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Cooperative Multi-Agent Learning and Coordination
for Cognitive Radio Networks

William Zame, Jie Xu, and Mihaela van der Schaar

Abstract—The radio spectrum is a scarce resource. Cognitive
radio stretches this resource by enabling secondary stations to
operate in portions of the spectrum that are reserved for primary
stations but not currently used by the primary stations. As it
is whenever stations share resources, coordination is a central
issue in cognitive radio networks: absent coordination, there may
be collision, congestion or interference, with concomitant loss
of performance. Cognitive radio networks require coordination
of secondary stations with primary stations (so that secondary
stations should not interfere with primary stations) and of
secondary stations with each other. Coordination in this setting
is especially challenging because of the various types of sensing
errors. This paper proposes novel protocols that enable secondary
stations to learn and teach with the goal of coordinating to
achieve a round-robin Time Division Multiple Access (TDMA)
schedule. These protocols are completely distributed (requiring
neither central control nor the exchange of any control messages),
fast (with speeds exceeding those of existing protocols), efficient
(in terms of throughput and delay) and scalable. The protocols
proposed rely on cooperative learning, exploiting the ability of
stations to learn from and condition on their own histories
while simultaneously teaching other stations about these histories.
Analytic results and simulations illustrate the power of these
protocols.

Index Terms Multi-agent learning, cognitive radio networks, cog-
nitive medium access control, perfect coordination, cooperative
learning in networks, distributed protocols

I. INTRODUCTION

Resources are scarce. This is no less true about the radio
spectrum than it is about consumer goods, but substantial
portions of the radio spectrum are wasted because they are
“owned” by or “reserved” for stations who need them for
only a fraction of the time. Cognitive radio was introduced
to address this problem, allowing secondary stations to ac-
cess portions of the spectrum that are dedicated to primary
stations but not fully utilized. Following its introduction,
a great deal of effort has been expended to improve the
efficiency of cognitive radio networks. Much of this work
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has been dedicated to developing sophisticated physical layer
technologies that allow secondary stations to detect the pres-
ence of primary stations and coexist with them in the same
spectrum bands with minimal interference. Less attention has
been paid to developing efficient MAC layer protocols that
allow secondary stations to coordinate with each other to
share a given channel in a TDMA (Time Division Multiple
Access) fashion. Without such coordination, there may be
collision, congestion or interference, with concomitant loss of
performance. Coordination problems are important even in the
absence of primary stations (e.g., in cognitive radio networks
operating in unlicensed bands such as 2.4GHz and 5GHz),
and become even more important in the presence of primary
stations, because secondary stations may frequently enter and
exit channels (frequency bands) within the network or even
the network itself. Such coordination can be obtained if the
network is centrally controlled or if the stations can exchange
control messages, but central control and the exchange of con-
trol messages are wasteful of resources and often impossible.
This means that distributed protocols are extremely desirable.

In this paper, we propose protocols for efficient sharing
of a frequency band. These protocols are completely dis-
tributed (requiring neither central control nor the exchange
of any control messages), fast (with speeds exceeding those
of existing protocols), efficient (in terms of throughput and
delay), scalable (adapting easily to both small and large
numbers of stations) and robust to errors. The protocols we
propose require only finite memory and can be formulated as
finite automata, and do not require development of any new
hardware. (See [1] for instance.)

We assume that the information stations obtain (including
information about the actions of other stations) is limited and
imperfect – we allow for observational errors – and our proto-
cols are robust to such errors. A station that attempts to access
the channel in a given period/slot will succeed and receive
an acknowledgement if it is the only station attempting to
access the channel in that period/slot – but acknowledgements
may be lost (so that a station that is successful may think it
was unsuccessful) and capture may occur (so that a station
that is successful may think it was alone when it was not). A
station that does not attempt to access the channel in a given
period/slot will observe only whether the channel was idle (no
other station attempted to access the channel) or busy (some
other station attempted to access the channel) – but a station
may observe a slot to be busy when it is idle or idle when
it is busy (and in any case the station will not observe the
number of other stations that attempted to access the channel
in that slot). These informational assumptions seem to us to be
the most realistic in the context of cognitive radio, but other
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assumptions have also been made in the literature ([2], [13],
[14]) and might be sensible in other contexts. For instance, [2],
[13] assume that all stations (those who attempt to access the
resource and those who do not) can observe and differentiate
between no attempt to access (an idle channel), successful
access (a busy channel), and an unsuccessful attempt to access
(a noisy channel) – and that observations are perfect: there are
no errors.

