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Abstract— The self-interest of agents in strategic networks, i.e. 
networks where self-interested agents interact, leads to intrinsic 
incentive problems which impact the stability and efficiency of 
such networks. This paper propose the first game-theoretic 
framework for analyzing and understanding how strategic 
networks are formed endogenously, driven by the self-
interested decisions of individual agents aiming to maximize 
their own utilities by trading-off the costs of forming links with 
other agents and the benefits of disseminating information to 
other agents. The proposed framework departs from the 
traditional research on strategic link formation in economics 
which postulates that agents only benefit by forming links to 
acquire the information produced by other agents. Given the 
agents’ interests in information dissemination, our analysis is 
able to predict several important properties of the strategic 
networks (arising from the agents’ strategic link formation) at 
equilibria. We rigorously prove that, in equilibrium, strategic 
networks frequently exhibit a core-periphery structure that is 
commonly observed on the Internet. In such core-periphery 
networks there are only few agents at the center (core) of the 
network while the majority of agents are at the periphery of the 
network and communicate with other agents via links 
maintained by the “core” agents, who play the role of 
“connectors” in the network. Also, the proposed framework can 
be used to determine under what conditions the strategic 
networks operating in equilibrium are minimally connected (i.e. 
there is a unique path between any two agents) and have short 
network diameters. These properties are important because 
they ensure the efficiency and robustness of the resulting 
equilibrium networks. 

I. INTRODUCTION  

Every day people turn to the Internet to exchange 

information, e.g. services, data, content and news. For this, 

they are using social networks such as Facebook [1] and 

Twitter [2], expert networks such as Amazon Mechanical 

Turk [3], and peer-to-peer file sharing systems [4], etc. A 

common feature of these networks is that agents in the 

network (i.e. people, smart machines or people interacting 

using smart machines) are usually self-interested and can 

proactively create and dissolve links to other agents in order 

to maximize their own utilities from the information 

exchange. For example, a company or news agency may 

want to advertise its news/products to a variety of potential 

users on Twitter; in a peer-to-peer overlay network, a node 

can decide which peer nodes to connect to in order to route 

its data in the most effective manner. We refer to such 

networks, formed by the agents’ self-interested (strategic) 

decisions, as strategic networks.  

In all the aforementioned examples of strategic networks, 

the connectivity of agents and the underlying topology of the 

network play significant roles in determining the agents’ 

utilities. The design of traditional communication networks 

usually rely on the presumption that agents in a network are 

obedient and the topology of the network is exogenously 

determined or dictated by a system designer aiming to 

maximize the overall network utility [5]. In contrast, strategic 

networks are usually formed endogenously, in an ad-hoc 

fashion, by the decentralized actions of strategic agents 

forming links with other agents based on their self-interest. 

This strategic behavior of the agents shapes the emerging 

topologies as well as their stability and efficiency. A novel 

framework is thus necessary to enable the rigorous study of 

the efficiency and the stability of such strategic networks 

based on the agents’ self-interested decisions and, using the 

developed formalism, design new incentive protocols which 

encourage the agents to cooperate with each other and 

optimize the overall utility of the strategic network that 

emerge. 

To be precise, we consider the behavior of a group of self-

interested and strategic agents/users who may create and 

maintain links to other agents and disseminate information. 

We formalize the strategic interactions among agents as a 

non-cooperative game, the Information Dissemination Game 

(IDG). Because we emphasize information dissemination, we 

assume that link formation is unilateral: the decision to create 

a link from one agent to another is made unilaterally by the 

first agent and the cost of creating that link is borne entirely 

by the agent who creates it; this is a reasonable description of 

behavior and cost when the benefit of creating a link is 

disseminating information (advertising) rather than gathering 

information (see e.g. [7][8]). We consider a setting in which 

agents and information are both heterogeneous: agents differ 

in terms of their locations, access to devices, information and 

link production capabilities and costs. Agents are self-

interested: each intends to maximize its own benefit from 

information dissemination net of the cost of the links it forms. 

Our notion of solution in the Information Dissemination 

Game is a non-cooperative equilibrium. 

Given the formalism of the IDG, we study what non-

cooperative equilibria (i.e. equilibria resulting based on the 

agents’ self-interested link formation actions) emerge and 

characterize how efficient these equilibria are from a social 

welfare perspective compared to the socially optimal 

networks, which can be designed when all agents obediently 

follow the link formation actions dictated by some central 

designer. Our analysis is able to characterize and prove 

several important properties of the strategic network at 

equilibria that have been measured and empirically quantified 

in the network science literature [6]. 
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First, we show that given the agents’ heterogeneity and 

their interests in information dissemination, strategic 

networks operating in equilibrium usually exhibit core-

periphery topologies where there are only a few agents at the 

center (core) of the network while the majority of agents are 

at the periphery of the network and communicate with other 

agents via links maintained by the core agents, who play the 

role of “connectors” in the network. Also, the proposed 

framework rigorously proves that the strategic networks 

operating in equilibrium are minimally connected (i.e. there 

is a unique path between any two agents), and they often have 

short network diameters which are independent of the 

population size of the network. This finding is consistent with 

what has been empirically measured in numerous networks 

(e.g. the small-world phenomenon on the Internet [6]). As 

empirically shown in the existing literature [9], the “short 

diameter” property guarantees that agents can disseminate 

their information efficiently across the network. Meanwhile, 

the “minimal connected” property can minimize the total link 

formation cost of agents when constructing the network. 

