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Abstract—This paper studies the value of learning for cognitive 

transceivers in dynamic wireless networks. We quantify the 

utility improvement that can be obtained by a wideband cognitive 

user which learns the stationary usage pattern of the spectrum 

occupied by narrowband users and, based on this information 

adapt its transmission. Specifically, we investigate the trade-off 

between the learning duration and the achievable performance in 

stationary environments. We apply optimization and large 

deviations theory to analytically derive an upper bound of the 

minimum required learning duration, given the user’s tolerable 

performance loss and outage probability. Furthermore, noticing 

that learning techniques require the information feedback of the 

spectrum usage pattern between the transceivers, we investigate 

how the cognitive user can further improve its performance by 

taking account of its feedback delay. The impact of inaccurate 

delay estimation on the achievable performance is also quantified. 

Keywords- learning, feedback delay, cognitive wireless users  

I.  INTRODUCTION 

A promising way of improving the radio spectrum 
utilization is to build cognitive wireless devices that can benefit 
from the opportunistic deployment of unused spectral 
opportunities from various frequency bands [1]-[3]. While 
conceptually simple, the realization of cognitive wireless 
devices is highly challenging. Several problems must be solved: 
sensing over a wide frequency band; identifying and 
characterizing available spectrum opportunities; exploiting the 
identified transmission opportunities etc. In particular, as stated 
in [1], a cognitive wireless device should be able to “learn from 
the environment and adapt its internal states to statistical 
variations in the incoming RF stimuli by making corresponding 
changes in certain operating parameters (e.g., transmit-power, 
carrier-frequency, and modulation strategy) in real-time”.  

Learning techniques have already been deployed to 
improve the performance of a broad class of wired and wireless 
communications systems. They enable the dynamically 
interacting communications devices to acquire information, 
build knowledge, and ultimately improve their performance 
[4]-[7]. As opposed to the previous works, which focus on 
studying the long-term convergence behavior of certain 
learning algorithms [4]-[6] or determine the operational 
shorter-term performance without providing any performance 
guarantees [7], this paper aims to characterize and analytically 
quantify the achievable performance which can be obtained by 
cognitive users with learning capabilities in wireless networks. 
We study how much a cognitive device with no prior 
knowledge should learn about its environment, e.g. time-
varying channel condition or interference, in order to reach its 
performance requirement. Particularly, if the environment is 
stationary, we explicitly quantify the benefits that a user can 

derive in terms of its improved utility by learning for a longer 
duration, i.e. based on a larger number of observations about 
the environment. We apply optimization and large deviations 
theory to derive an upper bound of the minimum observation 
duration given the performance guarantee desired by the user. 
Then, noticing that the information required for cognitive 
devices to perform learning is usually gathered through the 
information feedback from the receiver to the transmitter and 
this information can be delayed during the feedback process, 
we study how a cognitive device can improve its performance 
if it accurately knows the feedback delay. We also quantify the 
impact of imperfect delay measurements on the achieved 
performance. 

While this paper focuses on studying learning in wireless 
network settings, the proposed solutions can be generalized to 
other applications in which cognitive communication devices 
deploy strategic learning solutions to accumulate knowledge 
about its environment and improve its performance [5][7]. The 
rest of the paper is organized as follows. Section II presents the 
deployed system model and formulates the problem of learning 
and adapting to the spectrum usage pattern. In Section III, we 
analytically derive an upper bound of the minimum required 
learning duration. Section IV shows the numerical results 
Section V quantifies the impact of spectrum usage information 
feedback delay. Conclusions are drawn in Section VI. 

II. SYSTEM MODEL 

A. System Description 

 

Fig. 1. Investigated cognitive wireless networks. 

We assume a cognitive wireless system similar with the one 
studied in [3] (see Fig. 1). The total number of frequency 
channels in the system is N , and each has a bandwidth of B . 
The majority of radio devices in this system are narrowband 
users. These devices can dynamically utilize the idle spectrum 
bands by enabling carrier frequency switching and “packing” 
all the active radios tightly in the spectral domain. A simple 
example is given in Fig. 1. If one device releases the frequency 

band 2f , the device occupying frequency 4f  will switch to 2f . 