Both single-agent and multi-agent learning play a role in the
existing literature on cognitive radio networks. In [3], the focus
is on single-agent learning (the techniques come from Markov
decision processes and from multi-armed bandits); in [17], [18]
and [19], the focus is on multi-agent learning. In all of this
work, the central problem addressed is to determine which
of several channels (which frequency band) to access. In the
former literature, stations learn characteristics of the system;
in the latter literature, stations learn both characteristics of
the system and (equilibrium) behavior of other stations. In
the former literature, the end product of the learning process
is simply a choice of channel; in the latter literature the end
product of the learning process is an imperfectly coordinated
profile of choices of channels – often a Nash or correlated
equilibrium in which there are still collisions and empty slots.
In the current paper, the focus is on multi-agent learning, but
the central problem is on learning when – in which order
– to access a given channel, and the end product of the
learning process is perfect coordination with no collisions and
no empty slots. In the literature, learning is distributed but
individualistic; in the present paper, learning is distributed but
cooperative: stations learn from their own actions but also use
their actions to teach as well.

Some of the ideas exploited in this paper – randomization,
collisions as a coordination device, and binary sort – are
no doubt familiar from the literature. (E.g. the literature on
slotted Aloha protocols and on exponential backoff protocols
[4][5][6].) Others – silence as a message, cooperative learning,
conditioning current actions on past history – are less familiar.
The most novel single idea in this paper is perhaps the sys-
tematic reliance on both actions (attempts to access/transmit)
and inactions (silences) as implicit messages which stations
use to teach other stations about themselves.

There is an extensive literature on MAC protocols for
cognitive radio networks (for surveys see [11][12]), which can
be divided into two distinct strands of research, addressing
two distinct problems. The first strand of research focuses
on how secondary stations can opportunistically identify the
vacant portions of the spectrum and transmit in them while
ensuring that the primary stations are minimally affected;
representative work on this strand includes [7][8]. The second
strand of research, to which this paper belongs. aims at devel-
oping protocols that enable secondary stations to coordinate
with each other when accessing the spectrum opportunities
that have been identified. A key challenge in this regard
is how stations can/should optimally adapt their transmis-
sion strategies (including hopping among various frequency
bands). Examples of work on this strand include [9] (which
designs efficient auction mechanisms) and [10] (in which
secondary stations compete with each other for the limited

and time-varying spectrum opportunities provided by a central
spectrum moderator). However, all of this work relies on a
centralized coordinator to allocate the spectrum opportunities
among the secondary stations. These methods are costly and
require much information exchange. Closer to our work is
[13], which proposed a class of distributed MAC protocols
with memory intended to achieve efficient spectrum sharing
among secondary stations while protecting the primary station
from potential interference by the secondary stations. As do
we, [13] allows for the possibility that secondary stations
cannot physically distinguish primary stations from secondary
stations and that coordination messages cannot be exchanged
between a station and a central controller or between stations,
suggesting instead a role for observed patterns in history as a
substitute for message exchange. However, that work considers
only a simple protocol based on stations past transmission
histories, and this protocol does not guarantee that perfect
coordination among secondary stations emerges either quickly
or with high probability, and so fails to utilize the available
spectrum capacity efficiently. By contrast, our protocols are
fully distributed, require neither information exchange nor
a dedicated control channel, attain perfect coordination very
quickly and with very high probability – and thus utilize all
(or almost all) of the available spectrum capacity.

The methods developed in this paper enable learning, teach-
ing and coordination among anonymous users by signaling
through actions – with no direct messaging. The current paper
applies those methods to a specific problem in a specific
setting, but these methods and appropriate extensions should
be applicable to many other problems in many other settings;
we discuss some of these in Section VII below. In particular,
these methods may be useful when users are not fully anony-
mous, because they provide ways to exchange information by
signaling with no direct messaging.