Therefore, rigorously proving based on our framework the 

emergence of these properties is of significant importance for 

the efficient operation of such networks.  

When agents’ strategic behavior incorporates both link 

formation and information production (with the objective of 

maximizing information dissemination), we show that the 

number of agents who produce information and the total 

amount of information produced grow with the size of the 

network; this is in sharp contrast with the “law of the few” 

which has been demonstrated in [12] with settings where the 

purpose of forming links is the acquisition of information. 

The remainder of this paper is organized as follows.  

Section II describes our basic model of the IDG.  Section III 

characterizes the non-cooperative equilibria that emerge in 

the basic model. Section IV analyzes the IDG with strategic 

information production. Section V discusses the related 

literature and Section VI concludes. 

II. SYSTEM MODEL 

A. Basic model 

In this section, we propose a basic model to formulate the 

IDG, in order to capture the fundamental trade-offs between 

agents’ benefit and cost from strategic information 

dissemination. Although simple, our formulation already 

provides qualitative insights on how the incentives of self-

interested agents impact the network structure, and can be 

applied to numerous network applications (with slight 

modifications). 

Let {1,2, , }N n= …  be the set of agents in the system 

with 3n ≥  and let i  and j  denote typical agents. Each 

agent i  possesses some information in the amount 
i

x +∈ R ,
 

which it finds in its own benefit to disseminate to other agents. 

We consider a non-cooperative game where each agent 

strategically determines whether to create links with other 

agents in order to disseminate its information. As in e.g. [13], 

links are created by the unilateral actions of an agent who 

bears the entire cost. Thus, the mutual consent of two agents 

is not required in order to create a link between them. The link 

formation strategy adopted by an agent i  is denoted by a 

tuple 
1

{1,..., }/{ }
( ) {0,1}n

i ij j n i
g −

∈
= ∈g ; 1

ij
g =  if agent i  

forms a link with agent j  and 0
ij

g =  otherwise. The 

creation of a link incurs a cost to the creator and hence, the 

decision to form a link involves trading-off the benefit 

received from disseminating information using this link and 

the incurred cost. A strategy profile in the information 

dissemination game is defined as 
1

( )n
i i=

∈�g g G , where 

G  is a finite space. 

The information flow across a link is assumed to be 

undirected. That is, given a link between any two agents, the 

information can be transmitted in both directions (i.e. from 

the creator to the recipient and vice versa) across this link. We 

thus define the topology of the network as 

g
{( , ) |   max{ , } 1}

ij ji
E i j N N i j and g g= ∈ × ≠ = . In 

the rest of this paper, we will use the terms “topology” and 

“network” interchangeably. Given a topology g( )E , a path 

between two agents i  and j  is a sequence 

1 1 2
{( , ),( , ), ,( , )}

ij m
path i j j j j j= …  for some 0m ≥  such 

that 
gij

path E⊆ . Agent i  can reach an agent j  in a 

topology 
g

E , denoted i j→ , if and only if there is at least 

one path from agent i  to j  in 
g

E , otherwise i  cannot reach 

agent j , denoted i→ j . We assume that an agent i  can 

disseminate its information to every agent j  whom it can 

reach. Given this, the utility of an agent i  in the IDG can be 

expressed as: 

 
g g

g
( )

( ) ( | ( ) |)
i

i i ijj Ni
u f x N E k

∈
= −∑ . (1) 

Here 
g

( ) { | }
i

N E j i j→�  is the set of agents whom agent 

i  can reach, and ( ) { | 1}
iji

N j g =�g  is the set of agents 

with whom agent i  forms links. 
g

( | ( ) |)
ii

f x N E  thus 

represents the total benefit that agent i  receives from 

information dissemination, which depends on the amount of 

information it disseminates, i.e. 
i

x , as well as the total 

number of agents it can reach, i.e. 
g

| ( ) |
i

N E . We assume that 

()f ⋅  is twice continuously differentiable, increasing and 

concave with (0) 0f = . Hence, an agent’s benefit increases, 

while the marginal benefit decreases, with 
i

x  and 
g

| ( ) |
i

N E . 

( )
i

ijj N
k

∈∑ g
 represents the total link formation cost of agent 

i , where 
ij

k +∈ R  denotes the cost for agent i  to form a 

link with agent j . 

We assume that an agent cannot benefit from 

disseminating duplicated copies of its information to any 
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other agent. That is, when there are multiple paths from agent 

i  to agent j  and multiple copies of agent i ’s information 

arrive at agent j , agent i  receives a fixed benefit regardless 

of the number of copies that agent j  receives. We assume 

that each agent benefits only from disseminating its own 

information, and forwarding the information that is received 

from other agents does not bring it any benefit. 

B. Equilibrium and social welfare 

We consider pure (not mixed) link formation strategies. 