The system state is defined as the number of channels nbn  that 

are occupied by the narrowband users. The arrival and 
departure rate of these devices are assumed to follow a Poisson 



distribution. As a result, the spectrum usage pattern can be 
captured as a continuous time Markov chain [3][8][9]. Fig. 2 
shows an example of the Markov chain with the infinitesimal 
generator [10] 
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Fig. 2. An example of continuous time Markov chain model. 

Note that the Markov chain model and its corresponding 

infinitesimal generator Q  can take various forms based on the 

configuration of the considered wireless network. Denote the 
steady state probability vector of the spectrum usage pattern as 

[ ]0 1, , , Nπ π π= �π , in which iπ  represents the probability of 

having active i  narrowband devices in the system. No matter 

what form the infinitesimal generator Q  takes, we always have 

Q = 0π .   (2) 

As shown in Fig. 1, we also consider a wideband device in 
the system, which can transmit over all N  frequency channels. 

The noise power at frequency band i  is iN  and its channel 

gain is ih . Each active narrowband device causes an 

interference power of I  to the wideband receiver. The 
wideband device is subjected to a total power constraint of 
max

P . Denote the power vector across all frequency bands 

[ ]
T

1, , NP P= �P , in which iP  is the power allocated in 

frequency band i . Hence, the achievable rate is given by 
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B. Learning Duration and Performance 

As mentioned previously, we would like to determine to 
what extent the wideband device should learn the spectrum 
usage pattern in order to explore its available spectrum 
opportunities. Fig. 3 shows this learning process in which the 
wideband receiver periodically senses the spectrum and feeds 
back to its transmitter the number of interfering narrowband 

devices t
nbn  at time t . Specifically, the wideband device 

models its environment by simply counting the number of 
active narrowband devices it encountered in the past and 

approximating the stationary spectrum usage pattern π  by the 

observed frequencies of the system states. We define an 
empirical frequency function 
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Fig. 3. Spectrum usage feedback of the wideband device. 

The wideband user approximates the steady state π  using 

the empirical frequency function t
γ

1
, and takes the best 

response action ( )tγP  that maximizes ( ),tR Pγ , i.e. ( )t =P γ  

( )
max

arg max ,t
P

R
≤T1P

Pγ  with [ ]T1, ,1=1 � . Denote the achievable 

rate when the wideband user takes the best response to the 

empirical frequency function t
γ  as ( ) ( )( ),t t

aR R=γ π γP .  

Throughout this paper, the learning duration refers to the 
number of available observed spectrum usage patterns over 

time for the wideband user to update ( )
t nγ  and approximate 

the steady state distribution π . Intuitively, the performance of 

learning is expected to improve if more observations are 
available. This paper aims to determine how many observations 
are sufficient for a learning user to reach a certain desirable 
performance guarantee. Specifically, given the tolerable 

performance loss R∆  with respect to perfectly knowing π  

and the outage probability Rδ , we want to determine the 

minimum required learning duration: 
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               (6) 

III. MINIMUM REQUIRED LEARNING DURATION 

Although similar bounds exist in statistical learning theory, 
e.g. Hoeffding's inequality [11], it is still difficult to solve the 
problem in (6) because these bounds do not directly apply to 
our considered problem. However, we can find an upper bound 

                                                           
1  Note that here we normalize the feedback period, and we implicitly 

assume that this period is sufficiently large such that the spectrum usage 

pattern will be independent of the previous sampled usage pattern. Section V 

will discuss the optimal strategies for various feedback delays and sampling 
intervals. 



