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ABSTRACT 
 

This paper studies the learning behavior of self-interested 

users interacting in a two-user OR-channel interference 

game. We discuss how a strategic user should learn the 

behavior of its opponent, adapt its actions, and improve its 

own performance. Specifically, we investigate the trade-

off that can be made by a user between learning duration 

and performance, if the opponent plays a mixed strategy. 

First, we assume a stationary opponent and we apply 

optimization theory and large deviations theory to 

analytically derive an upper bound of the minimum 

training required by the user given the tolerable 

performance loss and outage probability. Next, we extend 

the results to the cases, where an adaptive opponent plays 

a conditional strategy based on its bounded memory. By 

solving linear programs, we design optimized learning 

strategies that minimize an upper bound of the duration of 

learning against the adaptive opponent. 
 

Index Terms—Learning in games, OR interference 

channel 
 

1. INTRODUCTION 
 

Game theory has been extensively applied to study a broad 

class of problems in communications systems, where 

various entities interact in a self-interested, autonomous 

manner [1]. However, most research studying problems in 

non-cooperative settings focuses on deriving or proving 

the existence of equilibria in games. Most of the 

arguments are based on the hypothesis of exact common 

knowledge of payoffs and rationality, which can usually 

not be realized in the investigated informationally-

decentralized communication scenarios. Alternatively, 

learning in games techniques have been studied to model 

the strategic behavior of interacting users acquiring 

information, building knowledge, and ultimately 

improving their performance, as well as designing and 

selecting the equilibrium at which they desire to operate 

[2]. Several learning models have been applied to solve 

multi-user interaction problems in both wireline and 

wireless network settings [3]-[5]. For instance, in [3], 

appropriate learning solutions are studied in distributed 

environments consisting of players with very limited 

information about their opponents, such as the Internet. A 

reinforcement learning algorithm is proposed to maximize 

the average throughput in sensor communications [4]. By 

modeling the interaction among non-cooperative nodes in 

wireless ad hoc networks as a repeated game, a 

reinforcement learning algorithm is proposed to design 

power control in wireless ad hoc networks [5], where it is 

shown that the learning dynamics can eventually converge 

to Nash equilibrium and achieve satisfactory performance. 

In the area of game theory and artificial intelligence, 

limited results are known about how to learn against 

stationary or even adaptive opponents [6][7].  

As opposed to the previous works that focus on studying 

the long-run convergence behavior of certain learning 

algorithms, this paper aims to characterize and quantify 

the achievable performance of learning with limited 

observations. We study this problem using a simple setting: 

the OR interference channel shared by two competing 

users. We model the interaction between autonomous 

users as a game and analyze the learning behavior of a 

strategic user that has no prior knowledge about its 

opponent. Particularly, we consider the cases in which the 

opponent plays mixed strategies. We explicitly quantify 

the benefits that a user can derive in terms of its       

improved utility by having a longer learning duration. 

Starting from the case where an opponent plays a 

stationary policy, we use optimization and large deviations 

theory to derive an upper bound of the minimum 

observation duration given the required performance 

guarantee. Then, the results are extended to cases where 

an adaptive opponent plays conditional strategies based on 

its bounded memory. In this case, we formulate and solve 

linear programs such that a strategic user can manipulate 

its adaptive opponent and adapt itself to best estimate the 

competitor’s strategy. While this paper focuses on 

studying the benefits of learning in a simple setting, our 

solutions can be generalized to more complicated 

applications that requires strategic learning solutions for 

communications systems. 
 

