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Abstract—To increase efficacy in traditional classroom courses
as well as in Massive Open Online Courses (MOOCs), automated
systems supporting the instructor are needed. One important
problem is to automatically detect students that are going to
do poorly in a course early enough to be able to take remedial
actions. This paper proposes an algorithm that predicts the final
grade of each student in a class. It issues a prediction for each
student individually, when the expected accuracy of the predic-
tion is sufficient. The algorithm learns online what is the optimal
prediction and time to issue a prediction based on past history
of students’ performance in a course. We derive demonstrate the
performance of our algorithm on a dataset obtained based on
the performance of approximately 700 undergraduate students
who have taken an introductory digital signal processing over
the past 7 years. Using data obtained from a pilot course, our
methodology suggests that it is effective to perform early in-class
assessments such as quizzes, which result in timely performance
prediction for each student, thereby enabling timely interventions
by the instructor (at the student or class level) when necessary.

Index Terms—Forecasting algorithms, online learning, grade
prediction, data mining, digital signal processing education.

I. INTRODUCTION

Education is in a transformation phase; new technology
allows for personalized education enabling students to learn
more efficiently and giving teachers the tools to support each
student individually if needed, even if the class is large [1]–[3].

Grades are supposed to summarize in a single number or
letter how well a student was able to understand and apply the
knowledge conveyed in a course. Thus it is crucial for students
to obtain the necessary support to pass and do well in a class.
However, with large class sizes at universities and even larger
class sizes in Massive Open Online Courses (MOOCs) it has
become impossible for the instructor and teaching assistants
to keep track of the performance of each student individually.
Hence, in both offline and online education, it is of great
importance to develop automated personalized systems that
predict the performance of a student in a course before the
course is over and as soon as possible.

In this paper we focus on predicting grades in traditional
classroom-teaching where only the scores of students from
past performance assessments are available. However, we
believe that our methods can also be applied for online courses
such as MOOCs. We design a grade prediction algorithm that
finds for each student the best time to predict his/her grade
such that, based on this prediction, a timely intervention can
be made if necessary. Note that we analyze data from a digital
signal processing course where no interventions were made;
hence, we do not study the impact of inventions and consider

only a single grade prediction for each student. Our algorithm
can be easily extended to multiple predictions per student.

A timely prediction exclusively based on the limited data
from the course itself is challenging. First, even if the same
material is covered in each year of the course, the assignments
and exams change every year. Therefore, the informativeness
of particular assignments with regard to predicting the final
grade may change over the years. Second, the predictability
of students having a variety of different backgrounds is very
diverse. For some students an accurate prediction can be made
very early based on the first few performance assessments;
for other students it might take more time to make an equally
accurate prediction. This illustrates the necessity to make the
prediction for each student individually and not for all at the
same time.

The main contributions of this paper are.
1) We propose an algorithm that makes a personalized and

timely prediction of the grade of each student in a class.
2) We accompany each prediction with a confidence esti-

mate indicating the expected accuracy of the prediction.
3) We derive a bound for the probability that the prediction

error is larger than a desired value ε.
4) We analyze real data from an introductory digital signal

processing course over 7 years and use the data to exper-
imentally demonstrate the performance of our algorithm
compared to benchmark prediction methods.

5) Based on our simulations, we suggest a preferred way
of designing courses that enables early prediction and
early intervention. Using data from a pilot course, we
demonstrate the advantages of the suggested design.

Table I summarizes the comparison between our paper and
related work. Due to space limitations, a detailed discussion
of related work can be found in the electronic preprint of a
longer version of this paper [4].

II. FORMALISM, ALGORITHM AND ANALYSIS

In this section we mathematically formalize the problem and
propose an algorithm that predicts the overall score according
to the final grade of a student with a given confidence.

A. Definitions and System Description

Consider a course taught for several years with only slight
modifications. Students attending the course have to complete
performance assessments such as graded homework assign-
ments, course projects, in-class exams and quizzes throughout
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Fig. 1. System diagram for a single student.

the course.1 Our goal is to predict with a certain confidence
the overall performance of a student before all performance
assessments have been taken. Fig. 1 illustrates the system.