Following this Introduction, Section II formalizes the en-
vironment, the informational structure and the nature of our
protocols. Sections III and IV present and analyze our pro-
posed initialization protocols; Section V presents and analyzes
our proposed re-coordination protocols. Section VI presents
simulations and comparisons with existing protocols. Section
VII concludes. Proofs and flowcharts are in the Appendix.

II. FRAMEWORK

We consider the interaction among a finite set of stations
Z over a (potentially) infinite time horizon. The true number
of stations N is unknown, but bounded by N∗ < ∞. Time
is divided into slots, indexed by t = 0, 1, . . .. In each slot,
each station either transmits or remains silent; we use 1, 0
(respectively) for these actions; A = {1, 0} is the set of
possible actions. If the actual number of stations is N < N∗,
we treat the “missing” N∗−N stations as if they were silent at
all times, so AN∗

is the set of possible action profiles. Given
an action profile, the channel state is the number of stations
that transmit; the set of channel states is {0, 1, . . . , N∗}.
A. Information

Stations do not directly observe the action profile or even
the channel state but rather observe only a signal of the
channel state; the signal observed depends (stochastically) on
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the action of the station and on the true channel state. We
assume here that a station that transmitted in a given slot
observes (perhaps with error) only whether its transmission
succeeded or failed and that a station that did not transmit
in a given slot observes (perhaps with error) only whether
the channel was busy or idle.1 Hence the space of signals
is Σ = {SUCCESS,FAILURE,BUSY, IDLE}. We write
π(σ|n, a) for the probability that a station observes the signal
σ given that the true channel state is n and that the station took
action a.2 In view of our assumptions about what is observable,
we have (for all channel states n)

π(IDLE|n, 1) = π(BUSY|n, 1) = 0
π(SUCCESS|n, 0) = π(FAILURE|n, 0) = 0

We will discuss the kinds and probabilities of errors in
Subsection II-D below.

B. Protocols
Stations condition current behavior on past observations. To

formalize this, we need some definitions. A personal history
of length T ≥ 0 is an element of Hp(T ) = AT × ΣT ,
specifying the actions taken and observations made at times
t = 0, . . . , T for a single station. (The empty history is the
unique history of length 0.) A personal history is an element
of Hp =

∪∞
T=0 Hp(T ). A channel event is an element of

E = (A × Σ)Z : a profile of actions and observations by all
stations. A channel history of length T ≥ 0 is an element
of Hc(T ) = ET , specifying the profile of actions taken and
observations made by all stations at times t = 0, . . . , T . A
channel history is an element of Hc =

∪∞
T=0 Hc(T ). A

channel history h is a sequence of profiles of actions and
observations; for each station z let Oz(h) be the sequence
of observations of station z.

Write ∆({1, 0}) for the set of probability distributions on
{1, 0}. We identify a probability distribution on {1, 0} with the
probability weight it puts on 1, and hence identify ∆({1, 0})
with [0, 1]. Note that we identify 0 with remaining silent (for
certain) and 1 with transmitting (for certain). A protocol is
a function F : Hp → ∆({1, 0}) = [0, 1] specifying, at each
time, a (random) plan of action at that time, conditional on
what the station observed at previous times: the date, the action
of the station and the information obtained by the station. Keep
in mind that the instruction is a plan of action (a probability
p ∈ [0, 1]); the action taken will be either transmit 1 or remain
silent 0, depending on the realization of the randomization.
Keep in mind as well that a protocol is a set of instructions
for an individual station. Because stations are ex ante identical,
we insist that the same protocol be specified for each station,
but stations randomize independently, so ex post, different
stations may experience different realizations, choose different
actions and experience different histories. Note that a protocol
F induces in the obvious way a unique probability distribution
ΠT

F on Hc(T ) for each T .
C. Convergence

The goal of our protocol is to coordinate the stations to
produce TDMA/round-robin transmission; we make precise

1Equivalently: each station observes whether some other station transmitted
but not the number of other stations that transmitted.

2We assume that signals are independent across periods; other assumptions
are possible and could be accommodated.

what it means for this to occur and the probability that it does
occur.3 Fix a protocol F . Consider a time T and a channel
history h ∈ Hc(T ). We say the protocol F has converged
(to TDMA/round-robin transmission) after h if there is a one-
to-one and onto mapping i : Z → {1, . . . , N} such that if
h′ is a history of length T + i(z) + kN that follows h (i.e.,
h′(t) = h(t) for t ≤ T ) and that might occur when stations
follow the protocol F (i.e., Π

T+i(z)+kN
F (h′) > 0) it is the

case that F (Oz(h
′)) = 1. That is, following the history h,

each station transmits, in turn, once every N slots. Hence

ΠT
F

(
{h ∈ Hc(T ) : F has converged after h }

)
is the probability that convergence has occurred within T slots
if stations follow the protocol F .

