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Abstract—Demand-side management has been proposed asthe coordination of charging plug-in hybrid electric vdai
an important solution for improving the energy consumption jith other electric appliances. Although utility-based ©L

efficiency in smart grids. However, traditional pricing-based S .
demand-side management methods usually rely on the assump-Methods have been effective in smoothing peak load, they

tion that the statistics of the system dynamics (e.g. the tie+ incur frequent interruptions to the normal use of the hoakth

demanded load) are known a priori, which does not hold in prae . . ,
tice. In this paper, we propose a novel price-aware energy stage 10ad but neglects whether it fulfills the consumer’s demand.

management algorithm for consumption scheduling which, utike ~ For instance, when warranted by capacity shortage during
previous works, can operate optimally in systems where such ihe summer, a consumer’s central air conditioning system

statistical knowledge is unknown. We consider a power grid il b dd led by th il hil
system where each consumer is equipped with an electricalergy  Will e turned down or cycled by the utility company, while

storage device. Each consumer proactively determines howunh the exact days and the length of the cycling period are not
energy to purchase from the energy producers by taking into known and controlled by the consumgr [8]. More importantly,

consideration the time-varying and a priori unknown systemdy- L .
namics, in order to maximize its own energy consumption utity. ~When providing the centralized control, DLC methods usuall

We first formulate the real-time energy storage managementrad  shield the consumer heterogeneity and prevent consunoens fr
demand response of the consumers as a Markov decision proses making price-aware decisions in order to effectively (armten

and then propose an online learning algorithm that enablestte . L . .
consumers to learn the unknown system dynamics on-the-fly ah flexibly) perform individual consumption scheduling based

have their energy storage management policies converge the their personal demands. This further reduces the efficiefncy
optimum. Our simulation results validate the efficacy of our the smart grid.

algorithm, which helps consumers achieve higher average ility .
as opposed to other state-of-the-art online learning algdthms Due to the aforementioned problems of DLC, the second

and energy storage management algorithms. category of ECS, which is based on dynamic pricing, has
Index Terms—Markov Decision Process, Post-decision State, 92ined increased popularity in recent years [1]/[2], B3l
Smart Grid, Load Scheduling, Energy Storage. The basic principle of dynamic pricing is to adaptively adju

the retail price of electric energy according to the realeti
variation of the production capacity and the load demands.
. INTRODUCTION Although not directly controlling the energy usage pattefn
With the rapid progress of information and communicandividual consumers, appropriate pricing can providenthe
tion technologies, such as advanced metering, bi-dineatio effective economic incentives to schedule their consuomgti
communication, distributed power generation and storagepre efficiently and thus help the energy producer to better
etc., energy-consumption scheduling (ECS), a demand-sjgtecure electric energy[[2].
management (DSM) technique, is becoming a key smart gridThe dynamic pricing literature can be sub-divided into two
solution that enables efficient use of electric energy [1firections. The first direction takes the utility compahies
improves the stability of the power system, and lowers gnergerspective and designs effective pricing strategy in otde
production costs in the long runl[2]. maximize the social welfare, i.e. the sum benefit of all con-
There exists a large body of literature on ECS, see esymers in the smart grid or the revenue of the utility company
[1]-[L3]. Depending on the operating entity who performe th(or energy producer) from selling electric energy [6]-[8he
management, existing ECS methods can be classified into ts&cond direction, which is our focus in this paper, designs
categories. The first category of ECS is based on direct loaffiective price-aware consumption/demand schedulinigigs!
control (DLC) [3],[4]: the utility companies install swites for individual or groups of consumers, which maximize their
or thermostats on top of the existing metering infrastriestu individual benefit, given the exogenously determined (and
which enable them to (directly) modify the operations dixed) pricing strategy from the utility company, e.gl [dH4].
appliances during peak hours. For instanlce, [3] studigsmapt ~ Most existing price-aware consumption scheduling algo-
centralized energy reallocation in smart grids; [4] inigeies rithms have put their focus on myopically maximization of
consumers’ immediate benefit, based on the instantaneous
Copyright (c) 2014 IEEE. Personal use of this material ismited. electricity price and load demand, eld. [8]4[11]. HowevetHe
However, permission to use this material for any other psegomust be . . . ol
obtained from the IEEE by sending a request to pubs-pernis@ieee.org. SMart grid, the consumption scheduling decisions havegtro
Yu Zhang is with Online Service Division, Microsoft, Sunmye, CA temporal correlations. That is, a consumer’s current capsu
94&?&;:%533"Silﬁ‘;”gw;:ofﬁg-g’em- ¢ lectiicatifeer. 10N SCheduling decision will not only affect its immediate
partment of Electricabifeer benefit, but also its load demand and benefit in the future
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TABLE |

COMPARISON OF THE EXISTING LITERATURE AND OUR WORK

[B1.[4) [61-8] [91.[10] (1. [2),[22), [A3] Our work
ECS approach DLC D&?C?r?gc Dynamic pricing | Dynamic pricing | Dynamic pricing Dynamic pricing
Optimizing Utility Utility Individual Individual . .
entity company company consumer consumer Utility company Individual consumer
Optimization Myopic; Myopic; . . . .
criterion Foresighted Foresighted Myopic Foresighted Foresighted Foresighted
Information of
system dynamics Known Known Known Known Unknown Unknown
Online learning No No No No Yes Yes
Consdgred Load demand | Load demand Load demand Load demand Load demand Load c_iemand; energy price
dynamics environment dynamics

optimization from performing well in the long run. varying system dynamics, we propose, in our online learning

There are only a few works which use foresighted O@ngrithm,_a decomposition pf the (offline) value_ iteratimd
timization to design the consumption scheduling algorghn{online) reinforcement learning based on factoring theesys
1], [2],[L2)-[L5]. Most of them use electricity price prietions dynamics into an a priori known and an a priori unknown
and assume that the statistical knowledge of the underlyif@MPonent. This is achieved by generalizing the concept of
system dynamics (e.g. the temporal variation of the elgri @ Post-decision state (PDS) [28], which is an intermediate
prices, the arrival distribution of the consumer's load den) State that occurs after the known dynamics take place but
is known. However, practical smart grid systems face mafRgfore the unknown dynamics take place. A key advantage
(environmental) unknowns, such as changing weather, Sﬁvepf the prpposed PDS learning r_nethod is that it exploits ahrti
reactions of consumers to real-time prices, intermittest rinformation about the smart grid system and the structure pf
newable energy sources (e.g. small wind farms, househ8}§ Storage management problem and thus, less information
with solar panels, etc.), for which the statistical knovged N€eds to be learned than when using conventional reinforce-
cannot be reliably obtained by consumers a priori. TheggfofM€nt léarning algorithms such as Q-learning, actor-ceit
the efficacy of the methods proposed in these works, whil#l- Importantly, under certain conditions, it obviateeet
rely on specific models of the system dynamics, may restiged for action exploration, which significantly improves t

in poor performance (i.e. low benefit received by individugtdaptation speed and the runtime performance as compared
consumers) in practice. to conventional reinforcement learning algorithms whiokd