2. SYSTEM MODEL 

( )1 1X Bernoulli p∼

( )2 2X Bernoulli p∼

1 2 1 2Y Y Y X X= = = ⊕

 
Fig. 1. Binary OR Channel 

 

The considered system diagram is shown in Fig. 1 and the 

notations are given as follows. We denote by { }1,2=I  

the set of two participating users. For i ∈ I , i−  denotes 

the complementary set { }\ iI . Both users choose inputs 

from a binary alphabet { }0,1=X . The input iX  of user 

i  has a Bernoulli distribution with ( )1i ix p= =Prob  and 

( )0 1i ix p= = −Prob , i.e. ( )i iX Bernoulli p∼ . The set of 

actions for user i  is denoted as Ai
, in which user i  



determines its parameter [ ]0,1ip ∈ . Let 1 2A = A A×  be 

the set of action combinations and ( ) ( ) ( )( )1 2,a n a n a n= =   

( )1 2, An np p ∈ be the action combination at timen . Player 

i’s mixed actions set is the probability simplex overAi , i.e. 

( ) { }A
A : 0 1i T

i i i ig g componentwise and g∆ = ∈ ≥ =1R , 

where [ ] A1, ,1 iT= ∈1 � R . Both users observe the same 

output Y , which is the OR operation of the two input 

variables, i.e. 1 2 1 2Y Y Y X X= = = ⊕  [8]. This channel 

originates from modeling the error characteristic of optical 

systems [9]. We assume that each user simply decodes its 

own signals by treating the other user’s signal as noise. 

Under this decoding scheme, the multi-user OR channel 

can be transformed into two Z-channels shown in Fig. 2. 

For example, in user 1’s asymmetric Z-channel model, the 

probability of 1 to 0 error is zero and that of 0 to 1 error is 

the probability 2p  that user 2 sends 1. Given the input 

distributions, user i ’s achievable rate is 
 

( ) ( )

( )( ) ( ) ( )

|

1 1 ,

i i i i

i i i i i

R H Y H Y X

q p p p p q p− −

= −

= + − − −
 (1) 

 

where ( ) ( ) ( )log 1 log 1q x x x x x= − − − − . User’s utility 

functions are determined based on their achievable rates, 

: Ai iu R= → R . It is easy to see that, if 0ip ≠ , user i ’s 

transmitted signal will cause interference to the other. 

Therefore, their utilities are coupled together by their 

actions. Summarizing, the tuple ( ) ( ), A ,i iuI  defines the 

model of interaction between the users [10]. Note that, in 

this interference game, users can observe their opponents’ 

actions from its received signal. In this paper, a user’s 

observations refer to the actions that its opponent took in 

the entire history. 
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11 p−
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Fig. 2. Equivalent Z-channels for each user 

 

3. LEARNING IN INTERFERENCE GAMES 
 

This paper discusses how long a user should learn about 

its opponent’s strategy, if the opponent behaves according 

to some initially unknown probability distributions over its 

action space A i− . Specifically, using the learning scheme 

of fictitious play as an illustrative example, we derive an 

upper bound of the minimum required observation 

duration given the tolerable performance loss, and 

explicitly discuss the tradeoff of observation duration vs. 

performance. In this paper, the opponent is assumed to 

adopt two types of strategies. A strategy ig  of player i  is 

a sequence of functions ( )1 2, , , ,ni i ig g g� � , where the 

function n
ig  assigns a mixed action in ( )Ai∆  at each time 

n  to each history ( ) ( ) ( )( )1 1 , 2 , , 1nh a a a n− = −� . A 

strategy ig  of player i  has finite memory if there exists a 

positive integer hN  such that only the history of the last 

hN  periods matters: for each hn N> , the function n
ig  is of 

the form ( ) ( ) ( )( ), 1 , , 1n
i i h hg g a n N a n N a n= − − + −� , 

and we call this hN -memory. The first type of strategy is 

named stationary strategy because the opponent always 

plays a stationary policy, i.e. n
ig  is fixed all the time. For 

the second type, the opponent plays a limited-memory 

adaptive strategy based on the actions that the strategic 

user took in the history ( ) ( ), 1 , ,i h i ha n N a n N− −− − + �  

( )1ia n− − . We limit the opponent’s capabilities to these 

two types of strategies, because directly handling the 

opponents with entire history is intractable and these two 

types of behavior models capture the strategic nature of 

the opponent with limited-memory [6].  
 

