
BitMiner: Bits Mining in Internet Traffic Classification

Zhenlong Yuan∗‡, Yibo Xue†‡ and Mihaela van der Schaar‖
∗Department of Automation, Tsinghua University, Beijing, China

‖Department of Electrical Engineering, UCLA, Los Angeles, CA, USA
†Tsinghua National Lab for Information Science and Technology, Beijing, China
‡Research Institute of Information Technology, Tsinghua University, Beijing, China

yuanzl11@mails.tsinghua.edu.cn, yiboxue@tsinghua.edu.cn, mihaela@ee.ucla.edu

ABSTRACT
Traditionally, signatures used for traffic classification are con-
structed at the byte-level. However, as more and more data-
transfer formats of network protocols and applications are
encoded at the bit-level, byte-level signatures are losing their
effectiveness in traffic classification. In this poster, we cre-
atively construct bit-level signatures by associating the bit-
values with their bit-positions in each traffic flow. Further-
more, we present BitMiner, an automated traffic mining tool
that can mine application signatures at the most fine-grained
bit-level granularity. Our preliminary test on popular peer-
to-peer (P2P) applications, e.g. Skype, Google Hangouts,
PPTV, eMule, Xunlei and QQDownload, reveals that al-
though they all have no byte-level signatures, there are sig-
nificant bit-level signatures hidden in their traffic.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-
work Operations—Network management

Keywords
Traffic classification, bit-level signatures, bits mining

1. INTRODUCTION
Signature based traffic classification has been play-

ing an important role in a broad range of network op-
erations and security management, such as quality-of-
service control and intrusion detection. However, due
to the increasing number of network applications and
their frequent updates, it is becoming more challenging
for operators to keep track of the signatures.

To address this challenge, a number of existing so-
lutions have focused on automatically extracting signa-
tures at the byte-level [4, 5], which first divide packet
payloads into groups of consecutive bytes and then an-
alyze to get the possible signatures. However, those
solutions have two major limitations. Firstly, they are
unable to discover signatures at the more fine-grained
bit-level granularity. Note that previous work [1,2] have
revealed that bit-level characteristics (group of 4 bits,
less than 1 byte) are of great importance in identifying
a few P2P applications. Secondly, they confine signa-
tures to groups of consecutive bytes and thus are hard

to discover the signatures that consist of inconsecutive
bytes (e.g. 1 byte) in packet payloads. In this poster,
we propose the novel bit-level signatures, and present an
automated traffic mining tool (BitMiner) that can mine
signatures at the most fine-grained bit-level granularity.

2. BITMINER
In this poster, we have two observations. The first is

that an application signature should be robust enough
to support per-flow identification due to the prevalence
of asymmetric routing. For this reason, a favorable ap-
plication signature should be one of the most frequent
patterns in captured traffic after running an application
for plenty of times. Therefore, our goal can turn into
mining the most frequent patterns1 in the application
traffic. The second is that the bit-value of a bit-position
in a flow often determines the bit-values of other bit-
positions in this flow. Therefore, we are motivated to
associate all the bit-values with their bit-positions in a
flow for frequent pattern mining (signature mining).

0 0 0 0 0 0 1

Packet-order

Bit-order

Bit-value

0 0 0 0 0 1 0

…

0 0 0 0 0 7 1

1st byte of 1st packet

Last item of 1st byte

…

2nd item of 1st byte

0 0 0 0 0 0 0 0 0 0 0 0 8 1

…

… 0 1 0 0 0 0 0

1st item of 2nd byte1st item of 1st byte 1st item of 2nd packet

All items of 1st packet

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 A 1 B C D 1 ……

Item

T
ra

n
sa

ct
io

n
 D

at
ab

as
e TID 1

TID 2

TID 3

Figure 1: Format Traffic Flows to Transactions

As shown in Figure 1, we can take a bit-value with
its position in a flow as an item and take all the bit-
values with their individual positions in this flow as
a transaction. Notice that we use only two hexadec-
imal characters to represent an item’s packet-order in
a flow because application signatures are generally re-
quired to achieve early identification in practical use
and the first 256 (0x00∼0xFF) packets of a flow are
1From here, we start using some terms in Data Mining.



Figure 2: An Example of How BitMiner Works

Applications Application Signatures Support (Recall)

Skype ^(002_0x02)+(002_0_0 & 002_4_1 & 002_5_1 & 002_6_0 & 002_7_1)*$ 100.00%

Xunlei (Thunder) ^(001_0_0 & 003_0_0 & 003_1_1 & 003_2_0)*$ 100.00%

eMule
^(000_0_0 & 000_4_0 & 001_0_0 & 001_4_0 & 000_6_0 & 001_1_0 & 001_5_0) | (000_0_0 & 

000_4_0 & 001_0_0 & 001_4_0 & 000_6_1 & 001_1_1 & 001_5_1)*$
100.00%

Google Hangouts ^(000_0_1 & 000_1_0 & 001_1_1 & 001_3_0)*$ 100.00%

PPTV (PPLive)
^(007_0_0 & 007_1_0 & 007_2_0 & 007_3_0 & 008_0x00 & 009_0_0 & 009_1_0 & 009_2_0 