Each agent maximizes its own utility given the strategies of 

others. A Nash equilibrium (NE) is defined as a strategy 

profile 
*
g  such that the strategy of each agent i  is a best 

response to the strategies of others:  

 * * * 1( , ) ( , ), {0,1} ,  n

i i i i i i i
u u i N−

− −
≥ ∀ ∈ ∀ ∈g g g g g . (2) 

Here 
i−

g  represents the strategies of all agents other than 

agent i . The set of NE is defined as 
* * *{ |   (2)}satisfies=G g g . A strict NE is an NE such that 

the strategy of each agent i  is a strict best response to the 

strategies of others (with the inequality in (2) being strict 

whenever  *
i i
≠g g ). It is shown in the online appendix [15] 

that a network will always converge to a strict NE in a 

dynamic link formation process. Therefore, a strict NE 

characterizes a steady state in the dynamic link formation 

process. Note that strict NE are NE and thus, the results below 

on NE also apply to strict NE.  

The social welfare of the IDG is defined to be the sum of 

agents’ individual utilities. For a strategy profile g , the social 

welfare is given by ( ) ( )
ii N

U u
∈∑�g g . A strategy profile 

#
g  is called socially optimal if it achieves the social 

optimum, denoted by 
#U , i.e.  

 
# #( ) ( ),  U U U≥ ∀ ∈� g g g G . (3) 

III. EQUILIBRIUM AND EFFICIENCY ANALYSIS OF THE 

IDG 

This section studies the IDG described in Section II. First, 

we analyze the equilibrium link formation strategies of 

individual self-interested agents. Next, we explicitly compare 

the equilibrium social welfare of the IDG to the social 

optimum. The results provide important insights on the 

efficiency loss occurred due to the self-interested behavior of 

the agents in the IDG as compared to the case when the agents 

obediently follow the link formation actions dictated by some 

central designer. 

A. Equilibrium analysis  

Given a strategy profile g , a component C  is a set of 

agents such that ,  ,i j i j C→ ∀ ∈  and 

i→ ,    j i C and j C′ ′∀ ∈ ∀ ∉ . Hence, each component 

defines a connected sub-network in a network 
g

E : any two 

agents in this component can mutually reach each other, 

whereas no agent in the component can reach any other agent 

outside the component. An agent who is not connected with 

any other agents in the network (i.e. an isolated agent) forms 

a component by itself,  a singleton component; a component 

that is not singleton is called a non-singleton component. A 

component C  is called minimal if and only if there is only 

one path in 
g

E  from any agent i C∈  to any other agent 

j C∈ . The shortest path from agent i  to j  is the path that 

contains the minimum number of links. The distance ( , )d i j
g

 

between i  and j  is the number of links on a shortest path 

between them. By convention, ( , )d i j ∞�
g

 when i→ j . 

The diameter of a component C  is defined as the largest 

distance between any two agents in it, which is denoted as 

,
max ( , )

C
i j C

D d i j
∈

�
g

. The diameter of a singleton component 

is defined to be 0. The diameter of the network is defined to 

be the largest diameter of all components it contains. 

It should be noted that the strategy space for each agent in 

the IDG is compact and convex. Meanwhile, an agent’s utility 

is quasi-concave over its link formation strategy. Hence, it has 

been shown in [14] that pure NE always exists in the IDG. We 

first derive some basic properties of the equilibria in the IDG. 

Although simple, these properties are important for 

characterizing the emerging equilibria later. In the rest of this 

paper, we provide proofs for important theorems and 

propositions, and relegate the proof of the rest results into the 

online appendix [15]. 

Proposition 1. Under an NE 
*
g  of the IDG, each 

component is minimal. � 

Proposition 1 shows that in an equilibrium of the IDG, 

each connected sub-network (component) is minimal with no 

cycles in it. As we will show in Section III.B, the social 

optimum in the IDG is always achieved by networks 

consisting of minimal components and hence, the equilibria 

in the IDG can frequently achieve the social optimum (i.e. 

being efficient).  

Proposition 1 characterizes individual components in the 

equilibrium network. However, it does not characterize the 

connectedness of the network, i.e. whether the network will 

be composed of a unique component where all agents are 

connecting with (and can disseminate information to) each 

other or several components that are isolated from each other. 

The following proposition provides a sufficient condition 

under which the network is connected at equilibrium.   

Proposition 2. The network in each NE is always 

minimally connected if  there is an agent i such that

( (| | 1)) ( (| | 2)) max{ }
i i

N
ij

j
f x N f x N k

∈
− − − > . � 

Proposition 2 shows that the network will be connected at 

equilibrium when the benefit from information dissemination 

is sufficiently large (i.e. 
i

x  is sufficiently large) with respect 

to the link formation cost. The properties of the network 

topology at equilibrium (i.e. the shape and diameter of the 
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network) depends on the specific values of { }
i i N

x
∈

 and 

,
{ }

ij i j N
k

∈
. In the rest of this section, we analyze two 

exemplary networks with particular structures in order to 

obtain further insights on the equilibrium topology.  

1) Networks with recipient-dependent cost 

In the first example, we consider the network where the 

cost of forming a link is exclusively recipient specific. In 

particular, we have , / { }
ij j
k k i N j= ∀ ∈ . This can capture 

the practical networks in which the link formation cost only 

depends on the type of the recipient and there are some agents 

to which it is easier to connect with than other agents (i.e. with 

smaller costs to form links with). For example, in networks 

where the link formation cost represents the subscription fee 

that the creator sends to the recipient, each agent charges the 

same price to any agent who wants to form a link with it. In 

the following theorem, we show that if the link formation cost 

in the network is not arbitrary but only takes values from a 

finite set 
1{ ,..., }Lk k , i.e. there are L  different types of link 

formation costs and 1{ ,..., },L

i
k k k i N∈ ∀ ∈  (e.g. the 

subscription fee is quantized to several discrete levels 

depending on the agents’ types but not takes arbitrary values), 

then the diameter of the network at each strict equilibrium 

should be no more than 2 2L + .  