We consider a discrete time model with y = 1, 2, . . . , Y
and k = 1, 2, . . . ,K where y denotes the year in which the
course is taught and k the point in time in year y after the
kth performance assessment has been graded. Y gives the total
number of years during which the course is taught and K is the
total number of performance assessments of each year. For a
given year y we use index i as a representation of ith student
of the year and Iy to denote the total number of students
attending in year y. Let ai,y,k ∈ [0, 1] denote the normalized
score or grade of student i in performance assessment k of
year y.

The feature vector of yth year student i after having
taken performance assessment k is given by xi,y,k =
(ai,y,1, . . . , ai,y,k). The normalized overall score zi,y ∈ [0, 1]
of yth year student i is the weighted sum of all performance
assessments zi,y =

∑K
k=1 wkai,y,k where the wk denote the

weight of performance assessment k so that
∑K

k=1 wk = 1.
The weights are set by the instructor and we assume that in

1The performance assessments are usually graded by teaching assistants,
by the instructor or even by an automated system [14].

each year the number, sequence and weight of performance
assessments is the same.2 The residual (overall score) ci,y,k of
yth year student i after performance assessment k is defined
as

ci,y,k =

{∑K
l=k+1 wlai,y,l k ∈ {1, . . . ,K − 1}

0 k = K
(1)

Using this definition we can write the overall score of yth
year student i as zi,y = ci,y,k +

∑k
l=1 wlai,y,l. We denote the

estimate of the residual score for yth year student i at time k
by ĉi,y,k and the corresponding estimate of the overall score
by ẑi,y,k.

For each student i we store the set of feature vectors
Xi,y = {xi,y,k|k ∈ {1, . . . ,K}}, the set of residuals Ci,y =
{ci,y,1, . . . , ci,y,K−1} and the student’s overall score zi,y . We
use C =

⋃Y
y=1

⋃Iy
i=1 Ci,y and Z =

⋃Y
y=1

⋃Iy
i=1 zi,y to denote

all residuals and overall scores of all completed years. Let
Xk′ = {xi,y,k|k = k′,∀i, y} denote the set of feature vectors
and Ck′ = {ci,y,k|k = k′,∀i, y} denote the set of residuals
saved after performance assessment k′.

B. Problem Formulation

Having introduced notations, definitions and data structures,
we now formalize the grade prediction problem. The objective
is to accurately predict the overall score of each student
individually in a timely manner.

The decision for a yth year student i consists of two parts.
First, we decide after which performance assessment k∗i,y to
predict for the given student and second we determine his/her
estimated overall score ẑi,y . At a point in time k of year y
all scores including the overall scores of all students of past
years 1, . . . , y− 1 are known. Thus all feature vectors x ∈ X,
residuals c ∈ C and overall scores z ∈ Z of all completed
years are known. Furthermore, the scores ai,y,1, . . . , ai,y,k of
yth year student i up to assessment k are known as well and
do not have to be estimated. However, to determine the overall
score of the student we need to predict his/her residual score
ci,y,k consisting of performance assessments k + 1, . . . ,K
since they lie in the future and are unknown. At time k we
have to decide for each student of the current year whether
this is the optimal time k∗i,y = k to predict or whether it

2This assumption is made for simplicity. As we show in the online preprint
of a longer version of this paper we can apply our algorithm to settings where
different instructors using different weights for each performance assessment
teach the course [4]. A prediction across courses with a different number of
performance assessments is possible as well, for example by combining the
scores of two or more performance assessments to a single score.



is better to wait for the next performance assessment. If we
decide to predict, we determine the optimal prediction of the
overall score ẑi,y = ẑi,y,k∗i,y . Both decisions are made based
on the feature vector xi,y,k of the given student and the feature
vectors x ∈ Xk and residuals c ∈ Ck of past students.
To determine the optimal time to predict, we calculate a
confidence qi,y(k) indicating the expected accuracy of the
prediction for each student after each performance assessment.
The prediction for a particular student is made as soon as the
confidence exceeds a user-defined threshold qi,y(k) > qth.
The problem of finding the optimal prediction time for yth
year student i is formalized as follows:

minimize
k

k

subject to qi,y(k) > qth
(2)

The optimization problem results in the optimal prediction
time k∗i,y .

C. Grade Prediction Algorithm

In this section we propose an algorithm that learns to predict
a student’s overall score based on data from classes held in
past years and based on the student’s results in already graded
performance assessments.

At time k we predict the residual ci,y,k and calculate the pre-
diction of the overall score with zi,y = ci,y,k +

∑k
l=1 wlai,y,l.