: : . significant performance during the (very long) exploration
In this paper, we propose foresighted price-aware consum Cte P 9 (very 9) exp

tion scheduling algorithms based on energy storage man-

. . L ; The remainder of this paper is organized as follows. In
agement, which can operate optimally in time-varying ar‘gectionl:ll a rigorous MDP framework is proposed to for-

unknown environments. In particular, we consider a power . .
P POWEL, \jate the storage management problem in the smart grid. In

grid where each consumer is equipped with an energy Stora§<eectiorﬂ]] we describe a novel PDS online learning aldonit

device [20]. The consumers purchase electric energy fr(}Wat optimally solves the storage management problem and

?&:I?_'Cgr:géy ergz;]ki? d\ilxihdeursl E;T;sil?ncgrlcgfgrr:ﬁg g’:r:fim;istudy the convergence property of the learning algorithm.
: ' P PU8ection TV extends the proposed algorithm to solve the gtora

scheduling by proactively determining how much E|eCtr'ﬁ1anagement problem in an alternative scenario where the

energy to purch_ase at each moment of time, given its reaﬂ—t_l emand loads of individual consumers are deferrable. &ecti
load demand, its current energy storage, and the elegtri

. . . \ - shows the numeric results. Sectibnl VI discusses various
price. By rigorously formulating the consumer's dec'S'oextensions of our proposed framework. We conclude in Sectio
problem as a Markov Decision Process (MDP), we th prop '

propose an efficient online learning algorithm that enabéeh

consumer to learn the optimal storage management policy for

consumption scheduling, which maximizes its personal tiene

in the long run. A. System Setting

The differences between our work and the existing liteeatur This section describes the smart grid system considered in
on ECS are summarized in Tallle I. The main contributiorikis paper.
of our work lie in the following aspects. First, we assume We consider an infinite-horizon discrete time model, where
that both the electricity price and the arrival of consurherime slots are indexed by= 0, 1, .... For instance in[]1], the
demands vary dynamically over time, and importantly thiength of each time slotis assumed to be one hour, in which the
statistical knowledge of these (Markovian) dynamics is natle price of electricity changes once. Similar[tol [10]}[1@e
known a priori. In order to cope with such unknown timeeonsider an electricity market where distributed powedgri

Il. SYSTEM MODEL



purchase electric energy from distributed energy produder Electricity
market consists of three different types of entities: a @ark o, gria Producers
operator, producers and consumers:

Power Line
(1) The producers represent the distributed entities whc o
generate and sell energy in this wholesale market to the pov q"a" éa‘ifl'
grids [10],[17]. Examples of such producers include smal /Etectricity ¥ Electricity
wind farms, households with solar panels, power plants, eti S“”?QE{ ““““ _‘{CO”‘-‘“”“E”‘ : ‘C"”S“W '| Storage
evice i &t _ g Device i

(2) The consumers are the end users owning a number o
rgsidential appliances, e.g. electrical vehicles, airddi;illfns, Fig. 1. The electricity market
dishwashers, etc. Each consumer purchases electric energy
from the producers on the market for its own consumption.
There are several assumptions imposed on consumers in thissible electricity price{[lﬁ].
paper. (2) The consumer’s total demanded load (from all its appli-
ance) in the current time slot is denotedd8 € [0, D] £ D,

« The continuum model is used to capture the large cowhere D is a constant upper limit. The load is assumed to be
sumer population[J1]. The continuum model approxinon-deferrable in our analysis, i.e. the current demandagan
mates well the real user population if there is a suffbe postponed and get fulfilled in future time sldis![26]. Also
ciently large number of consumers in the market. Hence,should be noted that the actual amount of demand from all
each consumer is infinitesimally small and its storagte consumers can exceed the production capacity of the smar
management policy does not interfere with the decisioggid system. Therefore the part of demand that is not able to
of other consumers. be fulfilled by the smart grid system will be dropp@j.

« Since each consumer is infinitesimally small, its storage (3) The consumer purchases an amouffit € [0, A] £ A
management policy does not influence the electricif electric energy from the electricity producers to fulftk

price in the market as well. demand coming in this time slot, wher& represents the
o The consumer’s load demands from different time period&rgest allowable purchasing amount[20]. In practice, the
are not correlated with each other. energy usage is measured to an accuracy of 0.01mW [21],

and henceA represents a finite set. When a consumer makes

(3) The market operator is an independent and non-profithe electricity purchase, which happens at the beginning of
entity who operates the market. It manages the physiggk time slot, we assume that it does not know the exact value
infrastructure and the electricity trading in the market. bf its demand that comes in the current time slot. This puts
also determines the trading price of the electricity. Ndtatt our work into a sharp contrast against the existing litewgtu
the market operator does not directly engage in and majfere the exact demand needs to be specified and known by
profits from any electricity transaction among the prodscethe consumer in order to determine its purchasing amount.
and consumers. It only operates the trading platform of thea significant problem embedded in such electricity market
market to make the transactions feasible. is that the production capacity of the distributed eledtyic

In this paper, we specifically focus on designing optimalroducers varies drastically over time and is often highly
storage management policies for strategic consumersewahil unpredictable compared to the large power plants because
suming that the other entities in the market (i.e. the predsic they rely on intermittent resources like wind and sunsh@je [
and the market operator) are following given strateigsmce Wwhich in turn introduce significant fluctuations on the unit
we assumed a continuum consumer model and thus the stor@lgstricity price ¢). The stability of the power grids thus
management policies of different consumers do not interfeflepends on having balanced electricity supply and demand at
with the decisions of each other, we focus on the analy#8y given time. In order to achieve this balance, the consume
of one representative consumer in the rest of this papes TEEhedules its demand through the help of electricity storag
is an approach commonly adopted in the literature analyzidgvices (e.g. batteries, plug-in hybrid electric vehid.).
continuum user populations, e.0.]17]. The basic principle of the consumer’s storage management in

Before proposing the formal model, we first summary th%aCh time slot is described as follows:

interaction of the consumer with other entities in the marke * |f the consumer purchases more electricity than its de-
at each time slot: mand, i.e.a® > d, it stores the surplug® — d® in

(1) At the beginning of the time slot, the market operator 2in this paper, we focus on the strategic energy purchaseeotdhsumers
publishes the unit electricity price in the current timetsithe and assume that the energy price is determined exogenclisdy. is, the

. . . : . . market operator follows some static policy to set up the afgttricity price
unit price Is denoted ag( ) € Q, whereQ is a finite set of in each time slot. The analysis and design on the adaptiw@ngrpolicy of

the market operator remains as an interesting topic andlégated to our
future research.
3The un-fulfilled load could also be redirected to larger gpesroviders,
1jt should be noted that the stochastic control and onlinmieg solutions  e.g. Pacific Gag: Electric Company, and get supplied from there.
proposed in this paper can be easily extended to the destjrarzalysis of “However, we would like to note that in SectignllV, we do coesithe
the strategic operations of entities other than the consuriiée relegate such scenario where the unsatisfied load in each time slot can fegrelé to be
extension as future works. fulfilled in future.



its storage device.
« Ifthe consumer purchases less electricity than its demar

i.e.a® < d®, it covers the deficid® — a(*) using its ot
stored electricity, whose amount is denoted@s Since (t4+1)
the capacity of the storage device is limited, we assun b

that b < [0,B] £ B, where B is a constant upper
bound. ¢

t
A schematic representation of the considered electricifyg- 2 Temporal evolution of the electricity storage
market is illustrated in FigurEl 1. By strategically detemmi

ing i () i ilize i . .
ing its purchase'™, the consumer can flexibly utilize 'ts_and value function of the MDP. The storage dynamic across

electricity storage to balance the electricity supply atel iy gjots in this MDP s illustrated in Figufé 2 and captured
demand across time in order to minimizing the negati\ﬁ\y the following expression:

effect introduced by the fluctuation of the electricity pric
In this way, its benefit from electricity consumption can be b+ = min{max{b® +a® —d® 0}, B}. (1)
maximized.