Theorem 1. Suppose that there are L  different types of 

link formation costs, e.g. 
1{ ,..., }Lk k , such that 

1{ ,..., },L

i
k k k i N∈ ∀ ∈ , then under any strict NE 

*
g  of the 

IDG, the diameter of the network is at most 2 2L + . 

Proof: Consider a strict NE 
*
g

 
and a non-singleton 

component in it, there is at least one agent i  in the component 

such that * 1
ij

g =  for some j . Consider a path 

1 1 2 1
(( , ),( , ),( , ), ,( , ))

d
ij d d

path i j j j j j j j
−

= … . Since * 1
ij

g = , 

we should have 
1 2

{ , ,..., }
d

j j j j j j
k k k k k k< < < . Now there 

are two cases: 
1

* 1
j j

g =  or 
1

* 1
jj

g = . 

In the first case, suppose 
2 1

* 1
j j

g = , then we have 

1j j
k k< , which leads to a contradiction to the fact that 

1j j
k k< . Hence, we have 

1 2

* 1
j j

g = , which gives 
2 3j j

k k< . 

Using the same arguments, we have 
1

* 1
l l
j j

g
+

=  and 

1 2l l
j j

k k
+ +

< , for all {1,..., 2}l d∈ − . Therefore, along the 

path 1 1 2 1
(( , ),( , ), ,( , ))

d
jj d d

path j j j j j j
−

= … , there are at 

least d  different link formation costs. Hence, we have 

d L≤  and the length of path 
d

ij
path  is smaller than 1L + .   

Now consider the second case where 
1

* 1
jj

g = . Then we 

have 
1 2j j

k k< . Using arguments similar to that for the first 

case, we have that along 1 1
(( , ), ,( , ))

d
jj d d

path j j j j
−

= … , 

there are at least d  different link formation costs and hence 

the length of path 
d

ij
path  is no more than 1L + .  

Now consider the longest path in this component, which 

is denoted as 0 1 1 2 1
(( , ),( , ), ,( , ))

T T
b b b b b b

−
… . Suppose 

2( 1)T L> +  and consider the agents 
/2T

b 
  

and 
/2 1T

b +  
. If 

/2 /2 1

* 1
T T

b b
g
   +      

= , then the path 

1/2 /2 1
(( , ), ,( , ))

T TT T
b b b b    −+      

…  has a length longer than 

( 1)L+ . If 
/2 1 /2

* 1
T T

b b
g
   +      

= , then the path 

1 0/2 1 /2
(( , ), ,( , ))

T T
b b b b   +      

…  has a length longer than 

( 1)L+ . Both scenarios contradict our argument above. 

Therefore, we can conclude that 2( 1)T L≤ +  always holds 

and this theorem follows. �  

The link formation cost thus plays an important role in 

shaping the equilibrium network in the IDG. As shown in 

Theorem 1, if there are only a finite number of different link 

formation costs in the network, then the size of each 

component (a connected sub-network) cannot be arbitrarily 

large but is upper-bounded by some constant value, which is 

independent of the population size but proportional to the 

number of different link formation costs. Based on 

Proposition 1 and Theorem 1, the “minimally connected” and 

“short diameter” properties of the equilibria in strategic 

networks are thus proven. 

         
                (a)                                                (b) 

 
(c) 

Figure 1 The examplary Nash equilibria in the network with 

groups: (a) ( )f x k< ; (b) ( ) ( , )f x k k∈ ; (c) ( )f x k>  
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As a special case of Theorem 1, we prove in the following 

corollary that when the link formation cost is the same for all 

agents, each component in a strict NE forms a star topology, 

regardless of the values { }
i i N

x
∈

. 

Corollary 1. If , ,
ij
k k i j N= ∀ ∈ , then under a strict NE 

*
g , each non-singleton component forms a star topology. � 

Hence when the link formation cost is the same for all 

agents, each component at equilibrium preserves the “core-

periphery” property with one single agent staying at the center 

of it and playing the role of the “connector” who connects 

(maintains links) with all other agents to support their 

information dissemination. 

2) Networks groups 

We discuss a network where agents are divided into 

groups and agents within the same group have the same type. 

The cost of forming links within a group (i.e. between agents 

of the same type) is lower than the cost of forming links across 

groups (i.e. between agents of different types). Examples of 

strategic networks where such groups exist are users of close 

social relationships or close interests in a social network [16], 

devices or processing nodes located in the same area [17], etc.  

Formally, we consider that all agents are divided into Z  

different groups 1
, ,

Z
N N…  with | | 2

z
N ≥  for all 

1 z Z≤ ≤ , such that 
1

{ }Z
z z

N N
=

= ∪  and 
z z

N N φ′∩ =  

for any 1 z z Z′≤ < ≤ . For two agents from the same group, 

the cost of forming a link between them is k , while for two 

agents from different groups, the cost of forming a link 

between them is k k> . Here we assume that 

,
i

x x i N= ∀ ∈  to make our analysis tractable. The 

following theorem characterizes the strict equilibria with the 

presence of groups and proves that each non-empty strict 

equilibrium preserves the “core-periphery” property. 