3.1. Fictitious Play 
 

Over the past several decades, many learning algorithms, 

e.g. fictitious play and reinforcement learning, have been 

developed [2]. It is difficult to find the optimal learning 

scheme in general cases. Instead, we choose to fix the 

learning rule and explicitly quantify the achievable 

performance given the observation duration. This paper 

discusses the learning scheme of fictitious play [12], 

because the fact that the actions of the other user are 

observable in the interference game makes fictitious play 

the most efficient solution. The model of fictitious play is 

simply a count of the plays taken by the opponent in the 

past, and the observed frequencies are taken to represent 

the opponent’s mixed strategy. Assume a stationary 

opponent chooses its action according to the probability 

mass function (pmf) ( )i ig p− −  at all times. We define an 

empirical frequency function 

( )
( )

( )
Ai i

n
in

i n
ip

k p
p

k p
γ

− −

−
−

−∈

=
∑ �

�
,                       (2) 

where ( )n
ik a−  is a counting function satisfying ( )0

ik a− =  

0, Ai ia− −∀ ∈  and 

( )
( )

( )

1

1

1,

,

n n
i i in

i n
i

k p if p p
k p

k p otherwise

−
− − −

− −
−

 + == 


.    (3) 

The strategic user approximates the actual pmf ( )i ig p− −  

using the empirical frequency function ( )n
ipγ − , and takes 

the best response that maximizes iu  by solving 

( ) ( )
A

max ,
i i

i

n
i i i ipp

p R p pγ
− −

− −∈∑ .             (4) 

We denote the performance in (4) with empirical 

frequency function ( )n
ipγ −  as ( )niU γ , which differs from 

the performance with perfect information ( )i ig p− − , 

denoted as ( )iU g . Hence, an important question is how 

much a strategic user should learn when the opponent 

plays either stationary or adaptive policy, given its 

tolerable performance loss and outage probability. 
 

3.2. Stationary Opponent 
 



In this subsection, we investigate how much learning 

against a stationary opponent that fixes n
ig−  all the time is 

required. Intuitively, we know that the achievable rate will 

be improved when having more observations. Given the 

tolerable performance loss u∆  and outage probability uδ , 

the problem is formulated as 

( ) ( )( )

min

. . .n
i i u u

n

s t U g U γ δ− ≥∆ ≤Prob
             (5) 

Although there are several error bounds in statistical 

learning theory, e.g. Hoeffding's inequality [11], it is 

difficult to solve the problem in (5) because these bounds 

do not directly apply to this problem. However, we can 

find an upper bound for the optimum of (5). The key idea 

is to adopt tools from large deviations theory, which 

mainly concerns the asymptotic behavior of remote tails of 

sequences of probability distributions [13].  According to 

large deviations theory, the empirical frequency function 

( )n
ipγ −  of a random sample of size n  drawn from 

( )i ig p− −  satisfies 

( )( )
A 1

|| 2 , 0,
A 1

in n

i

n
D g δγ δ δ

− −

−

 + −   ≥ ≤ ∀ >  −  
Prob       (6) 

where ( )||D p q  is the Kullback-Leibler (KL) distance 

between two pmfs ( )p x  and ( )q x  [14]. Then, we need to 

convert the performance loss ( ) ( )ni iU g U γ−  into the KL 

distance ( )||nD gγ . Note these two metrics cannot always 

perfectly align with each other. Given u∆ , we choose to 

find the minimum 
minDδ  such that ( )

min
||n

DD gγ δ≤ always 

leads to ( ) ( )ni i uU g U γ− ≤∆ . In other words, we are 

deriving an upper bound for problem (5). The key idea in 

determining the upper bound of observation duration is 

illustrated in Fig. 3. Using this figure, we divide the whole 

procedure into three steps and explain each step in details 

as follows. 
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 Fig. 3. Performance loss and KL distance 
 

