
feedback at time t arrives at time t+Ln(t) for agent n, where
Ln(t)is a random variable with support in {0, 1, ..., Lmax}
and Lmax > 0 is an integer. Our proposed algorithms can
modified as follows: the exploration phase will be extended
by Lmax slots. The agents will update their reward estimates
when the corresponding feedback is received. In each of the
extended Lmaxslots, agents select the arms that maximize
their estimated rewards in that slot. In this way, the algorithm
ensures that sufficient labels have been received and hence, the
reward estimates are sufficiently accurate in any exploitation
slot. Let R̄nd(T ) denote the regret bound of the proposed
algorithms with no delay and R̄d(T ) denote the regret bound
of the modified algorithm with delays by time T . Then we
have the following proposition.

Proposition 3: R̄d(T )=R̄nd(T )+(A lnT + 1)Lmax∆
max.

Proof: See Appendix G in [31].
In both cases with missing or delayed feedback, the mod-

ified algorithms achieve larger regrets than the original al-
gorithms. However, the regret bounds are still logarithmic in
time.
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B. Accuracy drift

In the previous analysis, we assumed that even though the
reward distributions and hence the expected rewards of the
joint actions are unknown a priori, they are not changing
over time. However, in some scenarios these rewards can
be both unknown and time-varying due to changing system
characteristics 7. We refer to this as accuracy drift. In this
case, the expected reward by selecting a joint arm a is also
a time variable µt(a). Then the optimal joint arm is also
a time variable, i.e. a∗(t) := argmax

a
µt(a). The learning

regret becomes R(T ) :=
∑T

t=1 µt(a
∗(t))−E

∑T
t=1 rt(a

π(t)).
Moreover, ∆max, ∆min, ∆min

FI , ∆min
PI will also be time vari-

ables ∆max(t), ∆min(t), ∆min
FI (t), ∆min

PI (t). We assume that
∆max is upper bounded by ∆̄max(t) and ∆min(t), ∆min

FI (t),
∆min

PI (t) are lower bounded by ∆min.
Definition 6: (Accuracy Drift) The accuracy drift of the

reward function for any two slots t, t′ is defined to be
|µt(a)− µt′(a)|.

The proposed algorithms can be modified for use in deploy-
ment scenarios exhibiting accuracy drifts. Since the expected
rewards are changing, using the realized rewards from the
beginning of the system to estimate the expected rewards in the
current slot will be very inaccurate. Therefore, agents should
use only the most recent realized rewards to update the reward
estimates. To do this, counter γ(t) now maintains the number
of exploration phases that have been experienced in the last Γ
slots. The deterministic control function ζ(t) becomes a single
control parameter which is independent of time, i.e. ζ(t) = A.
Whether a new slot is an exploration slot or an exploitation
slot will still be determined by the values of ζ(t), γ(t) and
E(t) in a similar way to the previous algorithms. We bound
the time-average regret in the following proposition.

Proposition 4: Suppose the accuracy drift satisfies |µt(a)−
µt′(a)| ≤ cΓ,∀t′ : t ≥ t′ ≥ t−Γ, ∀t. If ζ(t) = A, (A < Γ/L),
then the time-average expected regrets R(T )

T of the modified
algorithms after any number T > Γ slots are bounded by

AL1+2(Γ−AL1)NL1e
−A

2

(
∆min−2cΓ

D

)2

Γ ∆̄max

AL2+2(Γ−AL2)L2e
−A

2

(
∆min

FI −2cΓ
D

)2

Γ ∆̄max

AL3+2(Γ−AL3)
M∑

m=1
Nm

N∏
n=1

Kne
−A

2

(
∆min

PI −2cΓ
D

)2

Γ ∆̄max

(12)

for DisCo, DisCo-FI, DisCo-PI, respectively.
Proof: See Appendix H in [31].

