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Structure-Aware Stochastic Storage Management in
Smart Grids

Yu Zhang, Mihaela van der Schaar

Abstract—Demand-side management has been proposed as
an important solution for improving the energy consumption
efficiency in smart grids. However, traditional pricing-based
demand-side management methods usually rely on the assump-
tion that the statistics of the system dynamics (e.g. the time-
varying electricity price, the arrival distribution of con sumers’
demanded load) are known a priori, which does not hold in prac-
tice. In this paper, we propose a novel price-aware energy storage
management algorithm for consumption scheduling which, unlike
previous works, can operate optimally in systems where such
statistical knowledge is unknown. We consider a power grid
system where each consumer is equipped with an electrical energy
storage device. Each consumer proactively determines how much
energy to purchase from the energy producers by taking into
consideration the time-varying and a priori unknown systemdy-
namics, in order to maximize its own energy consumption utility.
We first formulate the real-time energy storage management and
demand response of the consumers as a Markov decision process
and then propose an online learning algorithm that enables the
consumers to learn the unknown system dynamics on-the-fly and
have their energy storage management policies converge to the
optimum. Our simulation results validate the efficacy of our
algorithm, which helps consumers achieve higher average utility
as opposed to other state-of-the-art online learning algorithms
and energy storage management algorithms.

Index Terms—Markov Decision Process, Post-decision State,
Smart Grid, Load Scheduling, Energy Storage.

I. I NTRODUCTION

With the rapid progress of information and communica-
tion technologies, such as advanced metering, bi-directional
communication, distributed power generation and storage,
etc., energy-consumption scheduling (ECS), a demand-side
management (DSM) technique, is becoming a key smart grid
solution that enables efficient use of electric energy [1],
improves the stability of the power system, and lowers energy
production costs in the long run [2].

There exists a large body of literature on ECS, see e.g.
[1]-[13]. Depending on the operating entity who performs the
management, existing ECS methods can be classified into two
categories. The first category of ECS is based on direct load
control (DLC) [3],[4]: the utility companies install switches
or thermostats on top of the existing metering infrastructure,
which enable them to (directly) modify the operations of
appliances during peak hours. For instance, [3] studies optimal
centralized energy reallocation in smart grids; [4] investigates
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the coordination of charging plug-in hybrid electric vehicles
with other electric appliances. Although utility-based DLC
methods have been effective in smoothing peak load, they
incur frequent interruptions to the normal use of the household
appliances, as the control only tries to smooth the real-time
load but neglects whether it fulfills the consumer’s demand.
For instance, when warranted by capacity shortage during
the summer, a consumer’s central air conditioning system
will be turned down or cycled by the utility company, while
the exact days and the length of the cycling period are not
known and controlled by the consumer [8]. More importantly,
when providing the centralized control, DLC methods usually
shield the consumer heterogeneity and prevent consumers from
making price-aware decisions in order to effectively (and more
flexibly) perform individual consumption scheduling basedon
their personal demands. This further reduces the efficiencyof
the smart grid.

Due to the aforementioned problems of DLC, the second
category of ECS, which is based on dynamic pricing, has
gained increased popularity in recent years [1],[2],[5]-[13].
The basic principle of dynamic pricing is to adaptively adjust
the retail price of electric energy according to the real-time
variation of the production capacity and the load demands.
Although not directly controlling the energy usage patternof
individual consumers, appropriate pricing can provide them
effective economic incentives to schedule their consumptions
more efficiently and thus help the energy producer to better
procure electric energy [2].

The dynamic pricing literature can be sub-divided into two
directions. The first direction takes the utility companies’
perspective and designs effective pricing strategy in order to
maximize the social welfare, i.e. the sum benefit of all con-
sumers in the smart grid or the revenue of the utility company
(or energy producer) from selling electric energy [6]-[8].The
second direction, which is our focus in this paper, designs
effective price-aware consumption/demand scheduling policies
for individual or groups of consumers, which maximize their
individual benefit, given the exogenously determined (and
fixed) pricing strategy from the utility company, e.g. [9]-[14].

Most existing price-aware consumption scheduling algo-
rithms have put their focus on myopically maximization of
consumers’ immediate benefit, based on the instantaneous
electricity price and load demand, e.g. [9]-[11]. However in the
smart grid, the consumption scheduling decisions have strong
temporal correlations. That is, a consumer’s current consump-
tion scheduling decision will not only affect its immediate
benefit, but also its load demand and benefit in the future
[2]. Neglecting such temporal correlation prevents the myopic
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TABLE I
COMPARISON OF THE EXISTING LITERATURE AND OUR WORK

[3],[4] [6]-[8] [9],[10] [1],[2],[12],[13] [19] Our work

ECS approach DLC
Dynamic
pricing Dynamic pricing Dynamic pricing Dynamic pricing Dynamic pricing

Optimizing
entity

Utility
company

Utility
company

Individual
consumer

Individual
consumer Utility company Individual consumer

Optimization
criterion

Myopic;
Foresighted

Myopic;
Foresighted Myopic Foresighted Foresighted Foresighted

Information of
system dynamics

Known Known Known Known Unknown Unknown

Online learning No No No No Yes Yes

Considered
dynamics

Load demand Load demand Load demand Load demand Load demand Load demand; energy price;
environment dynamics

optimization from performing well in the long run.

There are only a few works which use foresighted op-
timization to design the consumption scheduling algorithms
[1],[2],[12]-[15]. Most of them use electricity price predictions
and assume that the statistical knowledge of the underlying
system dynamics (e.g. the temporal variation of the electricity
prices, the arrival distribution of the consumer’s load demand)
is known. However, practical smart grid systems face many
(environmental) unknowns, such as changing weather, diverse
reactions of consumers to real-time prices, intermittent re-
newable energy sources (e.g. small wind farms, household
with solar panels, etc.), for which the statistical knowledge
cannot be reliably obtained by consumers a priori. Therefore,
the efficacy of the methods proposed in these works, which
rely on specific models of the system dynamics, may result
in poor performance (i.e. low benefit received by individual
consumers) in practice.

In this paper, we propose foresighted price-aware consump-
tion scheduling algorithms based on energy storage man-
agement, which can operate optimally in time-varying and
unknown environments. In particular, we consider a power
grid where each consumer is equipped with an energy storage
device [20]. The consumers purchase electric energy from
an electricity market where the electricity price varies over
time. Hence, each individual consumer performs consumption
scheduling by proactively determining how much electric
energy to purchase at each moment of time, given its real-time
load demand, its current energy storage, and the electricity
price. By rigorously formulating the consumer’s decision
problem as a Markov Decision Process (MDP), we then
propose an efficient online learning algorithm that enableseach
consumer to learn the optimal storage management policy for
consumption scheduling, which maximizes its personal benefit
in the long run.