1) Extreme Points with Performance Loss Constraints 
 

First, in the probability simplex ( )A i−∆ , we construct a  

convex set that contains the true pmf. Let { }{A , :comb k j=   

{ } }, 1,2, , A ik j and k j−∈ <�  and ( )
n

S denote the n th 

element of S . We are interested in a total number of A2N  

pmfs with 
A

A

2

i
N

−
  =    

. These pmfs ( )Am iγ −∈ ∆  are 

( )( ) ( )( ) ( )A A , Acomb
m i i in n m

p g p if nγ − − −= = = ∉ .  (7) 

These pmfs can be rewritten as ( ),m pγ δ  satisfying 

( )( )

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )

1

2

A , A

A , A , A ,

A , A

comb
i i n m

comb
m i i in n m

comb
i i n m

g p if n

p g p if n

g p if n

δ

γ δ δ

− −

− − −

− −

 = − == = = + =
 = ∉

(8) 

A1,2, ,2m N= � . The A2N  pmfs are determined based on 

the tolerable performance loss u∆ , and they are viewed as 

“extreme points”. The extreme points are chosen to be 

( ) A, , 1,2, ,2m mp m Nγ δ = � . For A1,2, ,m N= � , 

( )( ) ( )( )
1

A A ,

min ,

comb
i i l m

m

g p with l if S

S otherwise

δ

δ

δ
δ

− −
 = = = ∅= 
 ∈

,   (9) 

in which ( ) ( )( ){ }: 0i i m uS U g U andδ δ γ δ δ= − ≥ ∆ ≥ , and 

( )( ) ( )( )
A

2
A A ,

min ,

comb
i i l m

m N

g p with l if S

S otherwise

δ

δ

δ
δ

− − −

+

−

− = = = ∅= 
 ∈

.(10) 

in which ( ) ( )( ){ }: 0i i m uS U g U andδ δ γ δ δ− = − − ≥∆ ≥ , and 

the achievable rate of ( ),m mpγ δ is denoted as ( )( )i mU γ δ . 

Note when ( )Acomb

m
n ∈ , ( )( )A ,m i mn

pγ δ−=  is set to zero 

if Sδ = ∅  or S δ− = ∅  due to the non-negative property.  
 

We focus on the convex set B  formed by the convex hull 

of the extreme points, i.e. ( )( ){ A , ,m i mn
conv pγ δ−= =B  

}A1, ,2m N= � [16]. We can derive an upper bound of the 

minimum required learning duration in this convex set 
 

Proposition 1:  Any γ ∈ B  satisfies ( ) ( )i iU g U γ−  u≤ ∆ . 

Proof: It is easy to verify that in (1), the achievable rate 

iR  is a concave function in ip
1
 and there always exist a 

unique zero i

i

U

p

∂

∂
 for any [ ]0,1ip− ∈ . Therefore, there exist 

an interval min max,i ip p 
   such that, for any γ  with 

( ) ( )i i uU g U γ− ≤ ∆ , the maximizer of ( )iU γ  satisfies ip  

min max,i ip p ∈   , and vice versa. In other words, for m  

A1,2, ,2N= � , ( )
( )min0, 0,i m

i i
i

U
p p

p

γ∂
> ∀ ∈

∂
and ( )

0,i m

i

U

p

γ∂
<

∂
 

( )max,1i ip p∀ ∈ . Note that γ∀ ∈ B , ( )iU γ  are convex 

combination of ( )i mU γ , A1,2, ,2m N= � . It follows that 

( ) min maxargmax ,
i

i i i
p

U p pγ  ∈  
, because ( )

0i

i

U

p

γ∂
>

∂
 for ip ∈  

( )min0, ip and ( )
0i m

i

U

p

γ∂
<

∂
 for ( )max,1i ip p∈ . Hence, we can 

conclude that ( ) ( )i iU g U γ− ≤  u∆  for any γ ∈ B .    ■ 



 