The system then evolves into the next time glet 1 with
_ . the new states(*+1). The transition probability froms(*) to
B. Stochastic Control Formulation st given the actioru("), is expressed as follows:

In this section, we formulate the strategic storage man- p(s(t+1)|s(t)’a(t)>
agement of the consumer as a stochastic control problem, in
order to maximize its utility on the energy consum;l)otion from = Pa(@“V g™, e )pe (Ve )pa(d®le®) (2
the smart grid system. Specifically, we define the consumer’s f (b(t+1) = min{max{b® + o — d® 0}, B}) 7
action in each time slot as its purchase(*) and the state
as a tuples 2 (¢ p® ™)), Here the variable®) repre- wherel(-) is the indicator function.
sents the environment dynamics (e.g. time, weather) theat th The consumer’s benefit in each time sftots determined
consumer experiences in time stotother thang®, d*), and by the amount of its electricity consumption in this timetslo
b®. Valuable information is embedded in such environmegenoted as® £ min{b(®) + o, d}, i.e. the consumption
dynamics, which influences the fluctuation of the energyegpricannot exceed the total amount of the stored and purchased
and the consumer’s demand over time. For instance, it is oftelectricity. Given this, the consumer’s one-slot benefit is
the case that a consumer's demand in a specific time slotfis*)), with f(-) being a function that satisfies the following
influenced by the hour that this time slot is located within @onditions:
day: the demand will be high during the peak hours (e.g. 6pm-Assumption: f(x) is non-decreasing and concavemrnwith
12am) and be low during the off-peak hours (e.g. 12pm-6pain, - f'(z) = 0 and f(0) = 0.
[10],[18],]23]. This information can be helpful for consens This assumption states that the benefit is always non-
predicting how their own demand and the electricity prict winegative and also monotonically increases with the con-
change in the near future and thus used to instruct how mwimption (), whereas the marginal benefit monotonically
electricity it should purchase in the current time slot. decreases against’). Such assumption widely adopted in
To make the stochastic control problem tractable, we assupievious works, e.g[[20].
that ¢ also takes value from a finite set, denoted §y  The consumer’s cost in each time slot includes two parts.
and evolves as a finite-state Markov chain with the transitio he first part is the total expense on electricity purchaséchv
probability {p.(e+1) | e()}. Similar assumptions have beeris ¢¥a'"). The second part is the cost for electricity storage,
taken in existing literature, e.d.[1].[17]. We also assuagein Which equals tab*+1), wherec is a constant representing the
[9], that the evolution of the electricity price follows atibn- unit storage cod.
ary finite-state Markov chain given the environment dynanic Combining the benefit and costs, the consumer’s one-slot
with the transition probability{p,(¢**+" | ¢, e®)}H To utility u is:
capture the influence of the environment dynamics over the 0t " 0t 1
coﬁsumers’ demand, we mod&t) as an i.i.d. random variable u(s®, ) = f(r) = Wal — b, (3)
given e(), with the probability distribution{pa(d® | e®))}. The consumer’s storage management policy in the MDP is a
It is important to note that all the probability distributi® are mapping from the state to its actiom: Q x Bx £ — A. That
unknown a priori to the consumer and needs to be learnigg given a states, this policy instructs the consumer to take
dynamically over time. the actiona = 7(s). In the rest of this paper, we focus on
Given the Markovian evolution af(”) ande®, the stochas-
tic control problem can be casted into a Markov Decisiogxie;i':]e “\/r\]/g?l:scoj 'E&%e' E;g'exgicxzuféoﬁ(geetg‘aﬁo?:iﬂaﬁﬂbﬁ; ”;2%
Process (MDP). Next, we derive the state transition praiyabi Iearningg algori’thrﬁg'can ]b.e eas:ily extended to apply to othg:rm?odels
for energy storage. For example, the electricity storagst could also be
51t should be noted that the Markovian price model assumed Iseonly formulated as a convex functioh [31] or a piece-wise linaarcfion. Since
for analytical tractability. We show in Sectidn] V that ouroppsed storage the MDP formulation and all our current analysis still applith such non-

management algorithm also performs well when the priceatiari is not linear storage costs, the proposed online learning alguoris also capable of
Markovian. learning the optimal storage management policy.



optimizing the policy to maximize the consumer’s expecte ;& — (, 3 () 50 = (g0, 50 1 g0 (D) 4D (gD pleeD) 4Dy

long-term utility, which is referred to as thealue function O e o
and defined as the expectation of the discounted sum of t | T ki R ‘
consumer’s one-slot utility: | t \ 541 ‘

Fig. 3. lllustration of the post-decision state

Um0y =E (Z Stu(s®,aM) | 5(0)> . (4)

t=0 A. Post-Decision Sate

HereJ < 1 is a constant discount factor, which represents The most critical idea in our proposed learning algorithm is
the fact that the consumer puts a higher weight on its currggtinyoduce an intermediate state in order to capture tiogkn
utility than its utilities in the futurd _ _ part of the system dynamics in each time slot and speed-up
Given[4, the optimization problem is formalized as followsthe Jearning process. We call this intermediate state tis¢- po
7/ .(0) decision state (PDSj £ (g, b,¢). In a brief explanation, the
max U™ (s'V)). (5) : .
P PDS represents the state of the system in each time slot after
i H t
From [25], it is known that in an MDP, the problelth 5 isﬂgte) consumer performs Its act|.ozr‘|> but beforetgg demgnd
equivalent to the following optimization: d IS re_allz_ed. The _rel_atlonshlp l_)etV\_/een as an(_d its
PDSs® in time slott is illustrated in Figur€l3. From this, the
max U7 (s), Vs € S. (6) corresponding PDS in the time slois computed as follows:

. () — o) ) — p®) @) @) — @)

Let 7 and {U*(s)} denote the solution of16 and the ¢V =g b =b" a8 =e (8)
corresponding optimal long-term utility respectivelyisitwell- Accordingly, we define the post-decision value function
known that=* and U"(s) can be obtained by recursivelyy () for a PDS3 as followsf
solving the following Bellman equation sét [25]:

V*(3) = E p(s'|s,a)U*(s"). )

s'eS

U*(s) = max | u(s,a) + 4 g p(s'|s,a)U*(s") | . (7) c
a€A ( oS For the better illustration, we refer te as the “normal”

) i ) _state andU*(s) as the “normal” value function, in order to
In the next section, we solve this Bellman equation set Usigarentiate with their post-decision counter parts.

the idea of dynamic programming and online learning. Compard7 anfll9, it can be noticed that the post-decision
value function represents the expectation of the conssmer’

I1l. POST-DECISION STATE BASED DYNAMIC future utilities over the unknown system dynamics. Hence,
PROGRAMMING there is a deterministic mapping from the normal value func-

tion to the post-state value function. By substitutldg Qint
& the relationship between the normal value function aed th
post-state value function can be expressed as follows:

In this section, we analyze and solve the Bellman equati
[7. The traditional algorithms for solving the Bellman edoiaf
e.g. the value iteration and the policy iteration|[25], néleel
state transition probability and the state space to be known U*(s) = max (u(s,a) +0V*(5)). (10)

a priori, and thus are not feasible solutions for our problem acA

since these values are not known (Or on|y parua”y known) The above equation shows that the normal value function
a priori. To this end, we propose an online reinforcemeft”(s) at each time slot is obtained from the corresponding
learning algorithm to dynamically learn the state traositi POSt-decision value functio*(s) at the same time slot,
probability and the state space without any prior knowledyéheres = (¢, b+ a,e), by performing the maximization over
in order to solver* andU* on-the-fly. the actiona.

The rest of this section is organized as follows. We first The advantages of introducing the post-decision state and
introduce the concept of the post-decision state (PDS) ¢Rrresponding value functions are summarized next.
Section[I[-A. Section[II[-B then develops a general PDS « In the normal state based Bellman’s equation[3et 7, the
based online learning algorithm that allows the consumer to expectation over the possible environment dynanaics
integrate known information about the system dynamics into the possible demand arrival and the possible energy
its learning process. By exploiting the partially knowndnf prices ¢ has to be performed before the maximization
mation about the system dynamics, the PDS based learning over the possible energy purchasing actiansHence,
algorithm significantly improves its convergence speed and performing the maximization requires the knowledge of
run-time performance compared to the conventional online these dynamics. In contrast in the post-decision state-
learning algorithms, e.g. Q-learning [25]. Finally in Sent based Bellman’s equatiorid 9 afdl 10, computing this
[MT=C] we prove the convergence of the proposed algorithm. expectation is separated from the maximization, which

can be parallel. Therefore if we can directly learn and

71t should be noted that we only consider stationary policythis paper,
which is common for most MDP problems|25]. Therefore, theppiag = 8In our subsequent analysis, we drop the time in@gxfrom the expres-
does not change over time. But the actioff) adopted by the consumer sions, e.g. if9, when the properties being discussed appél states and
changes over time depending on the stte. actions. The time index will be kept only when necessary.



approximate the post-decision value functi®fr((s))

online, the maximization (a.k.a. the optimization of the A
storage management policy) can be solved without any
prior knowledge of the system dynamics.

o Given the actiona, the post-decision state factors the
(Markovian) system dynamics into an a priori unknown
component, i.ee, d andg whose evolution is independent
of a, and an a priori known component, i.e. the storage
b whose evolution is determined ly It is important to
note that the evolution of the a priori unknown component
is independent tb as well. This fact enables us to develofFig. 4. The value function update in conventional reinfoneat learning.
a batch update scheme on the post-decision value func-
tions, which is discussed in the next section. Such batch 5 =50
update scheme can significantly improve the convergence 4 oY D
speed of the proposed PDS based learning algorithm, sy Loy f ety

compared to conventional online learning algorithms. PR N
1) ) ela1)

Energy price

Environment dynamics

B. Post-Decision Sate Based Online Learning e q_;
In this section, we propose the PDS based online learning

algorithm that utilizes adaptive approximation to effeely >

learn the post-state value functiofig*s}. It is known from Environment dynamics

[10 that we can also obta{rU*(s)} Once{V* 5} are ComPUted' Fig. 5. The batch value function update in PDS based learning

In each time slot, the post-decision value function is updated

Energy price

in the following manner: Algorithm 1 PDS-based online learning

VOED) = (1 - a®)yVEDEO) 4 oOu® M), (11) Initialize: V() (3) =0 forall 5 € S; t = 1.

Repeat
Herea(®) is the learning rate factor that satisfig >, o) = (1) Update the normal state” = (¢, 0", ™) with b =
0o and 32 (a)? < oo, eg.a® = 1 UW(s®)js  max{bF —d"77, 08 o
the normal value function updated in time slgtwhich is (2) Compute the optimal action'*’ for the current normal state
ted foll . S(t) and updatd](t)(s(t)) as in Em;

computed as Tollows: (3) Batch update the post-decision value functions

V(" b,eM),vb € B as in EqLIB;

U®(s")) = max (u(s(t), a) + 5V(t*1)(§(t))) -+ (12) 4y Update the PDS = (g, 51), e®) with 5 = b0 4 40

acA

Remark: WitH Il anf12, the normal value function and the ; ._ ; ; |
post-decision value function are updated iteratively ichea End
time slot. In the first step, the normal value function of the
current states¥) = (¢, b ™) is updated td7® (s(*) us-
ing the (un-updated) post-decision value functiofi—1) (5()) With the batch updatE_13, we are able to update all the
where 5 = (¢® p® 1 o) ¢®) In the second step, thePDSes{(¢®,b,e®),¥b € B} all at once in time slott,
post-decision value function of is updated toV®)(5()) as shown in Figuré]5, instead of updating only one PDS
using the updated normal value functititt) (s(*)). In the next 5*) as shown in Figurél4. Here the white cells represent
section, we prove that such iterative update process intedi the PDSes whose value functions are updated in the current
by[I1 andIP ensures both the normal value function and t@e slot and the blue cells represent the PDSes whose value
post-decision value function converge to their optimalieal functions are not updated in the current time slot. As a tesul
i.e. {U*(s)} and{V*(3)}. the convergence speed of our proposed learning algorithm is

The above iterative update procedss 11 12, thousignificantly improved, which will be illustrated in Seatify/l
ensures the convergence to the optimal value, only updatesn summary, our proposed PDS-based load scheduling al-
in each time slot the currently visited PDS®). Noting that gorithm is illustrated in Algorithni11.
the temporal transition af, e andd are all independent to the
electricity storage, or in other words, the values ef?), ¢(*)
andd®) can be realized with any possible valuéoTherefore

C. Convergence of the PDS Learning Algorithm

instead of solely updating one PDS) in a time slott, we [N this section, we analyze the convergence property of
can perform a batch update over any PDS (g, b, ¢), which the PDS learning algorithm, which is proven in the following
satisfies thaf = ¢ andé = é(¥), as shown below: theorem.
- - Theorem 1 The PDS based online learning algorithm
V(D b,e") = (1 — oDV (G b, e®) (13) converges to the optimal post-decision value func{"lzfr’f(~ }
+aOU® (G 5 — o®, 60 Vb € B. when the sequence of learning raté§ satisfiesy ;= a(t) =

oo and Y12 ()2 < oo,



Proof: For each PDS;, we define incorporating the deficit into the state definition, which is
specified as follows:

F5(V)) = max(u(s, a) + 0V (3)), 14
ac€A (14) o Thestateis defined as a tuplegl) 2 (g™, b1 et 1),
wheres and s satisfy the relationship that = ¢, e = ¢, and Therefore, the consumer’s storage managements decision
b=b—a. in each time slot is also influenced by the defigit)

We also defineF’ : RISl — RISl be a mapping such that  from the previous period. It should be noted that since
F(V) = [Fs(V)]s. [28] has proven that the convergence of  bothd(*) andb® all take values from finite setg(*) also
our proposed algorithm is equivalent to the convergence of takes values from a finite set, which is denoted)hy

the associated O.D.E.: o The action is still defined a(s)the consumer’s electricity
. ; iod ie® 2 (b
V= F(V) V. 15 purchase in each period, i.e;, = a'.
V) (15) « Sincey® is a deterministic function of*~1), v®), o
Since the mapF : RISl — RISI is a maximum norm andd®), as shown if 16, the state transition probability

d-contraction [[3D], the asymptotic stability of the unique s

equilibrium point of the above O.D.E. is guaranteed[in| [30]. 1)) (1) ()

This unique equilibrium point corresponds to the optimatpo p(sar " 1sa > aq )

decision state value functiofi/*(3)}. B = pg (¢ Vg, e®)p, (D |e®)py(dP]e®)
Theorem 1 shows that Algorithid 1 converges to the opti- )

mal post-decision value functiofi’*(5)}. Since the optimal I (b(tH) = min{max{p" +a{ = h"), 0}, B})

normal vglge functiofU*(s)} is a dete_rministic function of I (y(t+1) = max{0, A® — p® — a(t)}) .

{V*(8)}, itis thus concluded that Algorithfd 1 also converges

to {U*(s)} and the optimal policyr*. Therefore, we prove |t is important to note that we do not impose the expiration

that the consumer is able to learn the optimal storage majfEadline for the deferrable loads, as assumed in manyrexisti

agement policy through Algorithi 1. works such as’[18]. As a result, the demanded loads deferred

from different time slots provide equal unit benefit to the

IV. OPTIMAL SCHEDULING WITH DEFERRABLELOADS  consumer when being fulfilled. However, we will show in
In the analysis so far, we assume that the load demarfection[VI-B that the proposed MDP formulation in this

of each consumer are non-deferrable. That is in a time sksction can be easily extended to the scenario where the

t, if the available amount of energy, i.8(Y) + o, is lower load demands have (heterogeneous) expiration deadliges, b

than the current load demadtl, the consumer cannot benefiincorporating the deadlines into the definition of the stﬁté

by deferring the deficit/”) — b") — o) to be fulfilled in  Definer() 2 min{p®) + o™, L)}, the one-slot utilityu;

future time slots. However, in many smart grid applicationgan be expressed as follows:

the load demands from various appliances are deferrable,

e.g. electrical vehicles, dish washers, washers/drydrsA1 wa(s®,al) = fr)) — ¢Wa® — D (18)

common feature of these appliances is that their loadinesyc N

are long while their starting time can be easily shiftedtist ~ Finally, the consumer's expected long-term utility of the

section, we particularly analyze how to perform the dynamf@nsumer can be expressed as

load scheduling on such deferrable load demands using the

idea of PDS-based learning. UMW) =k <Z Stug (s, aD)) | sgp) . (19)
t=0

(17)

A. MDP Formulation for the Scheduling with Deferrable

It is important to note that since the discount factor
Loads

0 < 1, the consumer’s benefit received from one unit load

In order to differentiate with the scenario of non-defeteabmonotonically decreases against time. Therefore, defgthie
loads, we introduce an additional variabj€’) representing demand load decreases the consumer’s long-term Uility 19.
the amount of demand load from the previous time slot tha@his assumption reflects the negative effect of load defatme
is left unfulfilled. The total load of the consumer in timetslowhich is also referred as the “inconvenience cost” caused by
t is denoted by = d® + y(*), We also have the delay introduced in the energy usage [1].

y® £ max{0,n71) — p(t=D _ (=D, (16)

To solve the optimal storage management policy with d& PDSbased Learning Algorithm for the MDP with De-

ferrable loads, we also propose an MDP to formulate tfgfrable Loads

consumer’s decision problem. The MDP proposed in this In this section, we propose the PDS-based learning algo-

section is referred to as thdDP with deferrable loads, with  rithm to solve the MDP with deferrable loads. Similar[fo 8,

all the associated variables subscripted by dI, while werrefthe PDS3!) 2 {3\ 5 &'} 7))} represents the state of the

to the MDP proposed in Sectidl Il as tiéDP with non- system in each time slot after the consumer performs itsmcti

deferrable loads. al) but before the demand®) arrives. Thus we have
Given[16, the MDP with deferrable loads can be easily

extended based on the MDP with non-deferrable loads, byg = ¢®, b\ = b® + () &) = e® 5 — 4 (20)



Algorithm 2 PDS-based online learning with deferrable loads

Initialize: V(©)(5) = 0 for all s3; t = 1. ..."DS eaming
Repeat e Q-learning
1) Update the normal statel! = (¢,5® e® y®) with 10

p dl q Y 2
b® = 5EY — gD — =D and y® = max{0,y* "V + B [
d(t_l) _ b(t—l) _ a(t—l)}_ g n_,,—/‘*

dl . ’ . " 2 s

(2) Compute the optimal actlom;l for the current normal state <
sty and update/y; (s')) as in EG2L; _
(3) Batch update the post-decision value functions

3 4 5 6 71 8 9
10® time slots

V(G b, e, 5, Vb € B;

(4) Update the PDS.") = (¢, 51, e®) with 5@ = p® 44 ;
Fig. 6. Run-time performances of online learning algorshm

t:=t+1

End

The unit electricity price is taken from a finite s& =
{0.1,0.2,...,0.5}. We also setc = 0.1 and the benefit

Correspondingly, the post-decision value function is ugpda function to be a logarithmic functiofi(x) = log(1+ ) as in
as

O <O\ _ (1 _ Oy E=1) =) )77 () _ _
Var' Gap) = (1=t (500) + 02U (sg)- (21 A Experiments with Non-deferrable Loads
and the normal value function is updated as We first conduct experiments in power grid systems where
- the demand loads are non-deferrable. In the first experiment
) () _ (t) (t=1) =(t)
U (sar) = o (“dl(sdl yaar) +0Vy (3 )) - (@22 e compare our algorithm (i.e. Algorithii 1) with three state

Given the PDS, the online learning algorithm for the MD[gf-the—art online learning algorithms to illustrate thevadtage

with deferrable loads is illustrated in Algorith 2. of (';‘)trsl‘;:’u‘zni?etrg‘;;%a?g gﬁtg?f_ﬁggﬁfzorithm e we
Similar to Theorem 1, we have that Algorithm 2 also ] 9 '