The differences between our work and the existing literature
on ECS are summarized in Table I. The main contributions
of our work lie in the following aspects. First, we assume
that both the electricity price and the arrival of consumers’
demands vary dynamically over time, and importantly the
statistical knowledge of these (Markovian) dynamics is not
known a priori. In order to cope with such unknown time-

varying system dynamics, we propose, in our online learning
algorithm, a decomposition of the (offline) value iterationand
(online) reinforcement learning based on factoring the system
dynamics into an a priori known and an a priori unknown
component. This is achieved by generalizing the concept of
a post-decision state (PDS) [28], which is an intermediate
state that occurs after the known dynamics take place but
before the unknown dynamics take place. A key advantage
of the proposed PDS learning method is that it exploits partial
information about the smart grid system and the structure of
the storage management problem and thus, less information
needs to be learned than when using conventional reinforce-
ment learning algorithms such as Q-learning, actor-criticetc.
[25]. Importantly, under certain conditions, it obviates the
need for action exploration, which significantly improves the
adaptation speed and the runtime performance as compared
to conventional reinforcement learning algorithms which lose
significant performance during the (very long) exploration
state.

The remainder of this paper is organized as follows. In
Section II, a rigorous MDP framework is proposed to for-
mulate the storage management problem in the smart grid. In
Section III, we describe a novel PDS online learning algorithm
that optimally solves the storage management problem and
study the convergence property of the learning algorithm.
Section IV extends the proposed algorithm to solve the storage
management problem in an alternative scenario where the
demand loads of individual consumers are deferrable. Section
V shows the numeric results. Section VI discusses various
extensions of our proposed framework. We conclude in Section
VII.

II. SYSTEM MODEL

A. System Setting

This section describes the smart grid system considered in
this paper.

We consider an infinite-horizon discrete time model, where
time slots are indexed byt = 0, 1, .... For instance in [1], the
length of each time slot is assumed to be one hour, in which the
sale price of electricity changes once. Similar to [10],[13], we
consider an electricity market where distributed power grids
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purchase electric energy from distributed energy producers. A
market consists of three different types of entities: a market
operator, producers and consumers:

(1) The producers represent the distributed entities who
generate and sell energy in this wholesale market to the power
grids [10],[17]. Examples of such producers include small
wind farms, households with solar panels, power plants, etc.

(2) The consumers are the end users owning a number of
residential appliances, e.g. electrical vehicles, air conditions,
dishwashers, etc. Each consumer purchases electric energy
from the producers on the market for its own consumption.
There are several assumptions imposed on consumers in this
paper.

• The continuum model is used to capture the large con-
sumer population [1]. The continuum model approxi-
mates well the real user population if there is a suffi-
ciently large number of consumers in the market. Hence,
each consumer is infinitesimally small and its storage
management policy does not interfere with the decisions
of other consumers.

• Since each consumer is infinitesimally small, its storage
management policy does not influence the electricity
price in the market as well.

• The consumer’s load demands from different time periods
are not correlated with each other.

(3) The market operator is an independent and non-profit
entity who operates the market. It manages the physical
infrastructure and the electricity trading in the market. It
also determines the trading price of the electricity. Note that
the market operator does not directly engage in and make
profits from any electricity transaction among the producers
and consumers. It only operates the trading platform of the
market to make the transactions feasible.

In this paper, we specifically focus on designing optimal
storage management policies for strategic consumers, while as-
suming that the other entities in the market (i.e. the producers
and the market operator) are following given strategies.1 Since
we assumed a continuum consumer model and thus the storage
management policies of different consumers do not interfere
with the decisions of each other, we focus on the analysis
of one representative consumer in the rest of this paper. This
is an approach commonly adopted in the literature analyzing
continuum user populations, e.g. [17].

Before proposing the formal model, we first summary the
interaction of the consumer with other entities in the market
at each time slott:

(1) At the beginning of the time slot, the market operator
publishes the unit electricity price in the current time slot. The
unit price is denoted asq(t) ∈ Q, whereQ is a finite set of

1It should be noted that the stochastic control and online learning solutions
proposed in this paper can be easily extended to the design and analysis of
the strategic operations of entities other than the consumers. We relegate such
extension as future works.

Fig. 1. The electricity market

possible electricity prices [17].2

(2) The consumer’s total demanded load (from all its appli-
ance) in the current time slot is denoted asd(t) ∈ [0, D] , D,
whereD is a constant upper limit. The load is assumed to be
non-deferrable in our analysis, i.e. the current demand cannot
be postponed and get fulfilled in future time slots [26]. Also,
it should be noted that the actual amount of demand from all
the consumers can exceed the production capacity of the smart
grid system. Therefore the part of demand that is not able to
be fulfilled by the smart grid system will be dropped.34

(3) The consumer purchases an amounta(t) ∈ [0, A] , A
of electric energy from the electricity producers to fulfillits
demand coming in this time slot, whereA represents the
largest allowable purchasing amount [20]. In practice, the
energy usage is measured to an accuracy of 0.01mW [21],
and henceA represents a finite set. When a consumer makes
the electricity purchase, which happens at the beginning of
the time slot, we assume that it does not know the exact value
of its demand that comes in the current time slot. This puts
our work into a sharp contrast against the existing literature,
where the exact demand needs to be specified and known by
the consumer in order to determine its purchasing amount.

A significant problem embedded in such electricity market
is that the production capacity of the distributed electricity
producers varies drastically over time and is often highly
unpredictable compared to the large power plants because
they rely on intermittent resources like wind and sunshine [9],
which in turn introduce significant fluctuations on the unit
electricity price q(t). The stability of the power grids thus
depends on having balanced electricity supply and demand at
any given time. In order to achieve this balance, the consumer
schedules its demand through the help of electricity storage
devices (e.g. batteries, plug-in hybrid electric vehicle,etc.).
The basic principle of the consumer’s storage management in
each time slott is described as follows:

• If the consumer purchases more electricity than its de-
mand, i.e.a(t) > d(t), it stores the surplusa(t) − d(t) in

2In this paper, we focus on the strategic energy purchase of the consumers
and assume that the energy price is determined exogenously.That is, the
market operator follows some static policy to set up the unitelectricity price
in each time slot. The analysis and design on the adaptive pricing policy of
the market operator remains as an interesting topic and is relegated to our
future research.

3The un-fulfilled load could also be redirected to larger energy providers,
e.g. Pacific Gas& Electric Company, and get supplied from there.

4However, we would like to note that in Section IV, we do consider the
scenario where the unsatisfied load in each time slot can be deferred to be
fulfilled in future.
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its storage device.
• If the consumer purchases less electricity than its demand,

i.e. a(t) < d(t), it covers the deficitd(t) − a(t) using its
stored electricity, whose amount is denoted asb(t). Since
the capacity of the storage device is limited, we assume
that b(t) ∈ [0, B] , B, whereB is a constant upper
bound.

A schematic representation of the considered electricity
market is illustrated in Figure 1. By strategically determin-
ing its purchasea(t), the consumer can flexibly utilize its
electricity storage to balance the electricity supply and its
demand across time in order to minimizing the negative
effect introduced by the fluctuation of the electricity price.
In this way, its benefit from electricity consumption can be
maximized.