Theorem 2. In the presence of groups, the Nash equilibria 

can be characterized as follows: 

(i) When ( )f x k< , the unique strict NE 
*
g  satisfies 

* 0, ,
ij

g i j= ∀ ; 

(ii) When ( ) ( , )f x k k∈ , the unique strict NE consists of 

Z
 
components, where each component contains only agents 

from the same group and the topology of each component is 

a star;  

(iii) When ( )f x k> , in each strict NE 
*
g , there is a 

group 
z

N  and an agent 
z

i N∈  such that 

* 1, / { }
ij z

g j N i= ∀ ∈ . Also for each agent 
z

j N′ ∉ , there is 

an agent 
z

j N∈  such that * 1
jj

g ′ = . � 

Several examples of the equilibrium topologies discussed 

in Theorem 2 are illustrated in Figure 1 in a network of 

10n =  agents who are divided into 2 groups. The number 

on each node represents the group to which each agent 

belongs. Theorem 2 provides several important insights. First, 

in a strict equilibrium, agents from the same group always 

belong to the same component (i.e. are connected with each 

other).  Second, each non-singleton component exhibits the 

“core-periphery” property. The agents that form the core are 

from the same group, while agents from other groups access 

the network via links maintained by the core. This analytical 

finding is reflected in numerous real world examples. For 

instance, in a large-scale overlay routing network [10] , it is 

usually the case that a group of nodes who can inter-connect 

at a lower cost form the backbone of the network, while all 

other nodes connect to the network via this backbone. Third, 

in each component, there is always a central agent and all 

paths within this component initiate from this agent. Also, 

the distance from the central agent to any periphery agent is 

no more than 2. Hence, the diameter of the network is no 

more than 4, which is also independent of the population size 

in the network. 

B. Equilibrium efficiency of the IDG 

In this section, we analyze the efficiency (social welfare) 

of the IDG. Because there are multiple equilibria, we use two 

metrics to measure the equilibrium efficiency: (i) the Price of 

Stability (PoS) is defined as the ratio between the social 

optimum and the highest social welfare that is achieved at 

equilibrium and measures the efficiency of the “best” 

equilibrium in the IDG, i.e. * *

# */ max ( )PoS U U
∈

=
g G

g ; 

(ii) the Price of Anarchy (PoA) is defined as the ratio between 

the social optimum and the lowest social welfare that is 

achieved at equilibrium and measures the efficiency of the 

“worst” equilibrium in the IDG, i.e. 

* *

# */ min ( )PoA U U
∈

=
g G

g . In the rest of this section, we 

quantify the PoS and PoA in the IDG and show with multiple 

examples that the equilibria in the IDG frequently achieve the 

social optimum. 

We first characterize the socially optimal strategy profiles. 

As with NE, it can be proven that the minimal property still 

holds in the network under any socially optimal strategy 

profile.  

Proposition 3. In the IDG, each component under a 

socially optimal profile is always minimally connected. � 

With the minimal property, we prove in the next theorem 

that when the link formation cost is recipient-dependent, i.e. 

, / { }
ij j
k k i N j= ∀ ∈ , there is always an NE that can 

achieve the social optimum when the link formation cost is 

sufficiently small: the PoS of the IDG is always 1. 

Theorem 3. If , / { }
ij j
k k i N j= ∀ ∈  and 

min ( ) min
i i

i N Ni
f x k

∈ ∈
≥ , the PoS of the IDG is always 1. � 

However, the PoA of the IDG is not necessarily 1 in this 

case, i.e. there are some NE that incur positive efficiency loss. 

This is quantified in the next proposition. 
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Proposition 4. If , / { }
ij j
k k i N j= ∀ ∈  and 

min ( ) min
i i

i N Ni
f x k

∈ ∈
≥ , the PoA of the IDG is upper-bounded by 

,
max /

N ji j i
k k

∈
. � 

Proposition 4 shows that the upper bound of PoA depends 

on how the link formation cost varies among agents. In the 

special case where the link formation cost is the same for all 

agents, i.e. , ,
ij
k k i j N= ∀ ∈ , each NE 

*
g  achieves the 

social optimum: PoA is 1. 

Corollary 2. If , ,
ij
k k i j N= ∀ ∈  and 

min ( ) min
i i

i N Ni
f x k

∈ ∈
≥ , every NE 

*
g  achieves the social 

optimum and the PoA of the IDG is 1. � 

IV. IDG WITH INFORMATION PRODUCTION 

In the IDG discussed so far, we assumed that the 

information possessed by the each agent is exogenously 

determined and fixed during the game. Nevertheless in 

practical networks, it is usually the case that each agent i  can 

proactively determine the amount of information that it wants 

to disseminate throughout the network, i.e. the value of 
i

x . In 

this section, we consider such IDG with strategic information 

production from individual agents. 