for the solution of the problem in (6). Having such a bound is 
important from both theoretical and practical perspectives, 
because, due to the real-time adaptation requirement of 
cognitive networks [1], only limited observations are usually 
available to cognitive users and it is also necessary for them to 
understand the basic trade-off of performance vs. learning 
duration. For this, we adopt tools from large deviations theory, 
which quantifies the exponential decay of probability measures 
for certain kinds of tail events [12].  According to the large 

deviations theory, the empirical frequency function ( )
t
nγ  of a 

random sample of size t  drawn from π  satisfies 

( )( )|| 2 , 0,t t
N t

D
N

δδ δ−
 +  ≥ ≤ ∀ >   

Prob γ π            (7) 

where ( )||D p q  is the Kullback-Leibler (KL) distance between 

two pmfs ( )p x  and ( )q x  [13]. Then, we need to convert the 

performance loss ( ) ( )ta aR R−π γ  into the KL distance 

( )||tD γ π . Note that these two metrics do not always perfectly 

align with each other. The basic idea in determining an upper 

bound is to find a value of δ  such that ( )||tD δ≤γ π  always 

leads to ( ) ( )ta a RR R− ≤∆π γ . By setting t  to satisfy 

2 t
R

N t

N
δ δ−

 +   ≤   
, we have ( )( )||tD δ≥ ≤Prob γ π  

( ) ( )( )t
a a RR R− ≥∆Prob π γ  and this value provides an 

upper bound for the problem in (6). As illustrated in Fig. 4, we 
divide this procedure into three steps. First, we construct a 

convex set B  in the standard probability simplex 

{ }T| 1, 0Ω = =1 �γ γ γ  such that, for all ∈γ B , it 

satisfies ( ) ( )a a RR R− ≤∆π γ . Second, by solving convex 

optimization problems that minimize the KL distance between 

π  and the pmfs that lie on the boundary of B , we obtain the 

desired value of δ , which is denoted as 
minDδ  in Fig. 4. Third, 

we apply large deviations theory and derive an upper bound of 
the minimum required observations. In the following 
subsections, we will explain each step in detail.  

A. Extreme Points with Performance Loss Constraints 

First, in the probability simplex Ω , we construct a convex 

set B  that contains the actual pmf. Let A =  

{ } { }{ }, : , 0,1, ,k j k j N and k j∈ <�  such that A  contains a 

total number of 
1

2

N
M

 +  =    
 combinations of any two 

different integers in { }0,1,2, ,N� . Let ( )
m

S  denote the m th 

element of set S . Based on the tolerable performance loss R∆ , 

we choose a total number of 2M  pmfs and view them as 

“extreme points” of the set B  in which we are going to derive 

an upper bound of the minimum required learning duration. For 

1,2, ,2m M= � , the 2M  pmfs that we are interested in 
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Fig. 4. Performance loss and KL distance. 

(P1) mγ ∈ Ω ;   

(P2) ( )
m nnγ π= , ( )A

m
if n ∉ .  

Note that (P2) ensures that these pmfs have only two 

elements that are different from the stationary distribution π . 

The pmfs satisfying (P1) and (P2) can be rewritten as 

( ),m mnγ δ  defined by 
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Denoting ( ) ( ) ( )0, , , ,m m m m m mNδ γ δ γ δ =  �γ , now we 

can determine the extreme points by setting the parameter mδ  

based on the tolerable performance loss R∆ . For 

1,2, ,m M= � , 
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in which ( ) ( )( ){ }: 0a a m RS R R andδ δ δ δ= − ≥∆ ≥π γ , and 
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in which ( ) ( )( ){ }: 0a a m RS R R andδ δ δ δ− = − − ≥∆ ≥π γ . 

Due to the non-negative property in (P1), when ( )A
m

n ∈ , if 

Sδ = ∅  or S δ− = ∅ , we set ( ),m mnγ δ  to be zero to ensure 

the performance loss is as close to R∆  as possible. On the 



other hand, if Sδ ≠ ∅  or S δ− ≠ ∅ , the “extreme points” are 

the pmfs that cause an exact performance loss of R∆ .  

Using the convex hull of the above 2M  extreme points, we 
construct a convex set B  within which to derive an upper 

bound of the minimum required learning duration in (6), i.e 
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Proposition 1 (Satisfaction of Performance Loss Constraints): 

Any γ ∈ B  satisfies ( ) ( )a a RR R− ≤∆π γ . 