B. Stochastic Control Formulation

In this section, we formulate the strategic storage man-
agement of the consumer as a stochastic control problem, in
order to maximize its utility on the energy consumption from
the smart grid system. Specifically, we define the consumer’s
action in each time slott as its purchasea(t) and the state
as a tuples(t) , (q(t), b(t), e(t)). Here the variablee(t) repre-
sents the environment dynamics (e.g. time, weather) that the
consumer experiences in time slott, other thanq(t), d(t), and
b(t). Valuable information is embedded in such environment
dynamics, which influences the fluctuation of the energy price
and the consumer’s demand over time. For instance, it is often
the case that a consumer’s demand in a specific time slot is
influenced by the hour that this time slot is located within a
day: the demand will be high during the peak hours (e.g. 6pm-
12am) and be low during the off-peak hours (e.g. 12pm-6pm)
[10],[18],[23]. This information can be helpful for consumers
predicting how their own demand and the electricity price will
change in the near future and thus used to instruct how much
electricity it should purchase in the current time slot.

To make the stochastic control problem tractable, we assume
that e(t) also takes value from a finite set, denoted byE ,
and evolves as a finite-state Markov chain with the transition
probability{pe(e(t+1) | e(t))}. Similar assumptions have been
taken in existing literature, e.g. [1],[17]. We also assume, as in
[9], that the evolution of the electricity price follows a station-
ary finite-state Markov chain given the environment dynamics,
with the transition probability{pq(q(t+1) | q(t), e(t))}.5 To
capture the influence of the environment dynamics over the
consumers’ demand, we modeld(t) as an i.i.d. random variable
given e(t), with the probability distribution{pd(d(t) | e(t))}.
It is important to note that all the probability distributions are
unknown a priori to the consumer and needs to be learned
dynamically over time.

Given the Markovian evolution ofq(t) ande(t), the stochas-
tic control problem can be casted into a Markov Decision
Process (MDP). Next, we derive the state transition probability

5It should be noted that the Markovian price model assumed here is only
for analytical tractability. We show in Section V that our proposed storage
management algorithm also performs well when the price variation is not
Markovian.

Fig. 2. Temporal evolution of the electricity storage

and value function of the MDP. The storage dynamic across
time slots in this MDP is illustrated in Figure 2 and captured
by the following expression:

b(t+1) = min{max{b(t) + a(t) − d(t), 0}, B}. (1)

The system then evolves into the next time slott+ 1 with
the new states(t+1). The transition probability froms(t) to
s(t+1), given the actiona(t), is expressed as follows:

p(s(t+1)|s(t), a(t))

= pq(q
(t+1)|q(t), e(t))pe(e

(t+1)|e(t))pd(d
(t)|e(t))

I
(

b(t+1) = min{max{b(t) + a(t) − d(t), 0}, B}
)

,

(2)

whereI(·) is the indicator function.
The consumer’s benefit in each time slott is determined

by the amount of its electricity consumption in this time slot,
denoted asr(t) , min{b(t) + a(t), d(t)}, i.e. the consumption
cannot exceed the total amount of the stored and purchased
electricity. Given this, the consumer’s one-slot benefit is
f(r(t)), with f(·) being a function that satisfies the following
conditions:

Assumption: f(x) is non-decreasing and concave onx, with
limx→∞ f ′(x) = 0 andf(0) = 0.

This assumption states that the benefit is always non-
negative and also monotonically increases with the con-
sumption r(t), whereas the marginal benefit monotonically
decreases againstr(t). Such assumption widely adopted in
previous works, e.g. [20].

The consumer’s cost in each time slot includes two parts.
The first part is the total expense on electricity purchase, which
is q(t)a(t). The second part is the cost for electricity storage,
which equals tocb(t+1), wherec is a constant representing the
unit storage cost.6

Combining the benefit and costs, the consumer’s one-slot
utility u is:

u(s(t), a(t)) = f(r(t))− q(t)a(t) − cb(t+1). (3)

The consumer’s storage management policy in the MDP is a
mapping from the state to its action:π : Q×B×E → A. That
is, given a states, this policy instructs the consumer to take
the actiona = π(s). In the rest of this paper, we focus on

6The linear cost model for electricity storage has been adopted in many
existing works, e.g. [20]. Also, we would like to note that our proposed
learning algorithm can be easily extended to apply to other cost models
for energy storage. For example, the electricity storage cost could also be
formulated as a convex function [31] or a piece-wise linear function. Since
the MDP formulation and all our current analysis still applywith such non-
linear storage costs, the proposed online learning algorithm is also capable of
learning the optimal storage management policy.
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optimizing the policy to maximize the consumer’s expected
long-term utility, which is referred to as thevalue function
and defined as the expectation of the discounted sum of the
consumer’s one-slot utility:

U (π)(s(0)) = E

(

∞
∑

t=0

δtu(s(t), a(t)) | s(0)

)

. (4)

Here δ < 1 is a constant discount factor, which represents
the fact that the consumer puts a higher weight on its current
utility than its utilities in the future.7

Given 4, the optimization problem is formalized as follows:

max
π

Uπ(s(0)). (5)

From [25], it is known that in an MDP, the problem 5 is
equivalent to the following optimization:

max
π

Uπ(s), ∀s ∈ S. (6)

Let π∗ and {U∗(s)} denote the solution of 6 and the
corresponding optimal long-term utility respectively, itis well-
known that π∗ and U∗(s) can be obtained by recursively
solving the following Bellman equation set [25]:

U∗(s) = max
a∈A

(

u(s, a) + δ
∑

s′∈S

p(s′|s, a)U∗(s′)

)

. (7)

In the next section, we solve this Bellman equation set using
the idea of dynamic programming and online learning.

III. POST-DECISION STATE BASED DYNAMIC

PROGRAMMING

In this section, we analyze and solve the Bellman equation
7. The traditional algorithms for solving the Bellman equation,
e.g. the value iteration and the policy iteration [25], needthe
state transition probability and the state space to be known
a priori, and thus are not feasible solutions for our problem
since these values are not known (or only partially known)
a priori. To this end, we propose an online reinforcement
learning algorithm to dynamically learn the state transition
probability and the state space without any prior knowledge
in order to solveπ∗ andU∗ on-the-fly.

The rest of this section is organized as follows. We first
introduce the concept of the post-decision state (PDS) in
Section III-A. Section III-B then develops a general PDS
based online learning algorithm that allows the consumer to
integrate known information about the system dynamics into
its learning process. By exploiting the partially known infor-
mation about the system dynamics, the PDS based learning
algorithm significantly improves its convergence speed and
run-time performance compared to the conventional online
learning algorithms, e.g. Q-learning [25]. Finally in Section
III-C, we prove the convergence of the proposed algorithm.

7It should be noted that we only consider stationary policy inthis paper,
which is common for most MDP problems[25]. Therefore, the mapping π

does not change over time. But the actiona(t) adopted by the consumer
changes over time depending on the states(t).