In the IDG with information production, the strategy of an 

agent i  can be represented as ( , )
ii

x g , and the agent jointly 

maximizes its decisions on the information production and 

link formation in order to maximize its overall utility from 

information dissemination. A strategy profile of the IDG with 

information production is written as ( , )=s x g , where 

1
( )n

i i
x

=
=x  denotes the information production decisions of 

all agents. Given a strategy profile, the utility of agent i  is 

expressed as: 

 
g g

x g
( )

( , ) ( | ( ) |)
i

i ii i ijj N
u f x N E cx k

∈
= − −∑ . (4) 

Here 
i

cx  represents the cost of producing an amount 
i

x  of 

information, where c  is the unit production cost. 

A Nash equilibrium of the IDG with information 

production is a strategy profile 
* * *( )=s x ,g  such that 

 * * * 1( , ) ( , ), {0,1}n
i i i i ii i

u u + −
− −
≥ ∀ ∈ ×s s s s s R . (5) 

When information production is a strategic choice, central 

questions are how many agents will produce information at 

equilibrium and how the total amount of information 

produced in the network changes with the population size. 

The seminal work in [12] analyzes the network formation 

game with information production where agents benefit from 

acquiring and consuming the information produced by other 

agents. It predicts the occurrence of the “law of the few” at 

equilibrium. That is, in each equilibrium there are only a small 

number of agents in the network who produce a positive 

amount of information (i.e. being information producers). As 

the population size grows to infinity, the fraction of 

information producers in the agent population goes to 0. 

Based on the “law of the few”, [12] also predicts that the total 

amount of information that is produced (by all agents) in the 

network remains constant at equilibrium, which is 

independent of the population size. 

The reason for the emergence of the “law of the few” in 

[12] is that each agent benefits solely from information 

consumption and hence its utility is not affected by how many 

agents it connects with and with whom it is connected so long 

as the total amount of its acquired information remains 

constant. Also, when there is a sufficient amount of 

information that has been acquired by an agent, it will stop 

producing information personally. Therefore, the information 

production at equilibrium is always dominated by a small 

fraction of information producers who produce all the 

information to be consumed by all agents. 

In the rest of this section, we study the asymptotic 

information production behavior of agents in the IDG when 

the population size grows. It should be noted that in the IDG, 

the benefit of an individual agent is jointly determined by the 

amount of its own production, i.e. 
i

x , as well as the number 

of agents it connects with, i.e. 
g

| ( ) |
i

N E , whereas the 

information produced by other agents has no influence on its 

information production decision. This makes the resulting 

asymptotic information production behavior at equilibrium 

exhibits significant differences to that in [12]. Importantly, we 

prove in the following theorem that the “law of the few” does 

not hold in the IDG. To illustrate this theorem, we define 

several auxiliary variables: *
N

S  represents the set of 

equilibrium strategy profiles when the population is N , 
*  0( ) { | }
iN

N and xI i i ∈ >=s  represents the set of 

information producers under the strategy profile s , and x  

represents the solution of the equation ( )f x c′ = . 

Theorem 4. In the IDG with information dissemination, 

when 
,
max

ij
i j N

k cx
∈

< , (i) 
* *

*inf { ( )}/ | | 1
N

N
S

I N
∈

=
s

s ; (ii) the 

total amount of information produced in the network at 

equilibrium, i.e. 
*
i

i N

x
∈

∑ , grows to infinity when the 

population size | |N →∞ , i.e. 
* *

*

| |
lim inf { }

N

i
N S i N

x
→∞ ∈ ∈

→∞∑
s

.  

Proof: To prove Statement (i), it is sufficient to see that 

each agent i  will connect to at least one other agent in any 

NE and thus have * 0
i

x >  when max
ij ij
k cx< , which is 

independent of the population size | |N .  

By taking the first order derivative of (4) over 
i

x , we have 

that 
g g* *

*| ( ) | (| ( ) | )
ii i

N E f N E x c′ =  and thus 

g*
*| ( ) |
ii

N E x x≥ . Also, for any two agents ,i j  within the 

same component, we have * *
i j

x x= . Therefore for any 
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component C , the total amount of information produced by 

agents within this component at equilibrium is 
*
i

i C

x
∈

∑ , which 

satisfies 
*( ) / | |
i

i C

f x c C
∈

′ =∑  and 
*
i

i C

x x
∈

>∑ . Suppose that 

there is a sufficiently large constant W  such that for any N  

we have 
* *

*inf { }
N

i
S i N

x W
∈ ∈

<∑
s

. Select 

* *

* *arg inf { }
N

N i
S i N

x
∈ ∈

= ∑
s

s . Due to the concavity of ()f ⋅ , we 

have that 
*( ) / | | ( )
i

i C

f x c C f W
∈

′ ′= ≥∑  for any component 

C  under *
N
s . Hence, | | / ( )C c f W′≤ , and we have 

* | | ( ) /
i

i N

x N f W x c
∈

′≥∑ . This shows that there is always a 

sufficiently large | |N  such that | | ( ) /N f W x c W′ >  

which contradicts the assumption that 
* *

*inf { }
N

i
S i N

x W
∈ ∈

<∑
s

 

for any N . Therefore, we have a contradiction and Statement 

(ii) follows. � 

Theorem 4 shows that when agents benefit from 

information dissemination instead of information 

consumption, both the number of information producers and 

the total amount of information produced in the network grow 

at least at a linear order of the population size at equilibrium. 

Therefore, the information production at equilibrium is no 

longer dominated by a small number of information producers 

and the “law of the few” predicted in [12] no longer holds. 