To make its prediction for the current residual of a student with
feature vector xi,y,k, the algorithm finds all feature vectors
from similar students of past years and their corresponding
residuals ci,y,k. We define the similarity of students through
their feature vectors. Two feature vectors xi,xj ∈ Xk are
similar if 〈xi,xj〉k ≤ r where 〈., .〉k is a distance metric
defined on the feature space Xk and r is a parameter. Different
feature spaces can have different definitions of the distance
metric; we are going to define the distance metrics we use in
Section III-B. We define a neighborhood B (xc, r) with radius
r of feature vector xc ∈ Xk as all feature vectors x ∈ Xk

with 〈xc,x〉k ≤ r.
Let Ck denote the random variable representing the residual

score after performance assessment k. vk
(
Ck|x

)
denotes the

probability distribution over the residual score for a student
with feature vector x at time k and µk(x) denotes the student’s
expected residual score. Let pk(x) denote the probability dis-
tribution of the students over the feature space Xk. Intuitively
pk(x) is the fraction of students with feature vector x at time
k. Note that the distributions vk

(
Ck|x

)
and pk(x) are not

sampling distributions but unknown underlying distributions.
We assume that the distributions do not change over the years.

We define the probability distribution of the students in a
neighborhood B (xc, r) with center xc and radius r as

pkxc,r(x) :=
pk(x)∫

x∈B(xc,r)
dpk(x)

1B(xc,r)(x),

where 1 is the indicator function. Intuitively pkxc,r(x) is the
fraction of students in neighborhood B(xc, r) with feature vec-
tor x. Let Ck(B(xc, r)) be the random variable representing

the residual score of students in neighborhood B(xc, r) after
having taken performance assessment k. The distribution of
Ck(B(xc, r)) is given by

fkxc,r

(
Ck
)

:=

∫
x∈Xk

vk(Ck|x)dpkxc,r(x)

We denote the true expected value of the residual scores
after assignment k of students in a particular neighborhood
by µk (xc, r) := E(Ck (B (xc, r))). Note that

µk (xc, r) = Ex∼pk
xc,r

[
E
[
Ck|x

]]
= Ex∼pk

xc,r

[
µk (x)

]
=

∫
x∈Xk

µk (x) dpkxc,r.

Our estimation of the true expected residual of students
within a particular neighborhood B(xi,y,k, r) is given by

µ̂(Ck (B (xi,y,k, r))) =

∑
x∈B(xi,y,k,r)

cx,k

|B (xi,y,k, r)|
(3)

where cx,k denotes the residual after time k of the student
with feature vector x. For notational simplicity, we use
µ̂k(xi,y,k, r) := µ̂(Ck (B (xi,y,k, r))) to denote the estimated
expectation. In the following we are going to derive how
confident we are in the estimation of the residual score
based on a given neighborhood B(x, r) and how we use this
confidence q (B(x, r)) to both select the optimal radius of the
neighborhood and to decide when to predict.

Intuitively, if the feature vectors after performance assess-
ment k in a neighborhood B(x, r) of x contain a lot of
information about the residual cx,k, past students with feature
vectors in this neighborhood should have had similar residuals.
Hence, the variance of the residuals Var

(
Ck(B(xi,y,k, r))

)
of the students in the neighborhood should be small. To
mathematically support this intuition, we consider the residuals
ci,y,k in a neighborhood B(x, r) of feature vector x with
distribution fkxc,r

(
Ck
)
. For any confidence interval ε the

probability that the absolute difference between the unknown
residual cx,k of the student with feature vector x and the
expected value of the residual distribution µk (x, r) in his/her
neighborhood is smaller than ε can be bounded by

P
[
|Ck(B(x, r))− µk(x, r)| < ε

]
> 1−

V ar
(
Ck(B(x, r))

)
ε2

.

(4)
This statement directly follows from Chebyshev’s inequality.