Fig. 3. Illustration of the post-decision state

A. Post-Decision State

The most critical idea in our proposed learning algorithm is
to introduce an intermediate state in order to capture the known
part of the system dynamics in each time slot and speed-up
the learning process. We call this intermediate state the post-
decision state (PDS)̃s , (q̃, b̃, ẽ). In a brief explanation, the
PDS represents the state of the system in each time slot after
the consumer performs its actiona(t) but before the demand
d(t) is realized. The relationship between a states(t) and its
PDSs̃(t) in time slott is illustrated in Figure 3. From this, the
corresponding PDS in the time slott is computed as follows:

q̃(t) = q(t), b̃(t) = b(t) + a(t), ẽ(t) = e(t) (8)

Accordingly, we define the post-decision value function
V ∗(s̃) for a PDSs̃ as follows:8

V ∗(s̃) =
∑

s′∈S

p(s′|s, a)U∗(s′). (9)

For the better illustration, we refer tos as the “normal”
state andU∗(s) as the “normal” value function, in order to
differentiate with their post-decision counter parts.

Compare 7 and 9, it can be noticed that the post-decision
value function represents the expectation of the consumer’s
future utilities over the unknown system dynamics. Hence,
there is a deterministic mapping from the normal value func-
tion to the post-state value function. By substituting 9 into
7, the relationship between the normal value function and the
post-state value function can be expressed as follows:

U∗(s) = max
a∈A

(u(s, a) + δV ∗(s̃)) . (10)

The above equation shows that the normal value function
U∗(s) at each time slot is obtained from the corresponding
post-decision value functionV ∗(s̃) at the same time slot,
wheres̃ = (q, b+ a, e), by performing the maximization over
the actiona.

The advantages of introducing the post-decision state and
corresponding value functions are summarized next.

• In the normal state based Bellman’s equation set 7, the
expectation over the possible environment dynamicse,
the possible demand arrivald and the possible energy
prices q has to be performed before the maximization
over the possible energy purchasing actionsa. Hence,
performing the maximization requires the knowledge of
these dynamics. In contrast in the post-decision state-
based Bellman’s equations 9 and 10, computing this
expectation is separated from the maximization, which
can be parallel. Therefore if we can directly learn and

8In our subsequent analysis, we drop the time index(t) from the expres-
sions, e.g. in 9, when the properties being discussed apply to all states and
actions. The time index will be kept only when necessary.
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approximate the post-decision value functionV ∗(̃(s))
online, the maximization (a.k.a. the optimization of the
storage management policy) can be solved without any
prior knowledge of the system dynamics.

• Given the actiona, the post-decision state factors the
(Markovian) system dynamics into an a priori unknown
component, i.e.e, d andq whose evolution is independent
of a, and an a priori known component, i.e. the storage
b whose evolution is determined bya. It is important to
note that the evolution of the a priori unknown component
is independent tob as well. This fact enables us to develop
a batch update scheme on the post-decision value func-
tions, which is discussed in the next section. Such batch
update scheme can significantly improve the convergence
speed of the proposed PDS based learning algorithm,
compared to conventional online learning algorithms.

B. Post-Decision State Based Online Learning

In this section, we propose the PDS based online learning
algorithm that utilizes adaptive approximation to effectively
learn the post-state value functions{V ∗s̃}. It is known from
10 that we can also obtain{U∗(s)} once{V ∗s̃} are computed.
In each time slott, the post-decision value function is updated
in the following manner:

V (t)(s̃(t)) = (1 − α(t))V (t−1)(s̃(t)) + α(t)U (t)(s(t)). (11)

Hereα(t) is the learning rate factor that satisfies
∑∞

t=0 α
(t) =

∞ and
∑∞

t=0(α
(t))2 < ∞, e.g. α(t) = 1

t
. U (t)(s(t)) is

the normal value function updated in time slott, which is
computed as follows:

U (t)(s(t)) = max
a∈A

(

u(s(t), a) + δV (t−1)(s̃(t))
)

. (12)

Remark: With 11 and 12, the normal value function and the
post-decision value function are updated iteratively in each
time slot. In the first step, the normal value function of the
current states(t) = (q(t), b(t), e(t)) is updated toU (t)(s(t)) us-
ing the (un-updated) post-decision value functionV (t−1)(s̃(t))
where s̃(t) = (q(t), b(t) + a(t), e(t)). In the second step, the
post-decision value function of̃s is updated toV (t)(s̃(t))
using the updated normal value functionU (t)(s(t)). In the next
section, we prove that such iterative update process introduced
by 11 and 12 ensures both the normal value function and the
post-decision value function converge to their optimal values,
i.e. {U∗(s)} and{V ∗(s̃)}.

The above iterative update process 11 and 12, though
ensures the convergence to the optimal value, only updates
in each time slott the currently visited PDS̃s(t). Noting that
the temporal transition ofq, e andd are all independent to the
electricity storageb, or in other words, the values ofe(t), q(t)

andd(t) can be realized with any possible value ofb. Therefore
instead of solely updating one PDS̃s(t) in a time slott, we
can perform a batch update over any PDSs̃ = (q̃, b̃, ẽ), which
satisfies that̃q = q̃(t) and ẽ = ẽ(t), as shown below:

V (t)(q̃(t), b̃, ẽ(t)) = (1− α(t))V (t−1)(q̃(t), b̃, ẽ(t))

+α(t)U (t)(q̃(t), b̃− a(t), ẽ(t)), ∀b̃ ∈ B.
(13)

Fig. 4. The value function update in conventional reinforcement learning.

Fig. 5. The batch value function update in PDS based learning.

Algorithm 1 PDS-based online learning

Initialize: V (0)(s̃) = 0 for all s̃ ∈ S ; t = 1.
Repeat
(1) Update the normal states(t) = (q(t), b(t), e(t)) with b(t) =
max{b̃(t−1) − d(t−1), 0};
(2) Compute the optimal actiona(t) for the current normal state
s(t) and updateU (t)(s(t)) as in Eq.12;
(3) Batch update the post-decision value functions
V (t)(q̃(t), b̃, ẽ(t)),∀b̃ ∈ B as in Eq. 13;
(4) Update the PDS̃s(t) = (q(t), b̃(t), e(t)) with b̃(t) = b(t)+a(t);

t := t+ 1
End

With the batch update 13, we are able to update all the
PDSes{(q(t), b̃, e(t)), ∀b̃ ∈ B} all at once in time slott,
as shown in Figure 5, instead of updating only one PDS
s̃(t) as shown in Figure 4. Here the white cells represent
the PDSes whose value functions are updated in the current
time slot and the blue cells represent the PDSes whose value
functions are not updated in the current time slot. As a result,
the convergence speed of our proposed learning algorithm is
significantly improved, which will be illustrated in Section V.

In summary, our proposed PDS-based load scheduling al-
gorithm is illustrated in Algorithm 1.

C. Convergence of the PDS Learning Algorithm

In this section, we analyze the convergence property of
the PDS learning algorithm, which is proven in the following
theorem.

Theorem 1. The PDS based online learning algorithm
converges to the optimal post-decision value function{V ∗(s̃)}
when the sequence of learning ratesα(t) satisfies

∑∞
t=0 α

(t) =
∞ and

∑∞
t=0(α

(t))2 < ∞.
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Proof : For each PDS̃s, we define

Fs̃(V ) , max
a∈A

(u(s, a) + δV (s̃)), (14)

wheres and s̃ satisfy the relationship thatq = q̃, e = ẽ, and
b = b̃− a.