D. Errors
Various errors are conceivable in our environment; the

following seem the most relevant:
• Lost Ack Some station transmits successfully but the

acknowledgement is lost.
• Misdetection/False Alarm Some station perceives the

channel as IDLE when it is actually BUSY or vice-versa.
• Capture At least two stations transmit but one signal is

captured and acknowledged.
In the protocols we propose, Lost Acks are seen as collisions
so simply cause the protocol to go through one more cycle
of the Coordination phase; this slows but does not otherwise
affect convergence. Misdetection/False Alarm and Capture are
potentially more serious but analysis of our Basic Protocol
(Section III) shows that it is robust to small probabilities
of Misdetection/False Alarm or Capture and analysis of our
Capture Protocol (Section IV) shows that it is robust to
arbitrary probability of Capture, but convergence is slower.

III. THE BASIC PROTOCOL

The proposed Basic Protocol is built around a binary
sort. Of course, binary sorts and tree-splitting procedures
have often been used in MAC protocols, but the cognitive
radio environment limits the information available to stations,
and this presents substantial difficulties. To see where these
difficulties occur and what our protocol must accomplish to
deal with them, suppose for the moment that the true number
of stations N is known and that stations can observe the
true channel state without error. In that setting the following
protocol executes a binary sort. In the first step, all stations
randomize equally between transmitting and remaining silent
(choose p = .5). If all stations receive the same realization
then all stations randomize again; otherwise, the realization
partitions the set Z of stations into two disjoint non-empty
subsets Z0 (stations that remained silent) and Z1 (stations
that transmitted). (Because stations observe the true channel
state, they all know which of these has occurred.) In the
second step, stations in Z0 remain silent (are inactive) and
stations in Z1 again randomize equally between remaining
silent and transmitting, thereby partitioning Z1 into Z10, Z11.
Continuing in this way, we eventually reach a point where

3TDMA/round-robin transmission is optimal if only a single transmission
can be successful in a single slot, which is the setting we study here.
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Z11...11 is a singleton; assign this unique station the index
i = 1. Now stations in Z11...10 (those that most recently
randomized and remained silent) randomize equally between
transmitting and remaining silent and proceed as before until
reaching a singleton; assign this unique station the index i = 2.
Continuing in this way leads eventually to a complete partition
of Z into N singleton sets. Not counting steps in which all
active stations receive the same realization (all transmit or all
remain silent), this process requires exactly N − 1 steps.

However, even if there were no errors, in our environment
this procedure would break down as soon as the first singleton
set is reached. At that point, other stations would observe that
the channel was busy but would not observe how many stations
were transmitting; as a result, stations in Z11...10 would not
know to resume activity and stations not in Z11...10 would not
know to not resume activity. To overcome this difficulty, our
protocol must provide information so that currently inactive
stations can resume activity or remain inactive, as appropriate.
Because we allow for the possibility that the true number
of stations N is not known, our protocol must also provide
information so that stations can determine that the sorting
process has terminated. Because we allow for the possibility of
errors, our protocol must provide information so that stations
can detect and correct these errors. Finally, our protocol
must provide this information in a completely distributed
and anonymous way. Our protocol accomplishes all this by
exploiting the ability of stations both to learn and to teach.
A. Individual Description of the Basic Protocol