X : are solely using here as the optimal benchmark. This algo-
converges, as shown in the following theorem. . .
) : rithm needs the complete knowledge of the underlying state
Theorem 2 Algorithm 2 converges to the optimal post- - - . .
- . e transition probabilities and utility functions. The contation
decision value functiofiV; (54:) } when the sequence of learn- . i o o .
. (1) enticf o™y o ()12 complexity of value iteration is also significantly highéan
ing rateso'?) satisfiesy ,~ , o' = oo and),”  (a)? < o0 . . :
online reinforcement learning methods.
u . (2) Q-learning[[25] is a model-free reinforcement learning
In the next theorem, we prove that Algorithm 2 always, “’. . o
) algorithm. It does not require a priori knowledge of the estat
outperforms Algorithm 1. transition probabilities and utility functions, but suffefrom
Theorem 3. Given two initial states(® = (¢(©) p(©), () Slow convgrgence speed y ’
©) _ (. (0) 1(0) ,(0) ; ; « ((0) ; -4 ) )
an*d ol 0" (a h’bld ’: ,0). the inequality Ugi(sy ') = (3) Real-time dynamic programming (RTDPY]29] is also a
U*(s") always holds . . _model-based online learning algorithm. When implementing
Theorem 3 proves that the consumer always obtains a hig

| i hen the load def ble. Therefd DP, the learning agent first constructs a statistic model
ong—term utility w e.n_t € loads are delerrablie. 'hereine - ¢ e underlying MDP and then updates the state transition
optimal long-term utility achieved in the MDP with defertab

. . ~. probabilities in this statistic model using its past exprces.
loads is always no less than the optimal long-term utilit herefore, the state space of the MDP needs to be known a
achieved in the MDP with non-deferrable loads.

priori.
Table[dl shows the average performance received by the
V. ILLUSTRATIVE EXAMPLES four learning algorithms in the considered power @il can

In this section, we provide numerical results to illustrtite be observed that PDS learning significantly outperforms the
performance of our proposed online learning algorithm. Wather two online learning algorithms (RTDP and Q-learning)
consider a power grid with 100 consumers, where the lengh all metrics (higher energy consumption per consumer and
of each time slot is 1 hour. The energy storage capagity lower cost for unit energy per consumer). As a result, the
10kW h. The environment dynamiesrepresents the hour thataverage one-slot utility achieved by PDS learning is close
each time slot is located in a day and hence, we htave to the optimal value achieved by the off-line value iteratio
{0,1,...,23} ande® = mod (t,24). algorithm.

In one day, we divide the time slots into peak and non- Figure[6 plots the run-time performances of the online
peak hours. Specifically, the peak hours are 6pm to 12d@arning algorithms across 10000 time slots. Note that PDS
and the remaining hours are non-peak hours. The demande&sfrning converges after 1122 time slots (with the run-time
each consumer in each time slot follows a truncated Gaussierage utility achieving 90% of the highest value), while

distribution in the regior0, 2.5kWh| as follows 0 i ) ) )
For the online algorithms (PDS learning, Q-learning, RTD#) run each

2\ i (1) of them for 10000 time slots. For the off-line value iteratiove run the
pd(d(t) | e(t)) _ N(0.5,0.2%),if ' € [0,17] (23)  algorithm until it converges (because there is no interatedoutput for the
N(1,0.12),if e ¢ 18, 23] value iteration before its convergence).



TABLE Il

COMPARISON WITH OTHER LEARNING ALGORITHMS

Per time slot Value iteration RTDP Q-learning PDS learning
Average utility 1.4320 0.9047 0.9987 1.3394
Average consumed energy 0.7746 kWh 0.4272 kWh 0.4537 kWh 0.7847 kWh

Average purchased price

$0.2221/kWh

$0.2930/kWh

$0.2928/kWh

$0.2914/kWh

TABLE Il
COMPARISON WITH OTHER STORAGE MANAGEMENT ALGORITHMS
Per time slot Price prediction Load prediction Prpi:::dixéﬁlocr)]ad PDS learning
Average utility 0.4432 0.3654 0.4565 1.3394
Average consumed energy 0.3909 kWh 0.3998 kWh 0.3098 kWh 0.7847 kWh
Average purchased price $0.5349/kWh $0.6729/kWh $0.7095/kWh $0.2914/kWh

RTDP converging after 2983 time slots and Q-learning con-

verging after 3132 time slots. Also, the average one-slot :ggg;aming

utilities achieved by RTDP and Q-learning upon convergence |/~ |- Q-leaming

are significantly worse than that achieved by PDS, which ]
S ™

indicates that both RTDP and Q-learning are not able to learn
the optimal storage management policy.

In the experiments so far, we do not assume any prior
knowledge is known by the consumer about the system ;
dynamics, before it learns the optimal policy. That is, the T S e
consumer has no knowledge about the transition probaisiliti
pe(d' | g,€), pe(e’ | €), andpy(d | €), as well as the state spaceFig. 7. Run-time performances of online learning algorighmith prior
Q, D and B, at the beginning of the experiment, and has tgowledge
learn these values on-the-fly. Therefore, the convergegresds
shown in Figurd b represents the performance of our PDS 15
learning algorithm in the worse-case scenario, and thus can
be viewed as the upper-bound of the achivable convergence
speed of PDS learning.

Nevertheless, such “zero-prior” assumption usually does
not hold in practice, as the consumer always has some prior
knowledge about the smart grid system and the underlying
MDP, which can help the consumer refine its initial estimatio
of the value function and the storage management policy. R R T R I S S A R
In the next experiment, we examine how fast PDS learning 10” time slots

converges with slightly more knowledge on the system. Fig. 8. Run-time performances of online learning algorshmith prior
knowledge on electricity price

We conduct two experiments on this. In the first case, we
assume that the consumer knows the structure of the spaces
Q, D and B, as well asp.(¢’ | e) (i.e. the consumer knows the large amount of historical data. From Figllie 8, we can see
the hour that the current time slot resides in). The learninge convergence speed of PDS learning is further improved. |
performance under this setting is shown in Figlife 7. PD®nverges after 12 time slots (by achieving an averageyutili
learning algorithm still converges significantly fasteauttother  which is 95% of the optimal value).
reinforcement |earning algorithms in this case. Impo“ﬂnt Next, we compare A|gor|thrm1 against the existing price_
PDS learning converges after only 50 time slots, which {gyvare energy storage management algorithms based on load
significantly faster than the speed it achieves when no prigad price forecasts, which are discussed[in [L2]-[14]. The
about the MDP is known and utilized. algorithms in these three works function under the same
In the second case, we go one step further to see whetherghaciple: each consumer tries to optimize its energy pasels
convergence speed can be further improved if the consuntereach hour in order to maximize its next-hour profit from
knows the dynamics of the electricity price as well, i.eenergy consumption, based on its prediction over the next-
{pg(g"* V) | ¢, e}, This is a reasonable assumption sinceour load demand and energy price. Meanwhile, all these
today’s ISOs can perform a good price forecast, by utilizinglgorithms assume that each consumer presumes a model on