We also defineF : R|S| → R
|S| be a mapping such that

F (V ) = [Fs̃(V )]s̃. [28] has proven that the convergence of
our proposed algorithm is equivalent to the convergence of
the associated O.D.E.:

V̇ = F (V )− V. (15)

Since the mapF : R
|S| → R

|S| is a maximum norm
δ-contraction [30], the asymptotic stability of the unique
equilibrium point of the above O.D.E. is guaranteed in [30].
This unique equilibrium point corresponds to the optimal post-
decision state value function{V ∗(s̃)}. �

Theorem 1 shows that Algorithm 1 converges to the opti-
mal post-decision value function{V ∗(s̃)}. Since the optimal
normal value function{U∗(s)} is a deterministic function of
{V ∗(s̃)}, it is thus concluded that Algorithm 1 also converges
to {U∗(s)} and the optimal policyπ∗. Therefore, we prove
that the consumer is able to learn the optimal storage man-
agement policy through Algorithm 1.

IV. OPTIMAL SCHEDULING WITH DEFERRABLE LOADS

In the analysis so far, we assume that the load demands
of each consumer are non-deferrable. That is in a time slot
t, if the available amount of energy, i.e.b(t) + a(t), is lower
than the current load demandd(t), the consumer cannot benefit
by deferring the deficitd(t) − b(t) − a(t) to be fulfilled in
future time slots. However, in many smart grid applications,
the load demands from various appliances are deferrable,
e.g. electrical vehicles, dish washers, washers/dryers [1]. A
common feature of these appliances is that their loading cycles
are long while their starting time can be easily shifted. In this
section, we particularly analyze how to perform the dynamic
load scheduling on such deferrable load demands using the
idea of PDS-based learning.

A. MDP Formulation for the Scheduling with Deferrable
Loads

In order to differentiate with the scenario of non-deferrable
loads, we introduce an additional variabley(t) representing
the amount of demand load from the previous time slot that
is left unfulfilled. The total load of the consumer in time slot
t is denoted byh(t) = d(t) + y(t). We also have

y(t) , max{0, h(t−1) − b(t−1) − a(t−1)}. (16)

To solve the optimal storage management policy with de-
ferrable loads, we also propose an MDP to formulate the
consumer’s decision problem. The MDP proposed in this
section is referred to as theMDP with deferrable loads, with
all the associated variables subscripted by dl, while we refer
to the MDP proposed in Section II as theMDP with non-
deferrable loads.

Given 16, the MDP with deferrable loads can be easily
extended based on the MDP with non-deferrable loads, by

incorporating the deficit into the state definition, which is
specified as follows:

• Thestate is defined as a tuples(t)dl , (q(t), b(t), e(t), y(t)).
Therefore, the consumer’s storage managements decision
in each time slot is also influenced by the deficity(t)

from the previous period. It should be noted that since
bothd(t) andb(t) all take values from finite sets,y(t) also
takes values from a finite set, which is denoted byY.

• The action is still defined as the consumer’s electricity
purchase in each period, i.e.a(t)dl , a(t).

• Sincey(t) is a deterministic function ofy(t−1), b(t), a(t)

andd(t), as shown in 16, the state transition probability
is

p(s
(t+1)
dl |s

(t)
dl , a

(t)
dl )

= pq(q
(t+1)|q(t), e(t))pe(e

(t+1)|e(t))pd(d
(t)|e(t))

I
(

b(t+1) = min{max{b(t) + a(t) − h(t), 0}, B}
)

I
(

y(t+1) = max{0, h(t) − b(t) − a(t)}
)

.

(17)

It is important to note that we do not impose the expiration
deadline for the deferrable loads, as assumed in many existing
works such as [18]. As a result, the demanded loads deferred
from different time slots provide equal unit benefit to the
consumer when being fulfilled. However, we will show in
Section VI-B that the proposed MDP formulation in this
section can be easily extended to the scenario where the
load demands have (heterogeneous) expiration deadlines, by
incorporating the deadlines into the definition of the states

(t)
dl .

Definer(t)dl , min{b(t) + a(t), h(t)}, the one-slot utilityudl

can be expressed as follows:

udl(s
(t)
dl , a

(t)
dl ) = f(r

(t)
dl )− q(t)a(t) − cb(t+1). (18)

Finally, the consumer’s expected long-term utility of the
consumer can be expressed as

U
(π)
dl (s

(0)
dl ) = E

(

∞
∑

t=0

δtudl(s
(t)
dl , a

(t)
dl ) | s

(0)
dl

)

. (19)

It is important to note that since the discount factor
δ < 1, the consumer’s benefit received from one unit load
monotonically decreases against time. Therefore, deferring the
demand load decreases the consumer’s long-term utility 19.
This assumption reflects the negative effect of load deferment,
which is also referred as the “inconvenience cost” caused by
the delay introduced in the energy usage [1].

B. PDS-based Learning Algorithm for the MDP with De-
ferrable Loads

In this section, we propose the PDS-based learning algo-
rithm to solve the MDP with deferrable loads. Similar to 8,
the PDSs̃(t)dl , {q̃

(t)
dl , b̃

(t)
dl , ẽ

(t)
dl , ỹ

(t)
dl } represents the state of the

system in each time slot after the consumer performs its action
a
(t)
dl but before the demandd(t) arrives. Thus we have

q̃
(t)
dl = q(t), b̃

(t)
dl = b(t) + a

(t)
dl , ẽ

(t)
dl = e(t), ỹ

(t)
dl = y(t). (20)
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Algorithm 2 PDS-based online learning with deferrable loads

Initialize: V (0)(s̃) = 0 for all s̃dl; t = 1.
Repeat
(1) Update the normal states(t)

dl
= (q(t), b(t), e(t), y(t)) with

b(t) = b̃
(t−1)
dl

− d(t−1) − y(t−1) and y(t) = max{0, y(t−1) +

d(t−1) − b(t−1) − a
(t−1)
dl

};
(2) Compute the optimal actiona(t)

dl
for the current normal state

s
(t)
dl

and updateU (t)
dl

(s
(t)
dl

) as in Eq.21;
(3) Batch update the post-decision value functions
V

(t)
dl

(q̃(t), b̃, ẽ(t), ỹ(t)),∀b̃ ∈ B;
(4) Update the PDS̃s(t)

dl
= (q(t), b̃(t), e(t)) with b̃(t) = b(t)+a

(t)
dl

;

t := t+ 1
End

Correspondingly, the post-decision value function is updated
as

V
(t)
dl (s̃

(t)
dl ) = (1 − α(t))V

(t−1)
dl (s̃

(t)
dl ) + α(t)U

(t)
dl (s

(t)
dl ). (21)

and the normal value function is updated as

U (t)(s
(t)
dl ) = max

adl∈A

(

udl(s
(t)
dl , adl) + δV

(t−1)
dl (s̃

(t)
dl )
)

. (22)

Given the PDS, the online learning algorithm for the MDP
with deferrable loads is illustrated in Algorithm 2.

Similar to Theorem 1, we have that Algorithm 2 also
converges, as shown in the following theorem.