The proof is given in [20]. Proposition 1 ensures that any 
convex combinations of the extreme points still satisfy the 
tolerable performance loss requirement, which enables us to 
apply optimization theory to convert the metric of performance 

loss R∆  into KL distance 
minDδ  in the following step. 

B. KL Distance Minimization in Convex Set 

In the first step, a convex set B  is constructed based on the 

tolerable performance loss R∆ . Next, we apply large 

deviations theory to translate the performance loss R∆  into 

another metric, the KL distance Dδ . The basic idea is to solve 

an optimization problem to find the minimum KL distance 

minDδ  such that, for any γ  that satisfies ( )
min

|| DD δ≤γ π , we 

have ( ) ( )a a RR R− ≤∆π γ . Particularly, the optimization 

problem can be formulated as 
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                                (12) 

where ( )S B  represents the surface of the convex set B , i.e. 

( ) ( )\ int=S B B B . Here we denote the interior of the set 

B  as ( )int B  [14]. 

Note that the KL distance ( )||D γ π  is convex in the pair 

( ),γ π , and ( )∈γ S B  is a linear constraint [13]. Therefore, 

the problem in (12) essentially belongs to convex programming, 
and the optimal solution can be obtained efficiently by solving 
the optimization problem for each polyhedron on the boundary 

( )S B  [15]. Because the convex combinations of the extreme 

points in B  cover the adjacent region of the actual stationary 

distribution π , the minimum of (12) that ensures 

( )
min

|| DD δ≤γ π  is a sufficient condition to ensure that 

( ) ( )a a RR R− ≤∆π γ .  

C. Minimum Learning Duration Calculation 

In the second step, we show that ( )
min

|| DD δ≤γ π  always 

leads to ( ) ( )a a RR R− ≤∆π γ . Hence, an upper bound of the 

solution to the problem in (6) can be obtained by solving 
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min

. . || .t
D R

t

s t D δ δ≥ ≤γ πProb
                     (13) 

Applying formula (7) from large deviations theory, we have 
the following proposition: 

Proposition 2 (An Upper Bound of Minimum Required 
Learning Duration):  Suppose the wideband device updates its 

empirical frequency function t
γ  and takes the best-response 

action with respect to t
γ . An upper bound T  of the solution 

of problem (6) is 

 ( )
min

_ , ,D RT Min t Nδ δ= ,                         (14) 

in which ( ) +_ , , min : 2 tx
y t

Min t x y z t t and z
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−
 +    = ∈ ⋅ ≤      

Z . 

Proof: Combining (7) and (13), we know that any t  that 
satisfies 
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is an upper bound of the solution of problem (6). Let 
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+
= < . Therefore, we can conclude that 

( )lim 0
t

F t
→∞

= . As a result, by choosing ( )
min

_ , ,D RT Min t Nδ δ=  

as the minimum integer in the feasible region of inequality (15), 

we obtain an upper bound of the optimum solution of (6).  ■ 

Subsequently, we provide some intuition to interpret the 

previously derived upper bound. Define :f →R R  to be the 

function that maps the tolerable performance loss R∆  into the 

minimum KL distance 
minDδ . Obviously, f  is a non-increasing 

function because a larger R∆  enlarges the set B  and 

increases the corresponding 
minDδ . The upper bound of the 

minimum learning duration can be rewritten as 

 ( )( )_ , ,R RT Min t f N δ= ∆ .                     (16) 

We can make several key observations by examining this 
upper bound.  

Remark 1 : Decreasing the acceptable performance loss 

R∆  will lead to a larger minimum observation duration T , 

which is a direct consequence of the non-increasing property of 

function f .  

Remark 2 : Decreasing the outage probabilty Rδ  will 

increase T . This remark is also quite intuitive.  

Remark 3 : If the number of channels N  is increased, the 
upper bound of the required observations T  also increases in 
order to ensure the outage probability is smaller than the 

threshold of Rδ . This argument holds because a larger number 



of channels N  will cause 
N t

N

 +      

 increases and 
minDδ  to be 

smaller than or equal to its original value (given the steady 
state probability distribution π  is unchanged). Intuitively, a 

larger N  adds additional uncertainty in the learning process 
and increases the upper bound T . 