We conclude that the lower the variance of the residual dis-
tribution in the neighborhood, the more confident we are that
the true residual cx,k will be close to µk(x, r). Since both the
expected value µk(x, r) and the variance Var

(
Ck(B(x, r))

)
of the distribution are unknown, we estimate the two values
through the sample mean from (3) and the sample variance
V̂ ar

(
Ck(B(x, r))

)
given by

V̂ ar
(
Ck(B(x, r))

)
=

∑
x∈B(x,r)

(
cx,k − µ̂k(x, r)

)2
|B(x, r)| − 1

. (5)

In the following we use V ark(x, r) := Var
(
Ck(B(x, r))

)
to

denote the variance and V̂ ar
k
(x, r) := V̂ ar

(
Ck(B(x, r))

)



to denote the sample variance of the residual distribution
in neighborhood B(x, r). From the law of large number
it follows that the sample mean and the sample variance
converge to the true expected value and the true variance for
|B(x, r)| → ∞. We will provide a bound for the probability
that the prediction error is larger than a given value in the
theorem below. Given a desired confidence interval ε, we
define the confidence on the prediction of the residual as
q (B(x, r)) = 1− V̂ ar

k
(x, r) /ε2.

Using this confidence measure the radius of the optimal
neighborhood after performance assessment k is given by r∗ =

arg maxr q (B (xi,y,k, r)) = arg minr V̂ ar
k

(x, r). To esti-
mate r∗ after each performance assessment k, our algorithm
considers M different neighborhoods B(xi,y,k, rm),m =
1, . . . ,M with user-defined radii rm and chooses the best
neighborhood m̂k(xi,y,k) according to our confidence measure
m̂k(xi,y,k) = arg maxm q (B(xi,y,k, rm)). In the following
we use m̂k := m̂k(xi,y,k) to denote the best neighborhood. Let
ĉi,y,k := µ̂k (xi,y,k, rm̂k

) denote the estimated residual of the
best neighborhood at time k and ẑi,y,k denotes the correspond-
ing estimated overall score ẑi,y,k = ĉi,y,k +

∑k
l=1 wlai,y,l. If

the confidence bound for the best neighborhood qi,y(k) =
q (B (xi,y,k, rm̂k

)) is above a given threshold qi,y(k) ≥ qth,
the algorithm returns the final prediction of the overall score
ẑi,y = ẑi,y,k for the considered student.

If the confidence is below the threshold, we wait for the next
performance assessment and start the next iteration. Due to
space limitations, an illustration of the neighborhood selection
process and a formal description of the grade prediction
algorithm in pseudocode can be found online in the preprint
of a longer version of this paper [4].

To conclude the discussion of the grade prediction algo-
rithm, we derive a bound for the probability that the prediction
error is larger than a value ε. Before we state the theorem, we
introduce some further notations. Let m∗k(x) denote the index
of the neighborhood with the smallest variance of residuals
for the student with feature vector x at time k

m∗k(x) = arg min
1≤m≤M

V ark(x, rm). (6)

Note that m∗k(x) is not necessarily equal to m̂k(x), the index
of the neighborhood with the highest confidence chosen by
our algorithm, since the confidence is calculated with the
known sample variance of residuals V̂ ar(x, r) and not with
the unknown true variance V ark(x, r) used in (6).

Similarly m∗k,2(x) denotes the index of the neighborhood
with the second highest confidence.

m∗k,2(x) = arg min
1≤m≤M,m6=m∗k(x)

V ark(x, rm).

Let ∆k(x) denote the difference between the standard devia-
tions of the residual distribution of neighborhoods m∗k(x) and
m∗k,2(x)

∆k(x) =
√
V ark(x, rm∗k,2

)−
√
V ark(x, rm∗k). (7)

Theorem. Without loss of generality we assume that all scores
a are normalized to the range [0, 1]. Consider the prediction
ẑi,y,k of the overall score of yth year student i with feature
vector x made by our algorithm. The probability that the
absolute error the prediction exceeds ε is bounded by

P [|zi,y − ẑi,y,k| ≥ ε] ≤
4V ark

(
x, rm∗k(x)

)
ε2

+ 2 exp

[
−ε2 min

1≤m≤M

|B (x, rm)|
2

]
+ 2M exp

[
−∆k(x)2 min

1≤m≤M

|B(x, rm)| − 1

8

]

Proof: Due to space limitations, the proof can be found
online in the preprint of a longer version of this paper [4].