Theorem 2. Algorithm 2 converges to the optimal post-
decision value function{V ∗

dl(s̃dl)} when the sequence of learn-
ing ratesα(t) satisfies

∑∞
t=0 α

(t) = ∞ and
∑∞

t=0(α
(t))2 < ∞.

�

In the next theorem, we prove that Algorithm 2 always
outperforms Algorithm 1.

Theorem 3. Given two initial statess(0) = (q(0), b(0), e(0))

and s
(0)
dl = (q(0), b(0), e(0), 0), the inequalityU∗

dl(s
(0)
dl ) ≥

U∗(s(0)) always holds.�
Theorem 3 proves that the consumer always obtains a higher

long-term utility when the loads are deferrable. Therefore, the
optimal long-term utility achieved in the MDP with deferrable
loads is always no less than the optimal long-term utility
achieved in the MDP with non-deferrable loads.

V. I LLUSTRATIVE EXAMPLES

In this section, we provide numerical results to illustratethe
performance of our proposed online learning algorithm. We
consider a power grid with 100 consumers, where the length
of each time slot is 1 hour. The energy storage capacityB =
10kWh. The environment dynamicse represents the hour that
each time slot is located in a day and hence, we haveE =
{0, 1, . . . , 23} ande(t) = mod (t, 24).

In one day, we divide the time slots into peak and non-
peak hours. Specifically, the peak hours are 6pm to 12am
and the remaining hours are non-peak hours. The demand of
each consumer in each time slot follows a truncated Gaussian
distribution in the region[0, 2.5kWh] as follows

pd(d
(t) | e(t)) =

{

N (0.5, 0.22), if e(t) ∈ [0, 17]

N (1, 0.12), if e(t) ∈ [18, 23]
(23)

Fig. 6. Run-time performances of online learning algorithms

The unit electricity price is taken from a finite setQ =
{0.1, 0.2, . . . , 0.5}. We also setc = 0.1 and the benefit
function to be a logarithmic functionf(x) = log(1+ x) as in
[17].

A. Experiments with Non-deferrable Loads

We first conduct experiments in power grid systems where
the demand loads are non-deferrable. In the first experiment,
we compare our algorithm (i.e. Algorithm 1) with three state-
of-the-art online learning algorithms to illustrate the advantage
of introducing the PDS and batch update:

(1) Value iteration [25] is an off-line algorithm, which we
are solely using here as the optimal benchmark. This algo-
rithm needs the complete knowledge of the underlying state
transition probabilities and utility functions. The computation
complexity of value iteration is also significantly higher than
online reinforcement learning methods.

(2) Q-learning [25] is a model-free reinforcement learning
algorithm. It does not require a priori knowledge of the state
transition probabilities and utility functions, but suffers from
slow convergence speed.

(3) Real-time dynamic programming (RTDP) [29] is also a
model-based online learning algorithm. When implementing
RTDP, the learning agent first constructs a statistic model
of the underlying MDP and then updates the state transition
probabilities in this statistic model using its past experiences.
Therefore, the state space of the MDP needs to be known a
priori.

Table II shows the average performance received by the
four learning algorithms in the considered power grid.9 It can
be observed that PDS learning significantly outperforms the
other two online learning algorithms (RTDP and Q-learning)
on all metrics (higher energy consumption per consumer and
lower cost for unit energy per consumer). As a result, the
average one-slot utility achieved by PDS learning is close
to the optimal value achieved by the off-line value iteration
algorithm.

Figure 6 plots the run-time performances of the online
learning algorithms across 10000 time slots. Note that PDS
learning converges after 1122 time slots (with the run-time
average utility achieving 90% of the highest value), while

9For the online algorithms (PDS learning, Q-learning, RTDP), we run each
of them for 10000 time slots. For the off-line value iteration, we run the
algorithm until it converges (because there is no intermediate output for the
value iteration before its convergence).
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TABLE II
COMPARISON WITH OTHER LEARNING ALGORITHMS

Per time slot Value iteration RTDP Q-learning PDS learning

Average utility 1.4320 0.9047 0.9987 1.3394

Average consumed energy 0.7746 kWh 0.4272 kWh 0.4537 kWh 0.7847 kWh

Average purchased price $0.2221/kWh $0.2930/kWh $0.2928/kWh $0.2914/kWh

TABLE III
COMPARISON WITH OTHER STORAGE MANAGEMENT ALGORITHMS

Per time slot Price prediction Load prediction
Price & load

prediction PDS learning

Average utility 0.4432 0.3654 0.4565 1.3394

Average consumed energy 0.3909 kWh 0.3998 kWh 0.3098 kWh 0.7847 kWh

Average purchased price $0.5349/kWh $0.6729/kWh $0.7095/kWh $0.2914/kWh

RTDP converging after 2983 time slots and Q-learning con-
verging after 3132 time slots. Also, the average one-slot
utilities achieved by RTDP and Q-learning upon convergence
are significantly worse than that achieved by PDS, which
indicates that both RTDP and Q-learning are not able to learn
the optimal storage management policy.

In the experiments so far, we do not assume any prior
knowledge is known by the consumer about the system
dynamics, before it learns the optimal policy. That is, the
consumer has no knowledge about the transition probabilities
pq(q

′ | q, e), pe(e′ | e), andpd(d | e), as well as the state space
Q, D andB, at the beginning of the experiment, and has to
learn these values on-the-fly. Therefore, the convergence speed
shown in Figure 6 represents the performance of our PDS
learning algorithm in the worse-case scenario, and thus can
be viewed as the upper-bound of the achivable convergence
speed of PDS learning.

Nevertheless, such “zero-prior” assumption usually does
not hold in practice, as the consumer always has some prior
knowledge about the smart grid system and the underlying
MDP, which can help the consumer refine its initial estimation
of the value function and the storage management policy.
In the next experiment, we examine how fast PDS learning
converges with slightly more knowledge on the system.

We conduct two experiments on this. In the first case, we
assume that the consumer knows the structure of the spaces
Q, D andB, as well aspe(e′ | e) (i.e. the consumer knows
the hour that the current time slot resides in). The learning
performance under this setting is shown in Figure 7. PDS
learning algorithm still converges significantly faster than other
reinforcement learning algorithms in this case. Importantly,
PDS learning converges after only 50 time slots, which is
significantly faster than the speed it achieves when no prior
about the MDP is known and utilized.

In the second case, we go one step further to see whether the
convergence speed can be further improved if the consumer
knows the dynamics of the electricity price as well, i.e.
{pq(q

(t+1)) | q(t), e(t)}. This is a reasonable assumption since
today’s ISOs can perform a good price forecast, by utilizing

Fig. 7. Run-time performances of online learning algorithms with prior
knowledge

Fig. 8. Run-time performances of online learning algorithms with prior
knowledge on electricity price

the large amount of historical data. From Figure 8, we can see
the convergence speed of PDS learning is further improved. It
converges after 12 time slots (by achieving an average utility
which is 95% of the optimal value).