V. RELATED WORKS 

There is a broad literature studying the information 

dissemination in social networks [18][19], which focuses on 

explaining how the information (e.g. epidemics, job openings, 

etc.) is propagated in social networks and how the agents’ 

actions (e.g. becoming “infected” or not, buying products or 

not, etc.) are influenced by the disseminated information. 

However, the analysis in these works is based on the 

assumption that the underlying topologies of the social 

networks are exogenously determined and none of them 

explicitly considers the strategic link formation of self-

interested agents. 

There are also numerous works in network science 

investigating the evolution of social and information 

networks whose topologies are formed endogenously by 

agents’ self-interested actions, e.g. [9]. These works focus on 

empirical measurements of existing social networks and they 

fail to provide theoretical foundations which can explain and 

emulate the relationship between agents’ incentives to form 

links based on their own self-interest and the emerging 

network topologies. 

Theoretical study of network formation in social and 

economic networks has been conducted by micro-economists 

as well as computer scientists (see e.g. [7][8][12]), who 

analyze how the agents’ self-interest in acquiring information 

from other agents leads to strategic link formation and 

particular network topologies. However, these works focus on 

the scenario in which agents benefit solely from consuming 

acquired information. In the rest of this section, we discuss 

the relationship and differences between our proposed 

information dissemination game and the existing models on 

network formation games with information acquisition. 

(1)Differences in agents’ utilities and incentives 

First, note that analysis of the IDG and that of the network 

formation game with information acquisition (which is 

referred to as the Information Acquisition Game (IAG) below) 

exhibit significant differences in both the agents’ utilities and 

the problem formulation. To illustrate the differences, we 

write the utility function in the IDG below as well as an 

exemplary utility function in the IAG. To make the key 

differences even clearer, we assume that , ,
ij
k k i j N= ∀ ∈  

throughout the analysis: 

 
g

g g( ) ( | ( ) |) | ( ) |
ii i

IDG

i
u f x N E k N= − , (6) 

 
g

g g
( )

( ) ( ) | ( ) |
i

IAG

i i jN E ij
u f x x k N

∈
= + −∑ . (7) 

From these two utility functions, it can be observed that in the 

IAG, the benefit of an individual agent is determined by the 

total amount of information which it acquires, i.e. 

g
( )

i
i jj N E

x x
∈

+∑ , and agents lose the incentive to form 

links as long as they are able to acquire sufficient information 

from the existing links, regardless of with how many agents 

they are connected and from which agents was the 

information acquired (i.e. the variety of agents). In contrast, 

in the IDG, the benefit of an individual agent is jointly 

determined by the amount of its own information, i.e. 
i

x , as 

well as the number of agents with whom it is connected, i.e. 

g
| ( ) |

i
N E , while the information possessed by other agents 

has no influence on its link formation decision. The number 

and variety of agents that each agent is connected with thus 

form the most important factor that shapes its incentives. 

It is important to note that in the IDG and the IAG, the 

amount of an agent’s own information have opposite impacts 

on its incentive to form links with others: in the IAG, the more 

information an agent possesses, i.e. the larger 
i

x  is, the 

smaller incentive it has to form links with other agents; 

whereas in the IDG, an agent with a larger 
i

x  has a larger 

incentive to form links with others. As a result, the existing 

models used for IAG are not suitable to analyze the trade-off 

between the benefits and costs of information dissemination 

and link formation as well as the mutual impact between 

agents’ strategic link formation decisions in an IDG. In fact, 

the existing IAG models can be applied to analyze the IDG 

only if agents are homogeneous with ,
i

x ix= ∀ , so that the 

total amount of an agent’s acquired information is 

proportional to the number of agents it connects with. 

(2) Differences in agents’ equilibrium link formation 

behavior 
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A simple example show that these differences lead to 

highly different link formation behaviors thereby resulting in 

significant differences of the equilibrium topologies as 

opposed to those in the IAG. This point is further illustrated 

below using a simple example. For a fair comparison, we 

assume in the example that ( )f y yλ=  with (0,1)λ ∈ . 

Suppose that there are n  agents in the network. There is one 

agent i  possessing an amount 
i

x  of information with 

ln /
i

x k λ>  while all the other agents possess no 

information. Then in the IAG, it is easy to show that agent i  

forms no link at equilibrium, i.e. * 0,
ij

g j i= ∀ ≠ , and each 

agent /{ }j N i∈  forms exactly one link with agent i , i.e. 

* 1,
ji

g j i= ∀ ≠  and * 0, ,
jj

g j i j i′
′= ∀ ≠ ≠ . Hence, the 

unique equilibrium in the IAG is a periphery-sponsored star. 

Nevertheless in the IDG, agent i  forms at least one link with 

some other agent at equilibrium, i.e. * 1,
ij

g j i= ∃ ≠ , and each 

agent /{ }j N i∈  forms no link with any other agent, i.e. 

* 0, ,
jj

g j i j N′
′= ∀ ≠ ∈ . Meanwhile, the larger 

i
x  is, the 

more links that agent i  forms in the IDG. We can show that 

when 
1

(
ln

( )1) 2
i

k

N
x

Nλ λλ −
>

− −
, agent i  forms links 

with all other agents in the network, with the unique 

equilibrium being a center-sponsored star. 