2) KL Distance Minimization in Extreme Points Set 
 

In the first step, a convex set B  is constructed based on 

the tolerable performance loss u∆ . Now we apply large 

deviations theory to translate the performance loss u∆  into 

another metric, KL distance Dδ . The basic idea is to solve 

an optimization problem to find the minimum KL distance 

minDδ such that, for any γ  that satisfies ( )
min

|| DD gγ δ≤ , 

we have ( ) ( )i i uU g U γ− ≤ ∆ . The optimization problem is 

formulated as 

( )

( )

min ||

. . ,

D g

s t

γ
γ

γ ∈ S B

                            (11) 

where ( )S B  represents the surface of the convex set B , 

i.e. ( ) ( )\ int=S B B B . Here we denote the interior of 

the set B  as ( )int B  [15]. Note that the KL distance 

( )||D gγ  is convex in the pair ( ),gγ  and ( )γ ∈ S B  is a 

linear constraint [14]. Problem (11) essentially belongs to 

convex programming, and the optimal solution can be 

obtained efficiently [16]. Since the convex combinations 

of the extreme points in B  cover the adjacent region of 

the true pmf g , we can see that the solution value 
minDδ  of 

the problem (11) that ensures ( )
min

|| DD gγ δ≤  is sufficient 

to guarantee that ( ) ( )i i uU g U γ− ≤ ∆ .  

In the next step, we will apply large deviations theory to 

convert the bounded KL distance into an upper bound of 

minimum learning duration. 
 

3) Minimum Observation Duration Calculation 
 

In the previous step, we know that ( )
min

|| DD gγ δ≤  always 

leads to ( ) ( )i i uU g U γ− ≤ ∆ . Hence, an upper bound of 

problem (5) can be obtained by solving 

( )( )
min

min

. . || .n
D u

n

s t D gγ δ δ≥ ≤Prob
             (12) 

Applying formula (6), we have the following proposition: 
 

Proposition 2:  Suppose user i  adopts fictitious play to 

update its empirical frequency function n
iγ−  and take the 

best-response action correspondingly. An upper bound N  

of the solution of problem (5) is 

( )
min
, A ,D i uN Q δ δ−= ,                    (13) 

in which ( )
1

, , min : 2
1

nx
n y

Q x y z n z
y

−
  + −    = ⋅ ≤   −     

. 

Proof: Combining (6) and (12), we know that any n  that 

satisfies 

min

A 1
2

A 1
D

i n

u

i

n
δ

δ
− −

−

 + −    ≤  −  

               (14) 

is an upper bound of the solution for (5). Let ( )F n =  

min

A 1
2

A 1
D

i
n

i

n
δ

−
−

−

 + −     −  

. We have ( )

( )

min
A1

2
1

DinF n

F n n

δ− −++
= ⋅

+
 

and 
( )

( )

min
1

lim 2 1D

n

F n

F n

δ−

→∞

+
= < . We can conclude that 

( )lim 0
n

F n
→∞

= . As a result, by choosing (
min
,DN Q δ=  

)A ,i uδ−  as the minimum integer satisfying the inequality 

(14), we obtain an upper bound of the optimum of (5).  ■ 
 

Next, we provide some intuition to interpret the derived 

upper bound. Define :f →R R  to be the non-increasing 

function that maps the tolerable performance loss into the 

KL distance. The upper bound of minimum learning 

duration can be rewritten as 

( )( ), A ,u i uN Q f δ−= ∆ .                     (15) 

We can make several remarks about the upper bound: 

Remark 1 : Decreasing the acceptable performance loss 

u∆  will lead to a larger upper bound of the minimum 

observation duration. 

Remark 2 : Decreasing the outage probabilty uδ  will 

increase the upper bound N .  

Remark 3 : Adding more actions to enlarge the dimension 

of action space A i−  also increases the upper bound N . 
 

3.3. Adaptive Opponent 
 

Now we consider an hN -memory adaptive opponent that 

updates its action strategies based on the observed history 

of { }1, ,hn N n
iip p

− −�  in its bounded memory [6]. The total 

number of possible states in its memory is A A h

h

N
iN = . 