The Basic Protocol is divided into phases: Initializa-
tion, Coordination, Synchronization, NS-Transmission, S-
Transmission; some of these are in turn divided into modules
and submodules. The protocol directs each station z to begin
in the Initialization Phase and to set a collection of counters.
After that, the protocol directs z to move to the Coordination
Phase where it remains, cycling, until z believes perfect
coordination is achieved or a prescribed number of slots
has elapsed – whichever comes first. If z believes perfect
coordination is achieved z moves to the NS-Transmission
Phase; if the prescribed number of slots has elapsed, z moves
to the Synchronization Phase. In the NS-Transmission Phase,
the protocol directs station z to transmit in turn (in round-robin
fashion) until a prescribed number of slots has elapsed and
then to move to the Synchronization Phase. In the Synchro-
nization Phase, z carries out a sync test. If z fails the test, it
returns to the Initialization Phase and begins the entire protocol
from the beginning; if z passes the test, it moves to the S-
Transmission Phase. In the S-Transmission Phase, z transmits
in turn (in round-robin fashion) for a certain number of cycles,
then performs a different sync test. If z fails this latter sync
test it returns to the Initialization Phase; if z passes this the
test it remains in the S-Transmission Phase indefinitely. Note
that the protocol enters the NS-Transmission Phase before
passing through the Synchronization Phase and enters the S-
Transmission Phase after passing through the Synchronization
Phase – hence the terminology. From a system perspective the
goals of the various Phases are: Initialization – set counters
to keep track of the positions of stations and of the system;
Coordination – count the number of stations, construct a

complete ordering of the stations and inform each station of the
number of stations and its place in this ordering; Synchroniza-
tion – detect (some) errors in coordination; NS-Transmission
– arrange transmissions in TDMA/round-robin fashion until
the prescribed number of slots has elapsed; S-Transmission
– detect (other) errors in coordination, arrange transmissions
in TDMA/round-robin fashion, and transmit indefinitely. The
Basic Protocol is presented in formal flow charts in the
Appendix (Figure 6); we give below a description in words in
terms of the instructions the protocol provides to an individual
station z. The protocol makes use of a set of (positive integer)
parameters that should be set by the designer/manager: D∗ (the
number of slots that elapse before the Synchronization Phase),
r1 (the number of repetitions required in the Synchronization
Phase), r2 (the number of repetitions (cycles) required in
the S-Transmission Phase before applying the sync test, m1

(the threshold at which conflicts in the Synchronization Phase
trigger return to the Initialization Phase) and m2 (the threshold
at which conflicts in the S-Transmission Phase trigger return
to the Initialization Phase). For a reason that will become clear
later, we insist that D∗ > 5N . Let ℓ = ⌊1 + log2 N

∗⌋ be the
smallest integer such that 2ℓ > N∗. The protocol begins in
the Initialization Phase.

A few words about the sync tests may be helpful. We use
the sync tests so that stations can determine whether there is
agreement or conflict about the status of the system. Three
kinds of disagreements/conflicts are possible. Most obviously,
stations might disagree about whether coordination has been
achieved (there are no stations remaining to be coordinated).
Even if stations agree that coordination has been achieved,
they might disagree about the number of stations (which is
unknown at the beginning) and hence about the length of a
round-robin cycle of the S-Transmission Phase. And even if
they agree that coordination has been achieved and about the
number of stations, their beliefs about their own positions in
the ordering of stations might be in conflict. (For instance,
two stations might each believe they are the first.) The first
sync test (the Synchronization Phase) handles the first two
kinds of disagreements/conflicts simultaneously; the second
sync test (incorporated into the S-Transmission Phase) handles
the third kind.4 Our construction and arrangement of the two
sync tests reflects the fact that, as the reader can easily see, a
sequence of errors that leads to a disagreement of the first kind
is much more likely than a sequence of errors that leads to a
disagreement of the second kind, which is in turn much more
likely than a sequence of errors that leads to a disagreement
of the third kind. Incorporating the second sync test into the
S-Transmission Phase is more efficient than conducting it as
a separate phase because it does not waste slots when there is
no disagreement of the third kind.
Initialization Phase Each station z maintains 5 global
counters, 2 local counters and 1 indicator: C(z) counts slots
in the transmission phases; D(z) counts the total number of
slots; H(z) counts the number of subsets into which the set
of stations Z has been partitioned; W (z) counts the number