This theorem illustrates two important aspects of our al-
gorithm. First, we see that for a given neighborhood the
accuracy of our predictions increases with an increasing
number of neighbors. Hence, our algorithm learns the best
predictions online as the knowledge base is expanded after
each year, when the feature vectors and results from the past-
year students are added to the database. Second, the term
V ark(x, rm∗k)/ε2 shows that the prediction accuracy will be
higher if the variance of the residuals in a neighborhood is
small. With increasing time k we expect this variance to
decrease since we have more information about the students
and we expect the students in a neighborhood to be more
similar and achieve similar (residual) scores.

Note that it is possible to restrict the data kept in the
knowledge base to recent years, which allows the algorithm
to adapt faster to slowly changing students and to changes in
the course.

III. EXPERIMENTS

A. Data Analysis

Our experiments are based on a dataset from an under-
graduate digital signal processing course over the past 7
years. The dataset contains the scores from all performance
assessments of all students and their final letter grades. The
number of students enrolled in the course for a given year
varied between 30 and 156, in total the dataset contains the
scores of approximately 700 students. Each year the course
consists of 7 homework assignments, one in-class midterm
exam taking place after the third homework assignment, one
course project that has to be handed in after homework 7 and
the final exam. The duration of the course is 10 weeks and
in each week one performance assessment takes place. The
weights of the performance assessments are given by: 20%
homework assignments with equal weight on each assignment,
25% midterm exam, 15% course project and 40% final exam.

To understand the predictive power of the scores in different
performance assessments, Fig. 2a shows the sample Pearson
correlation coefficient between all performance assessments
and the overall score. We make several important observa-
tions from this graph. First, on average the final exam has



the strongest correlation to the overall score, followed by
the midterm exam. This is not surprising, since the final
contributes 40% and the midterm contributes 25% to the
overall score. Second, the score from the course project on
average does not have a higher correlation with the overall
score than the homework assignments despite the fact that it
accounts for 15% of the overall score. Third, all homework
assignments have similar correlation coefficients. Fourth, the
correlation between the individual performance assessments
and the overall score varies greatly over the years. This
indicates that predicting student scores based on training data
from past years might be difficult.

B. Our Algorithm

In this section we discuss three important details of the
application of the grade prediction algorithm to the dataset
from the undergraduate digital signal processing course.

First, the rule we use to normalize all scores ai,y,k in
our dataset is given by ai,y,k =

(
a∗i,y,k − µ̂y,k

)
/σ̂y , where

a∗i,y,k is the original score of the student, µ̂y,k is the sample
mean of all yth year student’s original scores in performance
assessment k and σ̂y is the standard deviation of all yth year
student’s original overall scores.3

Second, we use feature vectors that simply contain the
scores of all performance assessments student i has taken up to
time k in the order they occurred xi,y,k = (ai,y,1, . . . , ai,y,k).
To incorporate the fact that students who have performed sim-
ilarly in a performance assessment with a lot of weight should
be nearer to each other in the feature space than students
that have had similar scores in a performance assessment (e.g.
homework assignment) with low weight, we use a weighted
metric to calculate the distance between two feature vectors.
We define the distance of two feature vectors xi,xj ∈ Xk

as 〈xi,xj〉k =
∑k

l=1 wl |xi,l − xj,l| /
∑k

l=1 wl where k is the
length of the feature vectors, wl is the weight of performance
assessment l and xi,l denotes entry l of feature vector xi.

Third, rather than specifying the radii of the neighborhoods
to consider as an input we automatically adapt the radii of
the neighborhoods such that they contain a certain number
of neighbors. Since the sample variance gets more accurate
with an increasing number of samples, we refrain from
considering neighborhoods with only 2 neighbors. Therefore,
the smallest radius considered r1 is the minimal radius such
that the neighborhood includes 3 neighbors. For subsequent
neighborhoods the minimal radius is chosen such that the
neighborhood includes at least one neighbor more than the
previous neighborhood.

C. Benchmarks

We compare the performance of our algorithm against four
different prediction methods.

3Note that our algorithm does not require a specific normalization and it
does not matter that the normalized scores we use will not be in the interval
[0, 1] as assumed in Section II for simplicity.

• We use the score ai,y,k student i has achieved in the
most recent performance assessment k alone to predict
the overall grade.

• A second simple benchmark makes the prediction based
on the scores ai,y,1, . . . , ai,y,k student i has achieved
up to performance assessment k taking into account the
corresponding weights of the performance assessments.

• Linear regression using the ordinary least squares (OLS)
finds the least squares optimal linear mapping between
the scores of first k performance assessments and the
overall score.