Denote the pmf of the opponent’s action strategy in the 

j th state as ( )j ig p  and the index of the state to be 

( )1, ,hn N n
n iij p pπ

− −= �  when having { }1, ,hn N n
iip p

− −�  in its 

memory. We also denote ( )1 1, ,hn N n
n iij p pπ

−− −= �  and 

( ) 1 11

:
, ,h hn N m n N n

n i im n
j p pπ

− + − − + −−  =  
�   .  

A reasonable learning strategy against limited-memory 

adaptive opponent is to maintain separate empirical 

frequency function for each state, and update these 

functions based on the observed action of its opponent at 

each time. We name this strategy “conditional learning”. 

Specifically, the empirical frequency functions ( )1 ,ipγ −  

( ) ( )2 , ,
Ah

i N ip pγ γ− −�  are updated according to 

( )
( )

( )
Ai i

n
j in

j i n
j ip

k p
p

k p
γ

− −

−
−

−∈

=
∑ �

�
,                   (16) 

where ( )n
j ik p−  takes the form of 

( )

( )

( )
( )

1

2 1

1

1,

, , ,

,

h

n n
j i i i

n Nn n n
j i i ii

n
j i

k p if p p and

k p j p p p

k p otherwise

π

−
− − −

− − −
−

−
−

 + == =


� . (17) 

If the opponent’s bounded memory is in state kj  at time k  

and the strategic user takes action k
ip , the conditional 

learning strategy will transits from state kj  to 1kj + =  

( )( )1

2:
,

h

k
k i

N
j pπ π− 

  
. At each time, the strategic user updates 

the empirical frequency function of the opponent’s action 

using (16) and (17). Assuming that the initial state is 

1The derived upper bound can be generalized to other cases as 

long as iU  is concave in the Ai . 



( )10 , ,hN
iij p pπ

− −= � , we want to design the strategic 

user’s action sequence 0 1 1, , , n
i i ip p p −�   with the minimal 

learning duration, while each state has the performance 

loss guarantee similar to (5). The problem is formulated as 

( ) ( )( )

0 1 1, , ,

A

min

. . , 1,2, , .

n
i i i

h

p p p

n
i j i j u u

n

s t U g U j Nγ δ

−

− ≥∆ ≤ ∀ =

�

�Prob
(18) 

An upper bound of the optimal solution in (18) can be 

derived by decomposing the problem into several separate 

sub-problems: 

( ) ( )( )

( )
1

min

. .

,

k

n
i k i k u u

n

t k

t

n

s t U g U

I j k n

γ δ

=

− ≥∆ ≤

= =∑

Prob            (19) 

in which ( )I i  is the indicator function and kn  represents 

the number of times that the opponent’s memory is in state 

k . It is easy to see that problem (19) is exactly the same 

as (5). Based on the previous results, we can obtain an 

upper bound kN  for each sub-problem. Note that each 

state can transit into Ai  different states. Therefore, an 

upper bound is achieved if the total number of transiting 

into any state k  from time 0 to n  is larger than kN . Now 

we can design an optimized conditional learning strategy 

that minimizes the overall learning duration while 

satisfying the individual sub-problems (19) by solving a 

linear program. If the ending state at time n  is ej , the 

following formulation gives an upper bound of the 

solution in (18): 

1

A

A

0

0

min

. . , 1,2, ,

0, , 1,2, ,

,

1,

,

1, ,

Ah

h

h

k

k

k

k

N

k

k

k k

kk

k ekkk F
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kk kk G

kk kk G

n

s t n N k N

n k k N

n n if k j

n n if k j

n n if k j

n n if k j

=

′

′′∈

′′∈

′′∈

′′∈

≥ ∀ =

′≥ ∀ =

= ≠

= − =

= ≠

= − =

∑

∑

∑

∑

∑

�

�
         (20) 

where ( )( ){ }1

2:
: , , A

h
k i i iN

F k k k p pπ π− ′ ′= = ∀ ∈ 
, kG =  

( )( ){ }1

1: 1
: , , A

h
i i i

N
k k p k pπ π−

−
 ′ ′ = ∀ ∈ 

, and kkn ′  indicates 

the total number that the conditional learning algorithm 

transits from state k  to state k ′  in the time interval of 

[ ]0,n . By solving this linear program, we can derive a 

conditional learning algorithm that starts from state 0j , 

ends in state ej , and satisfies k kn N≥ . The upper bound 

of learning duration can be further minimized by 

enumerating all the possible ending states of ej ∈  

A A

h

i i

N

× ×�������������	
. 