4But note that, just as there might be errors during the Coordination Phase,
there might also be errors during either or both sync tests. This is simply
unavoidable.
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of singleton sets in the current partition; Y (z) counts duration
in the S-Transmission phase; h(z) labels the activity priority
of station z (z is active when h(z) = 0 and further from
becoming active when h(z) is larger); w(z) indicates whether
station z belongs to a singleton set in the current partition
(we say z is completely partitioned), and if so, in which order
that happened (this will be the position in which station z
transmits in the transmission phases); y(z) counts the number
of “errors” z has observed in the S-Transmission Phase; f(z)
indicates whether station z had been completely partitioned in
a previous slot (f(z) enables station z to teach other stations
to adjust their priority counters). Initially: H(z) = 1 and
C(z) = D(z) = W (z) = h(z) = w(z) = f(z) = 0. Note
that H(z) = W (z) exactly when station z believes the set of
stations Z is completely partitioned into singletons but that
W (z) < H(z) before that point. If no errors have occurred
all stations will have the same beliefs; if errors have occurred,
stations may have differing beliefs; the Synchronization Phase
detects possible differences in beliefs. After the Initialization
is complete, the station moves to the Coordination Phase.
Coordination Phase The Coordination Phase is divided into
modules and submodules. Within each module or submodule,
each action requires 1 slot; after that action, the station
always enters the Counting submodule, steps the counter D(z)
and then tests it: if D(z) = D∗ the station moves to the
Synchronization Phase; otherwise it continues in the current
module/submodule. This phase begins in the Start module.
• Start module The Start module determines whether the
station z believes the system has become perfectly coordinated
– if so, station z moves to the NS-Transmission Phase – and
if not, whether z should be active or inactive, and if active,
what action z should take.
– If H(z) = W (z) then z believes all stations are perfectly
coordinated and moves to the Transmission Phase; if H(z) ̸=
W (z), station z advances in the Start module.
– If w(z) > 0 then z is completely partitioned and waits
for the Coordination Phase to be complete; if h(z) > 0 then
z waits for its activity priority to reach 0; in either case, z
moves to the Waiting module. If w(z) = h(z) = 0 then z
advances in the Start module.
– If f(z) = 1 then z has had a successful transmission in
some previous cycle of the Coordination Phase, and moves
to the Winning module; if f(z) = 0 then z moves to the
Randomizing module.
• Waiting module Throughout this Module, station z is
silent but senses the channel to learn the behavior of other
stations, adjust counters appropriately and return to the Start
module at the appropriate time.
– z is silent in the first slot and observes the channel state.
If its observation is IDLE then (z believes that) all stations
have been silent (either because they were inactive or because
they were active and randomized but the realization of their
randomization was to remain silent), and z returns to the Start
Module to begin a new cycle. If the observation is BUSY then
z is silent in the second slot and again observes the channel
state. If this observation is BUSY then some stations have
transmitted in the first slot and other stations have transmitted
in the second slot, so the set of active stations has been