Average utility

102 time slots

——PDS learning
-—-RTDP

rﬂ - —-Q-leaning

=

Average utility

o
o
TR,
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TABLE IV
ENERGY PRICE FORCPPCUSTOMERS

Summer critical Winter critical
Summer off-peak Winter off-peak
p peak peak
12.3c/kWh 77.1c/kWh 57.5¢c/kWh 49.8c/kWh
TABLE V
PERFORMANCE OF STORAGE MANAGEMENT ALGORITHMS WITH THE REAL BERGY PRICE DATA
. . - _— Price & load :
Per time slot Price prediction Load prediction prediction PDS learning
Average utility 0.5549 0.7773 0.4565 1.2135
Average consumed energy 0.4430 kWh 0.6821 kWh 0.4352 kWh 1.2343 kWh
Average purchased price $0.4242/kWh $0.3232/kWh $0.4201/kWh $0.3309/kWh

TABLE VI
PERFORMANCE ACHIEVED BY DIFFERENT ALGORITHMS WITH DEFERRABE LOADS

Per time slot Value iteration RTDP Q-learning PDS learning

Average utility 2.5074 2.2109 1.7772 1.4444
Average consumed energy 2.1897 kWh 0.9723 kWh 0.9025 kWh 1.8838 kwh
Average purchased price $0.1825/kWh $0.2514/kWh $0.2502/kWh $0.2013/kWh

, of both the next-hour load demand and energy price using a
known statistical model.

We then plot in Figurgl9 the consumer’s per-slot electricity
purchase under different algorithms. Here we assume that
when the consumer knows the statistical distribution of the
next-hour energy price as well as the next-hour demand load,

Energy purchasing amount

) —b—Load prediction .. {pe(e) | e}, {py(¢"FY | ¢, €M)}, andpa(d® |
1  Prive & Lod prediction e®), when making its prediction over these dynamics. It can
. 9~ PDS leaming be observed that the three benchmark algorithms delivers lo
012245678 91011121314151617181920212223 . .
Time slat per-slot purchase during off-peak hours and high purchase
Fig. 9. The consumer's per-slot electricity purchase during peak hours, which is consistent with the fluctuation

of the consumer’s load demand. This is because these three

o ) algorithms only focus on maximizing the consumer’s utility
the variation of the load demand and price and makes {ig next hour while neglecting the impact of its current deci

prediction based on this presumption. With such a priniplgion over the further future. As a result, these three allyors
we develop three new algorithms for our storage managemep, only optimize one hour ahead, under which the consumer
problen@ o , , S starts to increase its purchase at 17:00pm (1 hour before the
(1) Price Prediction. This algorithm is similar to the neak hours) and reduce its purchase at 23:00pm (1 hour before
algorithm in [12], which predicts the variation of the néxdur  the off-peak hours). These algorithms thus do not fully eitpl
energy price while neglecting the variation of the load detha e information embedded in the price and load fluctuation
Specifically, it assumes that the next-hour load demandeis tf effectively purchase and store energy during the ofkpea
same as the demand that the consumer observes today. oyrs when the energy price is low. In contrast, Algorifim 1
(2).Loaq Predlcnop. This a}lgonthm fqlloyvs the idea of the jnstricts the consumer to purchase and store sufficient aisiou
algorithm in [14], which predicts the variation of the nebaur_ of energy during off-peak hours (when the energy price i low
load demand and assumes that the next-hour energy pricgsfSthe consumption during peak hours (when the energy price
the same as the price of today. is high). Therefore, the average purchased prices of the uni

(3) Price & Load Joint Prediction. This algorithm follows 4oy nt of energy are significantly higher under the benckmar
the idea of the algorithm in_[13] and predicts the variationgigorithms than that under Algorithd 1, which results in a

101t should be noted here that in_[12]-[14], the decision Jagato be significantly lower average ut|||t¥, as shown[mlll. )
optimized is not the purchased amount of energy in each tiote ldence, We also run a separate experiment on the real energy price
the three algorithms proposed here, i.e. price predictaay prediction, price qata set to test the efficacy of our algorithm. The pricin
& load prediction, are not exactly the same as thos€ ih [14]-[dut share d dis f h é’ itical P E Prici CPFE) | 9
the same design principle with them (i.e. optimizing onertahead utility data we used is from the Critical Peak Pricing ( ) plan

based on pre-established statistical models). in the PowerCentsDC prograrh |22]. In the CPP plan, the
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energy price is higher in the critical peak hours than that in« The state is defined as®) £ (¢®,v®) ¢® G®),
the normal (off-peak) hours. The critical peak hours occur« The state transition probability incorporates the dynamic
between 2pm to 6pm in the summer and between 6am to 8am of G(*), which is expressed as follows:
and 6pm and 8pm during the winter months. The energy price .
.. +1 t t)y t+1 t t t
is shown in TabléTV. Using this pricing plan, the results of p(sH D 0y = p (e[ py(d? ™)
the learning algorithms are shown in Taflé V, from which Pa( Vg, eMpa(GH | e®)
we can observe that the PDS based learning algorithm still 7 (b(tﬂ) — min{max{b® + a® — d(t),o},B}) 7
significantly outperforms the others. (24)

o The consumer’s one-slot utility is
B. Experiments with Deferrable Loads _— » o 0 i)
t t _ (T t t t+1

This section evaluates the performance of PDS learning in u(s',aV) = f(r'Y) — ¢ Pat = b, (29)
power grid systems where the demand loads are deferrable. wherer®) is redefined asain{b® + ¢(G®,a®), d®)}.
Table [Vl shows the average performance received by an q ) i h |
individual consumer when running Algorithil 2 and the three NeXt We conduct an experiment to illustrate how PDS learn-
benchmark learning algorithms discussed in Secfion] v g performs under the dynamics of renewable generation.
Compared to the results in TatIé II, it should be noted tha%pecifically, we assume that® follows a truncated Gaussian
the performances of all algorithms (measured by the averd&tribution in the regioril00kW h, 500k W h]:

utility) significantly increase when the demand are defdea N (300, 0.25%), if e e [0,17]

as proven in Theorem 3. Meanwhile, the average electricity pg (G | () = { T ’ (26)
consumed in each time slot also increases, since the con- N(400,0.15%), if e € [18,23]
s_umer’s unfulfi_lled derr_land Wi.|| be deferred into subsequent-l-he functionphi is defined as follows:

time slots. It is also interesting to note that the averaged

purchased price for unit energy does not significantly ckang a,if G > 400kWh

in this scenario. Therefore, the increase of the consumer’s H(GD o) = _ (27)
utility mainly comes from the increased (and more effedtive 1200% if G < 400kWh

energy consumption. . .
9y P Table [VIl shows the performance of various algorithms.

Compared to Tablelll ard]Il, we can observe that the average
utility achieved by all algorithms significantly decrease- b

In this section, we discuss various extensions of our proause of the dynamic generation and sporadic energy skortag
posed framework and the PDS online learning algorithms. Rabwever, the advantage of PDS learning over other algo-
each extension, the discussion here is limited to prelinginarithms still persists, with a performance close to the optim
modelling and numeric experiments. The detailed analysisdchieved by value iteration.
relegated as important future works.