Next, we compare Algorithm 1 against the existing price-
aware energy storage management algorithms based on load
and price forecasts, which are discussed in [12]-[14]. The
algorithms in these three works function under the same
principle: each consumer tries to optimize its energy purchases
in each hour in order to maximize its next-hour profit from
energy consumption, based on its prediction over the next-
hour load demand and energy price. Meanwhile, all these
algorithms assume that each consumer presumes a model on
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TABLE IV
ENERGY PRICE FORCPPCUSTOMERS

Summer off-peak Summer critical
peak

Winter off-peak Winter critical
peak

12.3c/kWh 77.1c/kWh 57.5c/kWh 49.8c/kWh

TABLE V
PERFORMANCE OF STORAGE MANAGEMENT ALGORITHMS WITH THE REAL ENERGY PRICE DATA

Per time slot Price prediction Load prediction Price & load
prediction PDS learning

Average utility 0.5549 0.7773 0.4565 1.2135

Average consumed energy 0.4430 kWh 0.6821 kWh 0.4352 kWh 1.2343 kWh

Average purchased price $0.4242/kWh $0.3232/kWh $0.4201/kWh $0.3309/kWh

TABLE VI
PERFORMANCE ACHIEVED BY DIFFERENT ALGORITHMS WITH DEFERRABLE LOADS

Per time slot Value iteration RTDP Q-learning PDS learning

Average utility 2.5074 2.2109 1.7772 1.4444

Average consumed energy 2.1897 kWh 0.9723 kWh 0.9025 kWh 1.8838 kWh

Average purchased price $0.1825/kWh $0.2514/kWh $0.2502/kWh $0.2013/kWh

Fig. 9. The consumer’s per-slot electricity purchase

the variation of the load demand and price and makes its
prediction based on this presumption. With such a principle,
we develop three new algorithms for our storage management
problem.10

(1) Price Prediction. This algorithm is similar to the
algorithm in [12], which predicts the variation of the next-hour
energy price while neglecting the variation of the load demand.
Specifically, it assumes that the next-hour load demand is the
same as the demand that the consumer observes today.

(2) Load Prediction. This algorithm follows the idea of the
algorithm in [14], which predicts the variation of the next-hour
load demand and assumes that the next-hour energy price is
the same as the price of today.

(3) Price & Load Joint Prediction. This algorithm follows
the idea of the algorithm in [13] and predicts the variations

10It should be noted here that in [12]-[14], the decision variable to be
optimized is not the purchased amount of energy in each time slot. Hence,
the three algorithms proposed here, i.e. price prediction,load prediction, price
& load prediction, are not exactly the same as those in [12]-[14], but share
the same design principle with them (i.e. optimizing one-hour-ahead utility
based on pre-established statistical models).

of both the next-hour load demand and energy price using a
known statistical model.

We then plot in Figure 9 the consumer’s per-slot electricity
purchase under different algorithms. Here we assume that
when the consumer knows the statistical distribution of the
next-hour energy price as well as the next-hour demand load,
i.e. {pe(e(t+1) | e(t))}, {pq(q(t+1) | q(t), e(t))}, andpd(d(t) |
e(t)), when making its prediction over these dynamics. It can
be observed that the three benchmark algorithms delivers low
per-slot purchase during off-peak hours and high purchase
during peak hours, which is consistent with the fluctuation
of the consumer’s load demand. This is because these three
algorithms only focus on maximizing the consumer’s utilityin
the next hour while neglecting the impact of its current deci-
sion over the further future. As a result, these three algorithms
can only optimize one hour ahead, under which the consumer
starts to increase its purchase at 17:00pm (1 hour before the
peak hours) and reduce its purchase at 23:00pm (1 hour before
the off-peak hours). These algorithms thus do not fully exploit
the information embedded in the price and load fluctuation
to effectively purchase and store energy during the off-peak
hours when the energy price is low. In contrast, Algorithm 1
instructs the consumer to purchase and store sufficient amounts
of energy during off-peak hours (when the energy price is low)
for the consumption during peak hours (when the energy price
is high). Therefore, the average purchased prices of the unit
amount of energy are significantly higher under the benchmark
algorithms than that under Algorithm 1, which results in a
significantly lower average utility, as shown in III.

We also run a separate experiment on the real energy price
data set to test the efficacy of our algorithm. The pricing
data we used is from the Critical Peak Pricing (CPP) plan
in the PowerCentsDC program [22]. In the CPP plan, the



11

energy price is higher in the critical peak hours than that in
the normal (off-peak) hours. The critical peak hours occur
between 2pm to 6pm in the summer and between 6am to 8am
and 6pm and 8pm during the winter months. The energy price
is shown in Table IV. Using this pricing plan, the results of
the learning algorithms are shown in Table V, from which
we can observe that the PDS based learning algorithm still
significantly outperforms the others.

B. Experiments with Deferrable Loads

This section evaluates the performance of PDS learning in
power grid systems where the demand loads are deferrable.
Table VI shows the average performance received by an
individual consumer when running Algorithm 2 and the three
benchmark learning algorithms discussed in Section V-A.
Compared to the results in Table II, it should be noted that
the performances of all algorithms (measured by the average
utility) significantly increase when the demand are deferrable,
as proven in Theorem 3. Meanwhile, the average electricity
consumed in each time slot also increases, since the con-
sumer’s unfulfilled demand will be deferred into subsequent
time slots. It is also interesting to note that the averaged
purchased price for unit energy does not significantly change
in this scenario. Therefore, the increase of the consumer’s
utility mainly comes from the increased (and more effective)
energy consumption.

VI. EXTENSIONS

In this section, we discuss various extensions of our pro-
posed framework and the PDS online learning algorithms. For
each extension, the discussion here is limited to preliminary
modelling and numeric experiments. The detailed analysis is
relegated as important future works.

A. Dynamics of Renewable Generation

In the current smart grid systems, the uncertainty also lies
in the renewable generation, as their capacity (e.g. wind and
solar) is highly dynamic and non-dispatchable. In this section,
we discuss how our framework can be extended to incorporate
renewable generation dynamics.

Let G(t) represent the amount of electricity generated in
time slot t, i.e. the total amount of electricity available to
consume in this time slot. When a consumer makes a electric-
ity purchasea(t), we assume that the actual amount he gets
to consume is determined by a functionφ(G(t), a(t)) ≤ a(t).
The functionphi monotonically increases withG(t) anda(t).
That is, a consumer can get sufficient electricity to consume
only if the generationG(t) is sufficiently large. WhenG(t) is
small, i.e. there is certain energy shortage, a consumer will
get less electricity than it requests. To quantify the stochastic
behavior of the renewable generation, we also assume that the
evolution ofG(t) follows a conditional probability distribution
{pG(G(t) | e(t))}.

Given the Markovian evolution ofe(t), the stochastic control
problem can still be casted as a Markov Decision Process
defined as follows:

• The state is defined ass(t) , (q(t), b(t), e(t), G(t)).
• The state transition probability incorporates the dynamics

of G(t), which is expressed as follows:

p(s(t+1)|s(t), a(t)) = pe(e
(t+1)|e(t))pd(d

(t)|e(t))

pq(q
(t+1)|q(t), e(t))pG(G

(t) | e(t))

I
(

b(t+1) = min{max{b(t) + a(t) − d(t), 0}, B}
)

,

(24)
• The consumer’s one-slot utility is

u(s(t), a(t)) = f(r(t))− q(t)a(t) − cb(t+1), (25)

wherer(t) is redefined asmin{b(t) +φ(G(t), a(t)), d(t)}.