partitioned; z steps its counters H(z), h(z) and returns to the
Start module to begin the next cycle. If this observation is
IDLE, then z is silent in the third slot and again observes
the channel state. If this observation is IDLE, then all stations
that were active transmitted in the first slot and no station was
successful; z simply returns to the Start module to begin the
next cycle. If this observation is BUSY, then some station was
successful in the first slot, so z steps W (z) by 1, reduces h(z)
by 1 and returns to the Start module to begin the next cycle.
• Winning module In this module, f(z) = 1 which means
station z transmitted successfully in some previous cycle and
hence is completely partitioned; now z teaches other stations
that z is completely partitioned, so that these other stations
can adjust their counters appropriately. z accomplishes this
by transmitting in the first slot, remaining silent in the second
slot, transmitting in the third slot; after these actions, z adjusts
its own counters appropriately and returns to the Start module
to begin the next cycle.
• Randomization module This module and its submodules
partition the set of active stations and maintain system-wide
correct information about the partitioning. Station z begins
by randomizing: transmit with probability .5, silent with
probability .5. According to the realization, it moves to the
Random-Silent or Random-Transmit submodule.
– Random-Silent submodule In this submodule, z has
randomized and been silent in the first slot of this cycle; it
then observes the channel state. If this observation is IDLE
then (z believes that) all stations have been Silent (inactive
stations are Silent as always; active stations randomized but
received realizations of Silent) and z returns to the Start
module to begin the next Step. If this observation is BUSY,
then z transmits in the second slot and checks the result of
the transmission. If the result is SUCCESS then z changes its
indicator to f(z) = 1 (it is completely partitioned); whether it
was successful or not, it adjusts H(z), h(z) appropriately and
returns to the Start module to begin the next cycle.
– Random-Transmit submodule In this submodule, station
z has randomized and transmitted in the first slot of this cycle;
it now checks the result of that transmission. If the result
is SUCCESS, station z changes its indicator to f(z) = 1
(it is completely partitioned); whether successful or not, z
is silent in the second slot and checks its observation of the
channel state. If that observation is BUSY then a partitioning
has occurred, the station steps H(z) and returns to the Start
module to begin the next cycle; if it was IDLE, no partitioning
has occurred and z is silent in the third slot and returns to the
Start module to begin the next cycle.
NS-Transmission Phase Station z remains silent until w(z)−
1 slots have elapsed, then transmits. After that, z remains
silent for W (z)−1 slots have elapsed and transmits again, and
continues in this way until D∗ slots (in total) have elapsed,
then moves to the Synchronization Phase.
Synchronization Phase Station z takes actions that “send”
– in binary – a sequence of numbers that reflect station z’s
opinion of the state of the system and observes whether what
other stations send is in conflict.
• If H(z) ̸= W (z) station z believes the system is not
coordinated. In this case, z is silent for (r1 + 1)ℓ slots then
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transmits for (r1+1)ℓ slots; when these 2(r1+1)ℓ slots have
elapsed, station z moves to the Initialization Phase and begins
the protocol again.
• If H(z) = W (z) station z (tentatively) believes the system
is coordinated and has W (z) total stations. In this case, station
z “sends” W (z) and repeats r1 times, then “sends” 2ℓ − 1−
W (z) and repeats r1 times; in each case station z “sends” all
the leading zeroes so that each transmission is exactly ℓ slots
long, representing ℓ binary digits. In all, this requires 2(r1+1)ℓ
slots, the same number as in the previous case. In each slot, z
sent one binary digit, first of W (z) (r1+1 times) and then of
2ℓ−1−W (z) (r1+1 times). For each k ≤ ℓ, there are exactly
2(r1 + 1) slots in which z sent the k-th digit. z observes the
slots in which it sent 0 (was silent) – there are exactly r1 +1
such slots. Among those r1 + 1 slots, z counts the number
of slots in which it observed BUSY. If every other station z′

agrees that H(z′) = W (z′) = W (z), then every other station
will be transmitting exactly when z is transmitting and will be
silent exactly when z is silent, and hence for every k, z should
never observe BUSY in any of these r1+1 slots. If some other
station z′ does not agree that H(z′) = W (z′) = W (z) then
for some k, z should observe BUSY in all of these r1 + 1
slots. If, for some k, z observes BUSY more than m1 times
(for the given threshold m1) then z fails the sync test and
returns to the Initialization Module; otherwise, z passes the
sync test and moves to the S-Transmission Phase. (We use a
threshold m1 > 1 so that observational errors are less likely
to cause the sync test to give the wrong answer.)
S-Transmission Phase Station z remains silent until w(z)−1
slots have elapsed, then transmits. After that, station z remains
silent for W (z) − 1 slots have elapsed and transmits again.
Station z continues in this way for r2 cycles. At that point
it counts the maximum number of times that it has observed
IDLE in the same slot. (If coordination is perfect, one station
should be transmitting in each slot so z should observe no
IDLE slots, but z might observe IDLE when it should observe
BUSY.) If this number y(Z) exceeds the threshold m2 then z
returns to the Initialization Phase; otherwise it remains in the
S-Transmission Phase indefinitely. (We use a threshold m2 for
the same reason as above.)
B. System Description of the Basic Protocol

The previous Subsection describes the operation of the
protocol from the point of view of an individual station; it
may also be helpful to describe the operation of the protocol
from the point of view of an outside observer. We begin by
describing the Coordination Phase; for simplicity, we ignore
errors in observing the channel state (but we discuss the
impact of errors below). We first introduce some notation
and terminology. Write ZT , ZS , ZR for the sets of stations
that are currently active and whose instruction is to transmit,
remain silent, randomize (respectively) in the first slot of the
current cycle, and ZRT , ZRS for the subsets of ZR that are
randomizing in this slot and whose realizations are transmit
and remain silent respectively. Each station knows to which of
these sets it belongs, but perhaps little or nothing else, even
whether other sets are empty or not; much of our protocol is
designed precisely to make these facts widely known. Table
I distinguishes and gives names and codes to all possible