We note that the modified algorithms for accuracy drift
do not achieve logarithmic regret in time since they have
to track the changes in the expected reward by continuously
exploring the arms at a constant rate. However, by exploiting
the informativeness of the reward functions, better regret
results can still be obtained by adopting DisCo-FI and DisCo-
PI algorithms rather than the basic DisCo algorithm. Note that
the bound given in Proposition 4 is not tight and the right hand
side of the bound in (12) is time independent. When the right

7For example, in a Big Data system the distribution of the data stream may
change which will result in a change in classification accuracies.

hand side of (12) is greater than D, this bound will not give
us any information about the performance of the algorithm,
since the maximum one-step loss of any algorithm is bounded
by D. We see that the regret bound decays exponentially in
the difference between ∆min and cΓ, which is intuitive since
a higher ∆min − 2cΓ implies that it is easier to identify the
best joint arm using only the observations in last Γ time steps.

IX. ILLUSTRATIVE RESULTS

In this section, we illustrate the performance of the proposed
learning algorithms via simulation results for the Big Data
mining problem using multiple classifiers.
A. Big Data Mining using Multiple Classifiers

A plethora of online Big Data applications, such as video
surveillance, traffic monitoring in a city, network security
monitoring, social media analysis etc., require processing and
analyzing streams of raw data to extract valuable information
in real-time [1]. A key research challenge [26] in a real-
time stream mining system is that the data may be gathered
online by multiple distributed sources and subsequently it
is locally processed and classified to extract knowledge and
actionable intelligence, and then sent to a centralized entity
which is in charge of making global decisions or predictions.
The various local classifiers are not collocated and cannot
communicate with each other due to the lack of a commu-
nication infrastructure (because of delays or other costs such
as complexity [?][6]). Another stream mining problem may
involve the processing of the same or multiple data stream, but
require the use of classifier chains (rather than multiple single
classifiers which are distributed as mentioned before) for its
processing. For instance, video event detection [2][19] requires
finding events of interest or abnormalities which could involve
determining the concurrent occurrence (i.e. classification) of
a set of basic objects and features (e.g. motion trajectories)
by chaining together multiple classifiers which can jointly
determine the presence of the event or phenomena of interest.
The classifiers are often implemented at various locations
to ensure scalability, reliability and low complexity [3][?].
For all incoming data, each classifier needs to select an
operating point from its own set, whose accuracy and cost (e.g.
delay) are unknown and may depend on the incoming data
characteristics, in order to classify its corresponding feature
and maximize the event classification accuracy (i.e. the overall
system reward). Hence, classifiers need to learn from past data
instances and the event classification performance to construct
the optimal chain of classifiers. This classifier chain learning
problem can be directly mapped into the considered multi-
agent decision making and learning problem: agents are the
component classifiers, actions are the operating points and the
overall system reward is the event classification performance
(i.e. accuracy minus cost).
B. Experiment Setup

Our proposed algorithm is tested using classifiers and videos
provided by IBM’s TRECVID 2007 project [25]. By extracting
features such as color histogram, color correlogram, and co-
occurrence texture, the classifiers are trained to detect high-
level features, such as whether the video shot takes place
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Fig. 4. Performance comparison for various algorithms.

outdoors or in an office building, or whether there is an
animal or a car in the video. The classifiers are SVM-based
and can therefore dynamically set detection thresholds for the
output scores for each image without changing the underlying
implementation. We chose this dataset due to the wide range
of high-level features detected, which best models distributed
classifiers trained across different sites. In the simulations,
we use three classifiers (agents) to classify three features:
(i) whether the image contained cars (CAR), (ii) whether the
image contained mountains (MOU) (iii) whether the image is
sports related (SPO). By synthesizing the feature classifica-
tion results, the event detection result is obtained under two
different rules.

1) Rule 1: The event is correctly classified if all three
features are correctly classified.

2) Rule 2: The event is correctly classified if Feature 1
(CAR) is correctly classified and either Feature 2 (MOU)
or Feature 3 (SPO) is correctly classified.

In the simulations, each classifier can choose from 4 op-
erating points which will result in different accuracies. Let
pn denote the classification accuracy with respect to feature
n. Assume that the classification of features is independent
among classifiers, then the event classification accuracy pevent
depends on the feature classification accuracy as follows:

pevent = p1p2p3 under Rule 1
pevent = p1(1− (1− p2)(1− p3)) under Rule 2 (13)

Hence, the reward structure is fully informative for both
event synthesis rules.
C. Performance Comparison

We implement the proposed algorithms and compare their
performance against four benchmark schemes:

TABLE III
FALSE ALARM AND MISS DETECTION RATES.