Next we conduct an experiment to illustrate how PDS learn-
ing performs under the dynamics of renewable generation.
Specifically, we assume thatG(t) follows a truncated Gaussian
distribution in the region[100kWh, 500kWh]:

pG(G
(t) | e(t)) =

{

N (300, 0.252), if e(t) ∈ [0, 17]

N (400, 0.152), if e(t) ∈ [18, 23]
(26)

The functionphi is defined as follows:

φ(G(t), a(t)) =







a, if G ≥ 400kWh

G

400
a, if G < 400kWh

(27)

Table VII shows the performance of various algorithms.
Compared to Table II and III, we can observe that the average
utility achieved by all algorithms significantly decrease be-
cause of the dynamic generation and sporadic energy shortage.
However, the advantage of PDS learning over other algo-
rithms still persists, with a performance close to the optimum
achieved by value iteration.

B. Deferrable Loads with Expiration Deadlines

In Section IV, we do not explicitly consider the expiration of
deferrable loads. In this section, we discuss how the demand
expiration impacts our formulation and the performance of
PDS learning. In particular, we assume that a consumer’s
demand at each time slot expires afterK time slots [18].11

The MDP is revised accordingly as follows:

• The state is defined as a tuple s
(t)
dl ,

(q(t), b(t), e(t), y
(t)
1 , · · · , y

(t)
K−1). Here y

(t)
i represents

the amount of unfulfilled demand which expires ini
time slots.

• The aciton is defined as a tuple a
(t)
dl ,

(a(t), θ
(t)
1 , · · · , θ

(t)
K ). Here a(t) is still the consumer’s

electricity purchase;θ(t)1 , · · · , θ
(t)
K−1 are the amounts

of electricity that the consumer uses to fulfill
y
(t)
1 , · · · , y

(t)
K−1, respectively, andθ(t)K is the amount of

electricity to fulfill d(t).

11In this section, we assume a simplified model where the delay deadlines
for the load demand from different appliances are the same and solely focus
on how the delay deadline impacts the learning performance.We relegate the
analysis on the comprehensive model with heterogeneous delay deadlines as
important future works.
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TABLE VII
COMPARISON WITH OTHER ALGORITHMS WHEN THERE IS RENEWABLE GENERATION DYNAMICS

Per time slot Value iteration RTDP Q-learning PDS learning

Average utility 1.1312 0.7427 0.7639 1.1102

Average consumed energy 0.5726 kWh 0.3982 kWh 0.4020 kWh 0.4938 kWh

Average purchased price $0.2119/kWh $0.2817/kWh $0.2898/kWh $0.2210/kWh

Per time slot Price prediction Load prediction Price & load
prediction PDS learning

Average utility 0.4919 0.4537 0.5643 1.1102

Average consumed energy 0.2019 kWh 0.2204 kWh 0.3065 kWh 0.4938 kWh

Average purchased price $0.5687/kWh $0.6324/kWh $0.3535/kWh $0.2210/kWh

TABLE VIII
COMPARISON WITH OTHER LEARNING ALGORITHMS ON DEFERRABLE LOADS

Per time slot (K = 1) Value iteration RTDP Q-learning PDS learning

Average utility 1.5618 0.9742 1.0426 1.4487

Average consumed energy 1.7622 kWh 0.8320 kWh 0.8319 kWh 1.8319 kWh

Average purchased price $2031/kWh $0.3119/kWh $0.3128/kWh $0.2501/kWh

Per time slot (K = 5) Value iteration RTDP Q-learning PDS learning

Average utility 1.9673 1.2420 1.1098 1.8653

Average consumed energy 1.9425 kWh 0.8635 kWh 0.8827 kWh 1.9310 kWh

Average purchased price $0.1987/kWh $0.2834/kWh $0.3003/kWh $0.2225/kWh

TABLE IX
COMPARISON WITH OTHER LEARNING ALGORITHMS AT THE EXISTENCE OF CHARGING/DISCHARGING COSTS

Per time slot Value iteration RTDP Q-learning PDS learning

Average utility 0.9847 0.5748 0.4983 0.9533

Average consumed energy 0.5948 kWh 0.3346 kWh 0.2987 kWh 0.5672 kWh

Average purchased price $0.2122/kWh $0.3019/kWh $0.3232/kWh $0.2312/kWh

• The state transition probability is expressed as follows:

p(s
(t+1)
dl |s

(t)
dl , a

(t)
dl )

= pq(q
(t+1)|q(t), e(t))pe(e

(t+1)|e(t))pd(d
(t)|e(t))

I

(

b(t+1) = min{max{b(t) + a(t) −
K
∑

k=1

θ
(t)
k , 0}, B}

)

I
(

y
(t+1)
K−1 = max{0, d(t) − θ

(t)
K }
)

K−2
∏

k=1

I
(

y
(t+1)
k = max{y

(t)
k+1 − θ

(0)
k+1, 0}

)

.

(28)
• The consumer’s one-slot utility is

u(s
(t)
dl , a

(t)
dl ) = f(

K
∑

k=1

θ
(t)
k )− q(t)a(t) − cb(t+1). (29)

The performance of the learning algorithms under this
model is illustrated in Table VIII. As the expiration deadline
K increases, the average consumption per time slot increases
while the average energy price decreases, this indicates that

a larger expiration deadline enables the consumer to better
schedule its energy purchase across time and as a result, the
average utility per time slot monotonically increases.

C. Cost of Storage Device Charging and Discharging

In smart grid systems, it is also important to consider
the storage device charging and discharging costs, since the
life of the battery is usually limited. In the last part of this
section, we discuss how the charging/discharging cost impacts
the consumer’s utility. Specifically, we consider the cost of
charging one unit electricity to the battery isα and the cost
of discharging one unit electricity from the battery isβ. By
adding these costs, the consumer’s one-slot utility can be
reformulated as:

u(s(t), a(t)) = f(r(t))− q(t)a(t) − cb(t+1)

− α
(

min{B − b(t),max{a(t) − d(t), 0}}
)

− β
(

max{d(t) − a(t), 0}
)

.

(30)

With this change, the experimental result with the PDS
learning is illustrated in the following table. As expected,
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the average utility and the average amount of consumption
per slot decrease compared to the scenario where there is no
charging/discharging costs. Importantly, PDS learning delivers
a high performance significantly outperforming RTDP and Q-
learning. Therefore, PDS learning is still applicable in the
scenario where charging/discharging costs are considered.

VII. C ONCLUSIONS

In this paper, we propose a price-aware energy storage
management algorithm for electricity consumers who possess
electric storage devices. Our algorithm can be applied in
smart grids where the demand loads are either non-deferrable
or deferrable. They are able to learn the optimal storage
management policy without requiring any a priori knowledge
of the system dynamics. By introducing the post-decision state
and batch update, we prove that our proposed algorithms
provide significantly faster convergence speed and thus the
average utility received by each individual consumer from the
electricity consumption are better compared to the state-of-
the-art online reinforcement learning algorithms and energy
storage management algorithms.
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