IV. ILLUSTRATIVE EXAMPLES 

This section simulates an example to illustrate all the 
previously proposed procedures. We consider a cognitive 
system with 1 2 2 12, 2, 1N λ µ λ µ= = = = =  and the power 

constraint of the wideband device is 1maxP = . Its channel 
conditions and the power of noise and interference are given by 

1 2,h =  2 1 21, 1h N N I= = = = . It is easy to solve that the 

stationary distribution is 0.25 0.5 0.25 =   
π . The contours of 

achievable rate ( )aR γ  and KL distance ( )||D gγ  are shown in 

Fig. 5 and 6 separately. We can see from Fig. 5 that ( )aR −π  

( )a RR ≤∆γ  is a convex set, which verifies proposition 1. 
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Fig. 5. Contour of achievable rate ( )aR γ . 
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Fig. 6. Contour of KL distance ( )||D γ π . 

We set the parameters in the problem (6) to be 
2.510R
−∆ =  and 210Rδ

−= . Fig. 7 and 8 illustrate the 

procedure of obtaining the upper bound in Section III.B. 

Noting that 2N = , we choose six extreme points 1 6, ,γ γ�  in 

total, which are determined based on the rate-pmf curves in Fig. 
7. These plotted curves indicate the achievable rates for three 

pmfs, including (0) 0.25γ = , (1) 0.5γ = , and (2) 0.25γ = , 

i.e. (0) (1) 0.75γ γ+ = . The convex hull of these extreme 

points 1 6, ,γ γ�  is the extreme point set B . The dashed 

hexagon in Fig. 8 is the surface ( )S B  on which we minimize 

the KL distance. Solving the convex optimization problem (12) 

leads to 
min

0.1265Dδ = . Using (14), we obtain that 

( )2_ 0.1265,2,10 161T Min t −= = . As shown in Fig. 8, if 

the learning duration is larger than T , the KL distance 

between the actual stationary distribution π  and observed 

empirical frequency function t
γ  will lie within the solid circle 

with an outage probability less than Rδ . 
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Fig. 7. Constructing the extreme points. 
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Fig. 8. KL distance minimization in ( )S B . 



We also examine the tightness of the upper bound in 

different settings. The tolerable performance loss R∆  is varied 

to be 210− , 2.510− , and 310− , while the outage probability Rδ  

is set to be a constant of 210− . In each scenario, we use Monte 
Carlo method to calculate the actual required learning duration 

aT . The results are summarized in Table I. From the table, we 

can see that, the bound is not very tight, which can be 
explained by the observation that the space between the solid 
circle and dashed hexagon is large. At the same time, we also 

find that the ratio of aT T  increases when the performance 

loss R∆  is decreased, because the mismatch between the 

contours is also increased as R∆  decreases. Moreover, we can 

also see that by carefully choosing the extreme points, ( )S B  

can be enlarged to approach the contour of ( )aR γ  in Fig. 5 and 

therefore, improve the tightness of the upper bound. 

Table I. Learning durations for different performance loss requirements 

V. IMPACT OF FEEDBACK DELAY 

In this section, we discuss the impact of the feedback delay 
of spectrum usage information, which causes the received 
information out of date and degrades the performance. The 
feedback delay exists due to several reasons, e.g. wireless 
propagation, signal processing expense, and protocol overhead.  

tt d
nbn
−

P

 

tt d
nbn
−

t∆

t
td

 

Fig. 9. Feedback delay of the spectrum usage. 

We denote the feedback delay of the spectrum usage pattern 

nbn  from the receiver to the transmitter as td . As shown in Fig. 

9, the spectrum usage pattern that the transmitter receives at 
time t  is actually the usage pattern that the receiver 
experienced at time tt d− .  