This example provides two important insights: (1) agents’ 

link formation behaviors at equilibrium exhibit significant 

differences when they are playing the IAG or the IDG, even 

if they possess the same amount of information and incur the 

same link formation cost; (2) although the resulting 

equilibrium topologies in the IAG and IDG may exhibit some 

similarity with respect to their shapes (e.g. both IAG and IDG 

have the star topology as the unique equilibrium when 

1

(
ln

( )1) 2
i

k

N
x

Nλ λλ −
>

− −
), they may have completely 

different underlying structures which lead to different 

properties in practice, e.g. the center-sponsored star formed in 

the IDG has all its links supported by its center node and is 

more vulnerable to single-node failures than the periphery-

sponsored star formed in the IAG. 

(3) Differences in emerging equilibrium topologies 

The differences between the IDG and the IAG become 

even more distinct in the scenario where agents self-produce 

information. For instance, the “law of the few”, which is 

shown as a robust feature at equilibrium in the IAG [12], no 

longer holds in the IDG as shown by Theorem 4.  

VI. CONCLUSION 

In this work, we investigated the problem of information 

dissemination and link formation in strategic networks. We 

rigorously determined how the agents’ desire to disseminate 

their own information throughout the network impacts their 

interactions and the emerging connectivity/topology among 

them. Our analysis proved several important properties of the 

strategic networks (arising from the agents’ strategic link 

formation) at equilibria, such as “core-periphery”, “minimally 

connected”, “short diameter”. These properties are important 

because they characterize the efficiency and robustness of the 

resulting equilibrium networks. We also studied the strategic 

information production by individual agents and its impact on 

the equilibria of the information dissemination games.  

 

 

REFERENCE 
[1] E. Bakshy, I. Rosenn, C. Marlow and L. Adamic, “The role of social 

networks in information diffusion,” Proc. 21 Int’l Conf. on World 
Wide Web, pp. 519 – 528, 2012. 

[2] H. Kawk, C. Lee, H. Park and S. Moon, “What is Twitter, a social 
network or a news media,” Conf. on World Wide Web, 2010. 

[3] A. Kittur, E. Chi and B. Suh, “Crowdsourcing user studies with 
mechanical turk,” Proc. 26th Annual SIGCHI Conf. on Human Factors 
in Computing Systems, 2008. 

[4] M. Goemans, L. Li and M. Thottan, “Market sharing games applied to 
content distribution in ad hoc networks,” IEEE J. on Sel. Areas in 
Commun., vol. 24, no. 5, pp. 1020 – 1033, 2006. 

[5] T. Melodia, D. Pompili and I. Akyildiz, “On the interdependence f 
distributed topology control and geographical routing in ad hoc and 
sensor networks,” IEEE JSAC., vol. 23, no. 3, pp. 520 – 532, 2005. 

[6] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ 
networks,” Nature, vol. 393, pp. 440 – 442, 1998. 

[7] S. Goyal, “Connections: an introduction to the economics of networks,” 
Princeton University Press, New Jersey, 2007.   

[8] V. Bala and S. Goyal, “A non-cooperative model of network 
formation,” Econometrica, vol 68, no. 5, pp. 1181 – 1231. 

[9] C. Gong, A. Livne, C. Brunneti and L. Adamic, “Coevolution of 
network strcture and content,” WebSci, 2011. 

[10] B. Chun, R. Fonseca, I. Stoica and J. Kubiatowicz, “Characterizing 
selfishly constructed overlay routing networks,” INFOCOM, 2004. 

[11] M. Jackson and A. Wolinsky, “A strategic model of social and 
economic networks,” J. of Economic Theory, vol. 71, no. 3, pp. 44 – 
74, 1996. 

[12] A. Galeotti and S. Goyal, “The law of the few,” American Economic 

Review, vol. 100, no. 4, pp. 1468 – 1492, 2010. 
[13] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou and S. Shenker, 

“On a network creation game,” PODC, 2003. 
[14] P. Reny, “On the existence of pure and mixed strategy Nash equilibria 

in discountinuous games,” Econometrica, vol. 67, no. 5, pp. 1029 – 
1056, 1999. 

[15] Y. Zhang and M. van der Schaar, “Online appendix: Strategic 
information dissemination in endogenous networks,” online appendix, 
http://medianetlab.ee.ucla.edu/papers/information_dissemination_app
endix. 

[16] A. Mislove, M. Marcon, K. Gummadi, P. Druschel and B. 
Bhattacharjee, “Measurement and analysis of online social networks,” 
SIGCOMM Conf. on Int’l Measurement, pp. 29 – 42, 2007. 

[17] Y. Suh, H. Shin and D. Kwon, “An efficient multicast routing protocol 
in wireless mobile networks,” Wireless Networks, vol. 7, no. 5, pp. 443 
– 453, 2001. 

[18] S. Currarini, M. Jackson and P. Pin, “An Economic Model of 
Friendship: Homophily, Minorities, and Segregation,” Econometrica, 
vol. 77, no. 4, pp. 1003 – 1045, 2009. 

[19] M. Jackson and L. Yariv, “Diffusion on Social Networks,” Economie 

Publique, vol. 16, no. 1, pp. 69 – 82, 2005. 

 

396



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     7
     8
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