• The k-Nearest Neighbors algorithm with 7 neighbors.
This number provided the best results with training data
from the first year.

The advantage of the method we use in our algorithm over
linear regression is that being a nearest neighbor method, it
is able to recognize certain patterns such as trends in the data
that are missed in linear regression where a single parameter
per performance assessment has to fit all students.

D. Results

In this section we evaluate the performance of our algorithm
in different settings and compared to benchmarks.

As a performance measure we use the average of the abso-
lute values of the prediction errors E. Since we normalized the
overall score to have zero mean and a standard deviation of 1,
E directly corresponds to the number of standard deviations
the predictions on average are away from the true values.

1) Performance Comparison with Benchmarks: Fig. 2b
visualizes the performance of the algorithm we presented in
Section II-C and of benchmark methods. We generated Fig.
2b by predicting the overall scores of all students from years
2−7. To make the prediction for year y, we used the entire data
from years 1 to y−1 to learn from. Unlike our algorithms, the
benchmark methods do not provide conditions to decide after
which performance assessment the decision should be made.
Therefore, for benchmark methods we specified the prediction
time (performance assessment) k for an entire simulation and
repeated the experiment for all k = 1, . . . , 10; the results are
plotted in Fig. 2b. To generate the curve of our algorithm,
we ran simulations using different confidence thresholds qth
and for each threshold we determined E and the performance
assessment (time) k̄ after which the prediction was made on
average.

Irrespective of the prediction method, Fig. 2b shows the
trade-off between timeliness and accuracy; the later we predict
the more accurate our prediction gets. If the prediction is made
early, before the midterm, all methods (except the predic-
tion using a single performance assessment) lead to similar
prediction errors. We observe that while the error decreases
approximately linearly for our algorithm, the performance of
benchmark methods steeply increases after the midterm and
the final but stays approximately constant during the rest of
the time. The reason for this is that we obtained the points of
the curve for our algorithm by averaging the prediction time
of all students. Therefore, the point of the curve above the
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Fig. 2. 2a: Sample Pearson correlation coefficient between individual performance assessments and the overall score. Note that we use the abbreviations Hi
(homework assignment i), M (midterm exam) and F (final exam) in the figure. 2b: Performance comparison of different prediction methods. 2c: Comparison
of prediction time and accuracy between the course which contains a midterm exam, and the course which contains four in-class quizzes instead of a midterm
exam. Note that the tick labels Qi/Hi above the plot stand for quiz/homework i and that for the course with quizzes there are weeks in which both a homework
and a quiz take place.

midterm was not generated by predicting after the midterm
for all students; some predictions were made earlier, some
later. If on average the prediction is made after homework 4,
our algorithm outperforms linear regression by up to 65%.

2) Performance Comparison with Course Containing Early
Quizzes: The results in both the data analysis section (Fig.
2a) and Section III-D1 (Fig. 2b) indicate that scores in in-
class exams are much better predictors of the overall score
than homework assignments. To verify this, we consider two
consecutive years of a course which contains four in-class
quizzes in course weeks 2, 4, 6 and 8 instead of a midterm.
Fig. 2c visualizes that, starting from the first quiz in week 2,
indeed our algorithm is able to predict the same percentage
of the students with an up to 22% smaller cumulative average
prediction error by a certain week. We generated Fig. 2c by
using our algorithm to predict for both courses the overall
scores of the students in a particular year based on data
from the previous year. Note that for the course with quizzes,
the increase in the share of students predicted is larger in
weeks that contain quizzes than in weeks without quizzes.
This supports the thesis that quizzes are good predictors.

According to this result, it is desirable to design courses
with early in-class exams. This enables a timely and accurate
grade prediction based on which the instructor can intervene
if necessary.

IV. CONCLUSION

This paper proposes a systematic method for personalized
grade prediction. Our algorithm can easily be generalized to
include context data from students such as their prior GPA
or demographic data. If applied exclusively to MOOCs, the
in-course data used for the predictions could be extended
for example by the responses of students to multiple-choice
questions, their forum activity, the course material they studied
or the time they spent studying online. Another direction
of future work is to apply our algorithm in practice and

investigate to what extent the performance of students can
be improved by a timely intervention based on the grade
predictions. In this context, our algorithm could be extended
to make multiple predictions for each student to monitor the
trend in the predicted grade after an intervention.
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