As stated in Section III, the infinitesimal generator Q  of 

the Markov chain can take various forms based on the system 

specification. Define the transition probability matrix ( )tS  in 

which ( ),i jS t  is the probability that a Markov process is in 

state j  at time t  given that it is in state i  at time 0. Based on 

the stochastic process theory [10], we know that ( )tS  is the 

solution of the Kolmogorov equation, which takes the form of 

( )
1

1

i

N
t

i

t e ξ
+

=

= ∑ i iS v ω ,                              (17) 

in which 1 2 1, , , Nξ ξ ξ +�  are the 1N +  distinct eigenvalues of 

matrix Q , and 1 2 1, , , N+�v v v  and 1 2, , ,�ω ω  1N+ω  are the 

corresponding right and left eigenvectors of matrix Q . In 

particular, the matrix Q  for the considered Markov process has 

an eigenvalue 1 0ξ =  with the corresponding right and left 

eigenvectors T
1 [1,1, ,1]= �v  and 1 =ω π . All the other 

eigenvalues 2 1, , Nξ ξ +�  of Q  have strictly negative real parts. 

Given the latest feedback tt d
nbn
−

, the optimization of power 

allocation at the transmitter is converted into  

( )
max

max , | tt dt
nb

P
R n

−

≤T1
π

P

P ,  (18) 

in which 0 1, , ,t t t t
Nπ π π =   �π  is the probability vector of the 

spectrum usage pattern t
nbn  with | tt dt

n nbnπ
− =  

( ) ( ),
Pr | t

t dt
nb

t dt
t nb nbn n

S d n n n−
−= = . From (17), we have 

( ) 1lim
t

t 1
→+∞

=S v ω .                            (19) 

Therefore, when td → +∞ ,  t
1→ =π ω π , which is 

independent of tt d
nbn
−

. As a result, ( ), | tt dt
nbR n
−

Pπ  in (18) is 

reduced to ( ),R Pπ  in equation (3). We can conclude that 

learning the stationary distribution π  of frequency usage 

pattern and optimizing the power allocation with respect to this 
distribution is optimal only when the feedback delay is large. 

On the other hand, we also consider the limited feedback 
delay scenarios. Note that in these cases, the best strategy is not 
to learn the stationary distribution, and the transmitter needs to 

explore the timeliness of the feedback information tt d
nbn
−

, 

because t
π  in (18) is a function of the limited feedback delay 

td . In particular, ( ), | tt dt
nbR n
−

π P  in the optimal transmission 

strategy of (18) will become:  

( ) ( )( )

( )

( )

,:

,
1

,
0

, | ,

log 1

log 1

t
t dt
nb

t dt
nb

t dt
nb

t dt
tnb n

N N
i i

tn n
ii n i

n i
i i

tn n
in

R n R S d

h P
S d B

N I

h P
S d B

N

−

−

−

−

= ≥

<

=

=

    = + +    +  

  +    

∑ ∑

∑

π P P

,        (20) 

where ( ),:i tS d  represents the i th row of ( )tdS . The problem 

is converted into how to accurately estimate ( )tS  at tt d= . 

Performance loss R∆  210−  
2.510−  

310−  

Actual value aT   38 50 62 

Upper bound T  101 161 593 

/ aT T  2.7 3.2 9.6 



Due to the periodic nature of the feedback information t
nbn , the 

wideband device is able to sample the transition probability 

matrix ( )tS  at ,2 ,t t t= ∆ ∆ �  by updating empirical 

frequency functions, and use numerical algorithms [16], such 

as curve fitting, to estimate ( )tS  for non-integer multiples of 

t∆ . As long as the environment is stationary and the sampling 

data is large enough, the wideband device can estimate ( )tdS  

accurately.  

Now we investigate the impact of imperfect estimation of 

the feedback delay td . Practical methods of measuring the 

feedback can be found in [17][18]. Suppose the estimate that 

the wideband device has about the feedback delay td  is td ′ . 

The performance degradation ( )tR d ′∆  of imperfect estimation 

td ′  is given by 

( ) ( ) ( )( )( ) ( ) ( )( )( ),: ,: ,: ,:
0

, ,
N

t i i t i t i t i t

i

R d R S d S d R S d S dπ
=

 ′ ′∆ = −  ∑ P P .(21) 

We derive an upper bound of this performance degradation 
based on Markov chain theory and formally state the result as 
Theorem 1. 