DisCo DisCo-FI UCB1 SE Random
False Alarm 0.039 0.029 0.050 0.065 0.069

Miss Detection 0.249 0.194 0.356 0.469 0.496

(1) Random: In each period, each classifier randomly selects
one operating point.

(2) Safe Experimentation (SE): This is a method used in
[5] when there is no uncertainty about the accuracy of the
classifiers. In each period t, each classifier selects its baseline
action with probability 1− ϵt or selects a new random action
with probability ϵt. When the realized reward is higher than
the baseline reward, the classifiers update their baseline actions
to the new action.

(3) UCB1: This is a classic multi-armed bandit algorithm
proposed in [10]. As we showed in Proposition 1, there may
be problems implementing this centralized algorithm in a
distributed setting without message exchange. Nevertheless,
for the sake of our simulations we will assume that there are
no individual errors in the observation of the global feedback
when we implement UCB1, and hence it can be perfectly
implemented in our distributed environment.

(4) Optimal: In this benchmark, the classifiers choose the
optimal joint operating points (trained offline) in all periods.

Figure 4 shows the achieved event classification accuracy
over time under both rule 1 and rule 2. All curves are
obtained by averaging 50 simulation runs. We also note that
agents may receive noisy versions of the outcome (except
for UCB1). Under both rules, SE works almost as poorly as
the Random benchmark in terms of event detection accuracy.
Due to the uncertainty in the detection results, updating the
baseline action to a new action with a higher realized reward
does not necessarily lead to selecting a better baseline action.
Hence, SE is not able to learn the optimal operating points of
the classifiers. UCB1 achieves a much higher accuracy than
Random and SE algorithms and is able to learn the optimal
joint operating points over time. However, the learning speed
is slow because the joint arm space is large, i.e. 43 = 64.
The proposed DisCo algorithm can also learn the optimal
joint action. However, since the joint arm space is large, the
classifiers have to stay in the exploration phases for a relatively
long time in the initial periods to gain sufficiently high con-
fidence in reward estimates while the exploitation phases are
rare and short. Thus, the classification accuracy is low initially.
After the initial exploration phases, the classifiers begin to
exploit and hence the average accuracy increases rapidly. Since
the reward structure satisfies the Fully Informative condition,
DisCo-FI rapidly learns the optimal joint action and performs
the best among all schemes. Table III shows the false alarm
and miss detection rates under rule 1 by treating one event as
the null hypothesis and the remaining events as the alternative
hypothesis.

D. Informativeness

Next, we compare the learning performance of the three
proposed algorithms. For the DisCo-PI algorithm, we consider
two group partitions {{1}, {2, 3}} and {{1, 2}, {3}}. Figure 5
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Fig. 5. Performance comparison for DisCo, DisCo-FI and DisCo-PI.

shows the learning performance over time for DisCo, DisCo-FI
and DisCo-PI under Rule 1 and Rule 2. In both cases, DisCo-
FI achieves the smallest learning regret and hence the fastest
learning speed while the basic DisCo algorithm performs the
worst. This is because DisCo-FI fully exploits the problem
structure. The performance of the DisCo-PI algorithm is in
between that of DisCo-FI and the basic DisCo algorithm.
However, different group partitions have different impacts
on the performance. Under Rule 1, the two group partitions
perform similarly since the impacts of the three classifiers on
the final classification result are symmetric. Under Rule 2,
the impacts of classifier 2 and classifier 3 are coupled in a
more complex way. Since the group partition {{1}, {2, 3}}
captures this coupling effect better, it performs better than the
group partition {{1, 2}, {3}}. We note that even though that in
this simulation DisCo-FI performs the best, in other scenarios
where the reward function is only partially informative or even
not informative, DisCo-PI and DisCo may perform better.