 

4. SIMULATION RESULTS 
 

Since the cases with an adaptive opponent are simply 

linear extensions of the stationary cases, we only provide 

the simulation results for stationary opponent in this paper. 

We assume a stationary opponent with {A 0.05, 0.5,i− =  

}0.95 . The opponent can choose his actions based on the 

pmf ( )i ig p− −  with ( )0.05 0.3i ig p− − = = , ( )0.5i ig p− − =  

0.4= , and ( )0.95 0.3i ig p− − = = . The contours of 

achievable rate ( )iU γ  and KL distance ( )||D gγ  are 

shown in Fig. 4 and 5 separately. We can see from the 

figures that both ( )iU γ  and ( )||D gγ  are convex in γ , 

which verifies proposition 1. We set the parameters in the 

problem (5) to be 410u
−∆ =  and 210uδ

−= . Fig. 6 and 7 

illustrate the procedure of obtaining the upper bound in 

Section 3.2. Noting that A A 3iN −= = , six extreme 

points 1 6, ,γ γ�  are chosen in total, which are determined 

based on the utility-pmf curves in Fig. 6. These three 

plotted curves indicate the achievable rates for three pmfs, 

including ( )0.5 0.4ipγ − = = , ( )0.05 0.3ipγ − = = , or 

( )0.95 0.3,ipγ − = = i.e. ( ) ( )0.5 0.05i ip pγ γ− −= + =  

0.7= . The convex hull of these extreme points 1 6, ,γ γ�  

is the extreme point set B . The red hexagon in Fig. 7 is 

the surface ( )S B  on which we minimize the KL distance. 

Solving the convex optimization problem (11) leads to 

min
0.041233Dδ = . We can obtain ( )20.041233,3,10N Q −=  

582=  using (13). As shown in Fig. 7, if the observation 

duration is larger than N , the KL distance between the 

actual stationary action pmf ( )i ig p− −  and observed 

empirical frequency function ( )N
ipγ −  will lie within the 

green circle with an outage probability less than 210− . 

We also examine the tightness of the upper bound in 

different settings. The tolerable performance loss u∆  is 

varied to be 3.5 4 4.510 ,10 ,10− − −  and 510−  while the outage 

probability uδ  is set as a constant 210− . In each scenario, 

we use Monte Carlo method and run 510  realizations to 

get the actual required learning duration aN . The results 

are summarized in Table I. From the table, we can see that, 

under this setting, the bound is not very tight and the ratio 

of 
aN N  is around 4 when u∆  is varied. This can be 

explained by phenomena that the contours are similar with 

each other. Moreover, we can also see that wisely 

choosing the extreme points can enlarge ( )S B  and 

improve the tightness of the upper bound. 
 

5. CONCLUSIONS 
 

This paper studies the learning behavior in a two-user OR-

channel interference game. In the existence of the mixed-

strategy opponent, how much a strategic user should learn 

the response strategy of its opponent is discussed for both 

stationary and adaptive opponents. The derived results are 

useful for designing and evaluating future communications 

protocols with learning mechanisms. 
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Fig. 4. Contour of achievable rate ( )iU γ  
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Fig. 5. Contour of KL distance ( )||D gγ  
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Fig. 6. Constructing the extreme points 
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Fig. 7. KL distance minimization in ( )S B  

 

 

Table I. Learning duration for different performance loss requirements 

Performance loss u∆  3.510−  410−  4.510−  510−  

Actual value aN   48 150 480 1570 

Upper bound N  189 582 1865 6360 