VI. EXTENSIONS

B. Deferrable Loads with Expiration Deadlines

A Dynarmics of Renewable. Generation . . _In Sectior1V¥, we do not explicitly consider the expiratidn o

. In the current smart g“.d systems,. the un(;ertalnty a]so I'ﬁl'i,ferrable loads. In this section, we discuss how the demand
in the _rengwable gengratlon, as thew capacity (e.g._ W”w agxpiration impacts our formulation and the performance of

solar) is highly dynamic and non-dispatchable. In thisisect PDS leaming. In particular, we assume that a consumers

we discuss how our framework can be extended to incorporatgmand at each time slot expires affertime slots

renewable generation dynamics. . The MDP is revised accordingly as follows:
Let G represent the amount of electricity generated in

time slot ¢, i.e. the total amount of electricity available to *

4

The sate is defined as a tuple s;?

consume in this time slot. When a consumer makes a electric- (¢,6®,e® 5" - 5% ). Here 3" represents
|ty purchasea(t), we assume that the actual amount he gets the amount of unfulfiled demand which expires in
to consume is determined by a functignG®, a()) < a(®). time slots. .

The functionphi monotonically increases wite*) anda(®). . The aciton is defined as a tupleal) 2
That is, a consumer can get sufficient electricity to consume (a(t),OY), aE ,951?). Here o) is still the consumer’s
only if the generatiorG®) is sufficiently large. WherG®) is electricity purchase;\” ... ¢\ | are the amounts
small, i.e. there is certain energy shortage, a consumér wil of electricity that the consumer uses to fulfill
get less electricity than it requests. To quantify the shstic y§t), e ,yf,?_l, respectively, and?f,? is the amount of

behavior of the renewable generation, we also assume tat th  electricity to fulfill d®).
evolution of G(*) follows a conditional probability distribution
{pa(GW | M)}, Hin this section, we assume a simplified model where the deayllihes

Given the Markovian evolution of(®). the stochastic control for the load demand from different appliances are the sardesalely focus
' on how the delay deadline impacts the learning performaneerelegate the

problem can still be casted as a Markov Decision Procea?r%lysis on the comprehensive model with heterogeneoay deladlines as
defined as follows: important future works.



TABLE VI

COMPARISON WITH OTHER ALGORITHMS WHEN THERE IS RENEWABLE GEERATION DYNAMICS

Per time slot Value iteration RTDP Q-learning PDS learning
Average utility 1.1312 0.7427 0.7639 1.1102
Average consumed energy 0.5726 kWh 0.3982 kWh 0.4020 kWh 0.4938 kWh

Average purchased price

$0.2119/kWh

$0.2817/kWh

$0.2898/kwh

$0.2210/kWh

Per time slot Price prediction Load prediction P;)i:::digétilo%ad PDS learning
Average utility 0.4919 0.4537 0.5643 1.1102
Average consumed energy 0.2019 kWh 0.2204 kWh 0.3065 kWh 0.4938 kWh
Average purchased price $0.5687/kWh $0.6324/kWh $0.3535/kWh $0.2210/kWh
TABLE VIl
COMPARISON WITH OTHER LEARNING ALGORITHMS ON DEFERRABLE LOAS
Per time dot (K = 1) Value iteration RTDP Q-learning PDS learning
Average utility 1.5618 0.9742 1.0426 1.4487
Average consumed energy 1.7622 kWh 0.8320 kWh 0.8319 kWh 1.8319 kWh
Average purchased price $2031/kWh $0.3119/kWh $0.3128/kWh $0.2501/kWh
Per time dot (K = 5) Value iteration RTDP Q-learning PDS learning
Average utility 1.9673 1.2420 1.1098 1.8653
Average consumed energy 1.9425 kwWh 0.8635 kWh 0.8827 kWh 1.9310 kwh
Average purchased price $0.1987/kWh $0.2834/kWh $0.3003/kWh $0.2225/kWh

COMPARISON WITH OTHER LEARNING ALGORITHMS AT THE EXISTENCE ® CHARGING/DISCHARGING COSTS

TABLE IX

Per time slot Value iteration RTDP Q-learning PDS learning

Average utility 0.9847 0.5748 0.4983 0.9533
Average consumed energy 0.5948 kWh 0.3346 kWh 0.2987 kWh 0.5672 kWh
Average purchased price $0.2122/kWh $0.3019/kWh $0.3232/kWh $0.2312/kWh

« The state transition probability is expressed as follows: a larger expiration deadline enables the consumer to better
schedule its energy purchase across time and as a result, the

(t+1) (1) (1) . . . :
|s ) average utility per time slot monotonically increases.

p(s4 dl > Aqq
— pq(q(t“) |q(t), e(t))pe(e(tﬂ) |€(t))pd(d(t) |e(t))

K
I <b(t*1) = min{max{dp® + a® — Z 91(:)7 0}, B}>
k=1

I (yﬁ?fll’ = max{0, d® — 9%)})

K-2

1 0
H I (yl(cH ) max{y,(ca)rl — 9,(631,0}) .
k=1

C. Cost of Storage Device Charging and Discharging

In smart grid systems, it is also important to consider
the storage device charging and discharging costs, siree th
life of the battery is usually limited. In the last part of ghi
section, we discuss how the charging/discharging costadispa
the consumer’s utility. Specifically, we consider the cobt o
charging one unit electricity to the battery dsand the cost

(28) of discharging one unit electricity from the battery ds By
« The consumer’s one-slot utility is adding these costs, the consumer’s one-slot utility can be
reformulated as:
K
®) oY = £(r®Y _ 4B @) _ opt+1)
u(sy) af) = £ 67) = qWal — b0, (29) u(s,aB) = f(r) —gTaT — b
k=1 -« (min{B —b® max{a® —d®, O}}) (30)

The performance of the learning algorithms under this _3 (max{d(t) —a® 0})
model is illustrated in TablEZVIIl. As the expiration deauHi ’ '
K increases, the average consumption per time slot increased/ith this change, the experimental result with the PDS
while the average energy price decreases, this indicats tflearning is illustrated in the following table. As expected
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charging/discharging costs. Importantly, PDS learniniyees 7
a high performance significantly outperforming RTDP and Q-
learning. Therefore, PDS learning is still applicable ire th{18]
scenario where charging/discharging costs are considered
[19]

VIlI. CONCLUSIONS

In this paper, we propose a price-aware energy stora%%]
management algorithm for electricity consumers who passes
electric storage devices. Our algorithm can be applied
smart grids where the demand loads are either non-deferrabl
or deferrable. They are able to learn the optimal storage
management policy without requiring any a priori knowledgé?!
of the system dynamics. By introducing the post-decisiatest
and batch update, we prove that our proposed algorithing]
provide significantly faster convergence speed and thus the
average utility received by each individual consumer from t
electricity consumption are better compared to the sthte-@4]
the-art online reinforcement learning algorithms and gyner
storage management algorithms.

[25]
[26]
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