E. Impacts of reward function on learning speed

For both synthesis rules, the reward functions are fully
informative, and so classifiers can learn their own optimal
operating points using only the relative rewards. However,
the same classifier will learn its optimal operating point at
different speeds under different rules due to the differences in
that classifier’s impact on the global reward. Note that in the
first rule, all the classifiers are processing different tasks of
equal importance, whereas in the second rule classifiers 2 and
3 are less critical than classifier 1. Thus the learning speed for
classifier 2 will be slower under the second rule because its
impact is lower. This learning speed depends on the overall
reward difference between the classifier’s best operating point
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Fig. 6. Classifier 2 learns its optimal operating point at different speeds
under different rules.
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Fig. 7. Learning performance in scenarios with missing feedback.

and its second-best operating point, i.e. ∆min
n . For classifier 2:

under Rule 1, ∆min
2 = min p1 min p3∆p2 and under Rule 2,

∆min
2 = min p1 min(1−p3)∆p2 with ∆p2 being the accuracy

difference of classifier 2’s best and second-best operating
points. Since pn is usually much larger than 0.5, ∆min

2 of
Rule 2 is much smaller than that of Rule 1 and hence, classifier
2 learns its optimal operating point at a much slower speed
under Rule 2 than Rule 1. Figure 6 illustrates the percentage
of choosing the optimal operating point by classifier 2 under
different rules.

F. Missing and Delayed Feedback

In this set of simulations, we study the impact of missing
and delayed global feedback on the learning performance of
the proposed algorithm. In Figure 7, we show the accumulating
accuracy of the modified DisCo-FI algorithm for three missing
feedback scenarios – there is no missing feedback, the missing
probability is 0.1 and 0.3. A larger missing probability induces
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lower classification accuracy for a given time. Nevertheless,
the proposed algorithm is not very sensitive to missing feed-
backs. Even if the missing probability is relatively large, the
degradation of the learning performance is small.

In Figure 8, we show the accumulating accuracy of the
modified DisCo-FI algorithm for three delayed feedback s-
cenarios – there is no delay, the maximal delay is 50 slots and
100 slots. Under both synthesis rules, learning is the fastest
without feedback delays, and the larger the delay, the slower
the learning speed. However, even with delays, the proposed
DisCo-FI algorithm is still able to achieve logarithmic regret.

G. Accuracy Drift

Finally, we study the impact of accuracy drift on the
learning performance of the proposed algorithm. In this set
of simulations, the accuracies of the operating points of the
classifiers change every fixed number of periods 8. Figure 9
shows the accumulating average accuracy over time for DisCo-
FI under Rule 1 and Rule 2, with the period length being 3000
slots, 1000 slots and 500 slots. The longer the period length,
the smaller the accuracy drift. If the period length is infinity,
then the expected accuracy is static and hence there is no
accuracy drift. Several observations are worth noting. First, the
learning performance is better if the accuracy drift is smaller.
However, in all cases, the learning accuracy is almost constant
and does not approach the optimal accuracy over time. This
is because in order to track the changes in the accuracy, the
algorithm uses only the recent reward feedbacks to estimate the
accuracies of the operating points. Hence, the estimation error
does not diminish as times increases. Second, the degree of
impact of the accuracy drift depends on the reward functions.
In this simulation, the reward function induced by Rule 2 is
less vulnerable to accuracy drift. Third, we also note that the
learning accuracy for the first period is relatively higher than
that for the later periods. This is because the initial reward
estimates are less corrupted by using wrong reward feedbacks
and hence, they are more accurate.

X. CONCLUSIONS

In this paper, we studied a general multi-agent decision
making problem in which decentralized agents learn their
best actions to maximize the system reward using only noisy
observations of the overall reward. The challenging part is
that individualized feedback is missing, communication among
agents is impossible and the global feedback is subject to
individual observation errors. We proposed a class of distribut-
ed cooperative learning algorithms that addresses all these
problems. These algorithms were proved to be able to achieve
logarithmic regret in time. We also proved that by exploiting
the informativeness of the reward function, much better regret
results can be achieved by our algorithms compared with ex-
isting solutions. Through simulations we applied the proposed
learning algorithms to Big Data stream mining problems and
showed significant performance improvements. Importantly,
our theoretical framework can also be applied to learning

8This is realized by swapping the indices of the operating points for each
classifier.
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Fig. 8. Learning performance in scenarios with delayed feedback.
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in other types of multi-agent systems where communication
between agents is not possible and agents observe only noisy
global feedback.
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