& 009_3_0 & 009_6_0 & 00A_0_0 & 00A_1_0 & 00A_2_0 & 00A_3_0)*$
100.00%

QQDownload
^(000_1_1 & 000_2_1 & 000_5_1 & 000_7_0 & 001_0_0 & 001_1_0 & 002_0_0 & 002_1_0 & 

002_7_0 & 003_0_0 & 004_0_0 & 005_0_0 & 007_5_0 & 009_0_0 & 00A_1_0)*$
100.00%

Table 1: The Generated Bit-level Signatures

sufficient enough. Similarly, we use four hexadecimal
characters to represent one item’s bit-order in a packet
payload because the MTU of an IP packet over Ethernet
networks is 1500-byte where 1 byte has 8 bit-orders.

BitMiner consists of two major parts: Bit-table and
Miner-tree. Figure 2 shows an example of how BitMiner
works. Bit-table is a hash table used for hashing and s-
toring all the items read from a transaction database. In
this process, Bit-table will read the transaction database
twice. For the first time, Bit-table will only count the
support of every item. For the second time, Bit-table
will remove the items whose support is below the initial-
ly set support threshold and sort the remaining items in
every transaction by their supports (maximum to min-
imum). After that, all the sorted transactions will be
entered into Miner-tree as a new transaction database.

Miner-tree is a prefix tree of the new transactions,
which takes idea from the FP-tree [3] but is differen-
t. Note that there are probably multiple tasks running
within an application and thus the signature could be
a regular expression. Considering a transaction (flow)
can only belong to one of the tasks, all the transactions
are divided into multiple clusters to represent differen-
t tasks. Since the items in each transaction have been
sorted by their supports, it is extremely fast to construct
the Miner-tree. Moreover, as a signature does not need
to be so long as the number of items in a transaction,
a level parameter is set to restrict the maximum depth
(e.g. 800) of the Miner-tree, which can save memory
consumption and make the construction much faster.

After constructing the Miner-tree, there will be a
pruning process controlled by two thresholds: minimum
support and minimum confidence. Firstly, the support
(defined as the proportion of transactions in a node
from the whole transaction database) will be checked
for every single node. After that, the confidence (de-
fined as the proportion of transactions in all the child-
nodes of a node from the node itself) will be checked
for every parent node. In this way, it can be deter-
mined whether a branch should be removed or a parent
node should stop splitting. Finally, the branches of the
pruned Miner-tree are the target signature.

3. EVALUATION
BitMiner has been tested on the UDP traffic of six

popular P2P applications (they all use UDP protocol
for transmitting a significant amount of traffic which

brings serious challenges to network management). As
shown in Table 1, every signature is generated by Bit-
Miner within a few seconds. The signatures are written
in a customized way. The “(p)” represents a pattern
(p) matching within one packet’s payload, the “∧(p)”
represents this matched packet is the first packet of a
flow, the “(p)$” represents this matched packet is the
last packet of a flow, the “(p)+” represents this matched
packet appears one or more times in succession within
a flow, the “(p)∗” represents this matched packet ap-
pears zero or more times in succession within a flow,
the “002_0x02” represents the third byte value of a
packet’s payload is 0x02, the “002_4_1” represents the
fifth bit value of the third byte is 1, the “p&p” repre-
sents two patterns matching with one packet’s payload
simultaneously and the “(p)|(p)” represents either one
matched packet appears within a flow. For instance,
the third byte values of the first one or more packets
of a Skype flow are always 0x02 while five bit values of
the third bytes of all the other packets are fixed. Spe-
cially, we also examine the other bits adjacent to the
mined ones, such as the ‘second, third and fourth’ bits
of the third bytes of Skype flows and the ‘fourth, fifth,
sixth, seventh and eighth’ bits of the fourth bytes of
Thunder2 flows. The results show that those bit-values
are completely random (i.e. uniformly distributed).

Also as shown in Table 1, the support represents the
proportion of flows matched with the mined signature,
which is equivalent to the recall in traffic classification.
In addition, a longer signature generally means a better
precision. For example, if we check the first 10 packets
of a Thunder flow, the signature used for matching is
totally 40 bits long, which may be robust enough to get
a high precision in real-world traffic classification.

4. REFERENCES
[1] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli.

Revealing skype traffic: when randomness plays with you. In
ACM SIGCOMM, 2007.

[2] A. Finamore, M. Mellia, M. Meo, and D. Rossi. Kiss: stochastic
packet inspection classifier for udp traffic. IEEE/ACM
Transactions on Networking, 2010.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD, 2000.

[4] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker.
Unexpected means of protocol inference. In ACM SIGCOMM
IMC, 2006.

[5] Z. Zhang, Z. Zhang, P. P. Lee, Y. Liu, and G. Xie. Proword: an
unsupervised approach to protocol feature word extraction. In
IEEE INFOCOM, 2014.

2The most popular P2P file sharing software in China