Theorem 1:  The performance degradation ( )tR d ′∆  defined in 

(21) depends on two terms t td d′ −  and ( )min ,t td d′ . 

Specifically, ( )tR d ′∆  is bounded as  

 ( ) ( ) ( )min ,
0 t td d

t t tR d d d e
β

α
′−′ ′≤ ∆ ≤ − ,           (22) 

in which ( )α i  is a non-negative function satisfying ( )0 0α =  

and ( )lim
t

tα
→+∞

 exists, and 0β > . 

The proof is given in [20]. Two key observations can be 
made from the above theorem. First, it is straightforward to see 

that the performance loss is a function of t td d′ −  and the 

performance loss is zero if t td d′ = . More importantly, the 

theorem indicates that the performance loss decreases at least 

exponentially with ( )min ,t td d′ . This result indicates the 

significance of the timeliness of the information feedback. 

Besides, the existence of ( )lim
t

tα
→+∞

 implies that infinite 

estimation error of the feedback delay causes bounded 

performance loss. With the increase of ( )min ,t td d′ , the effect 

of inaccurate estimation of the delay td  over the performance 

diminishes at least exponentially. 

We verify the performance improvement by considering the 
feedback delay. We use an example with the parameters 

1 22, 0.02,N λ µ= = = and 2 1 0.01λ µ= = . It is easy to 

show that, for, three eigenvalues of Q  are 

1 2 30, 0.02, 0.04ξ ξ ξ= = − = − , and the transition probability 

matrix ( )tS  is given by 

( )

0.02 0.04 0.04 0.02 0.04

0.04 0.04 0.04
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1 2 2 2 1 2

t t t t t

t t t

t t t t t

t

e e e e e

e e e

e e e e e

− − − − −
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− − − − −

= ×
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 
 
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 

S

.(23) 
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Fig. 10. Transition probability of ( )0,0 tS d  and ( )0,1 tS d . 

The transition probability 0,0S  and 0,1S  is plotted as a 

function of the feedback delay td  in Fig. 10. As we expect, if 

the feedback delay 0td → , the spectrum usage pattern t
nbn  

has a large possibility to be equal to tt d
nbn
−

, i.e. the transmitter 

knows exactly how many narrowband users are currently active. 

If td → +∞ , the spectrum usage pattern will converge to the 

stationary distribution π . Therefore, if td  is not sufficient 

large, the wideband transmitter should optimize its power 
allocation with respect to the transition probability matrix 

( )tdS  rather than the stationary distribution π . 
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Fig. 11. Performance loss of inaccurate estimate over td . 
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Fig. 12. Performance loss of inaccurate estimate for fixed t td d ′− . 

Next, we numerically show the improvement of measuring 

the feedback delay td . The feedback delay td  is assumed to be 

2 , and the performance loss ( )tR d ′∆  is plotted in Fig. 11. We 

can see that it agrees with the argument that ( )0 0α =  and 

( )lim
t

tα
→+∞

 exists in Theorem 1. Compared with taking best 

response to the stationary distribution, perfectly knowing the 
value of feedback delay can increase the achievable rate by 

3.5% . We also vary td ′  while fixing t td d ′−  to be 10, and 

plot the corresponding ( )tR d ′∆  in Fig. 12. We can see that the 

performance loss ( )tR d ′∆  decrease exponentially with td ′ , 

which complies, as expected, with Theorem 1. 

VI. CONCLUSIONS 

This paper studies the minimum required observations a 
wideband user should have in order to learn about the 
stationary probability distribution of its experienced 
environment given the required performance guarantee. The 
derived results provide several insights for understanding the 
basic trade-off that can be made in communication systems 
between the learning duration and the achievable performance. 
We also consider the impact of information feedback delay and 
quantify the performance loss for imperfect estimation of the 
delay. Such insights are important for designing and evaluating 
future communications protocols with learning capabilities 
such that engineers can build practical systems with desired 
complexity and performance trade-off. 
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