TABLE I
CODES, NAMES AND CARDINALITIES OF THE STATION SETS

Cardinalities of the Sets Code Name
|ZT | = |ZRT | = 0 EMPTY 0

|ZRT | ≥ 1, |ZRS | ≥ 1 HIT 11
|ZRT | ≥ 2, |ZRS | = 0 NOISE 100

|ZT | = 1, |ZRT | = |ZRS | = 0 WIN 101

combinations of cardinalities of the sets ZT , ZRT , ZRS that
might occur when stations follow the protocol.5

The names and codes we have adopted are intended to
be suggestive. A binary sort successively partitions stations
into two groups until the remaining sets are all singletons.
In our protocol, the partitioning is carried out endogenously
by having stations randomize. HIT means that the current
set of stations is partitioned in the current cycle (because
some stations who were randomizing transmitted and others
remained silent); EMPTY and NOISE mean that the current
set of stations is not partitioned in the current cycle (because
all stations who were randomizing experienced the same
realization – silent in the first case, transmit in the second
case). Finally, WIN means that a singleton has already been
reached. (As we will see, this can only occur when the single
station is not randomizing.) From the point of view of sorting,
HIT represents a success, WIN represents the confirmation
of a previous success (necessary in order to inform other
stations), EMPTY and NOISE represent failures. (To estimate
the probability of reaching the transmission phases we will
eventually need to count successes and failures.) The codes
we have adopted are also intended to be descriptive. If the
first slot is EMPTY, the first slot will be idle, all stations will
observe this and move to the next cycle. If the first slot is HIT,
the first and second slots will be busy, all stations will observe
that and move to the next cycle. If the first slot is NOISE, all
stations will observe that transmission occurs in the first slot
but that no transmissions occur in the second and third slots,
and move to the next cycle. If the first slot is WIN, all stations
will observe that transmission occurs in the first and third slot
and that no transmission occurs in the second slot, and will
then move to the next cycle.

We emphasize that the description above is from the point
of view of an outside observer. After the first slot, a station
can observe whether or not the channel is IDLE but nothing
more. However, if in the first slot, the station observes that
the channel is IDLE the protocol instructs it to move to the
next cycle and if it observes that the channel is not IDLE
the protocol instructs it to wait and learn what occurs in the
second slot of the current cycle. If, in the second slot, the
station observes that the channel is not IDLE the protocol
instructs it to move to the next cycle and if it observes the
channel is IDLE the protocol instructs it to wait and learn
what occurs in the third slot in the current cycle.

By construction, the protocol instructs the stations to cycle
repeatedly through the Coordination Phase until H(z) =
W (z) and then to move to the NS-Transmission Phase. If
no errors occur, all stations agree on the values of H,W
so all stations move to the NS-Transmission Phase at the
same time. But if errors do occur, different stations may make

5Other combinations might occur if stations do not follow the protocol but
are irrelevant.
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Fig. 1. Schematic: Operation of the Coordination Phase with Stations
{a, b, c, d, e}

contradictory observations about the channel state, and hence
may not agree on the values of H,W so may not move to
the NS-Transmission Phase at the same point – or at all.
However, after D∗ slots have elapsed all stations move to the
Synchronization Phase, during which they check their beliefs
about H,W . If they agree that H = W and on the common
value, they move to the S-Transmission phase; if not they
return to the Initialization Phase and begin the protocol anew.

We incorporate two different transmission phases because
it is more efficient. If stations moved directly to the S-
Transmission Phase whenever they believed H(z) = W (z)
and remained there indefinitely, without a sync test, there
would be some non-vanishing probability that the protocol
would never converge; if stations did not move to the NS-
Transmission Phase as soon as they believed H(z) = W (z)
they would be “wasting” many opportunities for perfectly
coordinated transmission.

Figure 1 shows in schematic form an example of the
Coordination Phase with 5 stations {a, b, c, d, e}. Each node
represents a cycle. Node 1 is a HIT cycle: in slot 1 all
stations randomize; {a, c, d} transmit, {b, e} are silent; in
slot 2 {a, c, d} are silent, {b, e} transmit. Node 2 is another
HIT cycle (comprising slots 3,4). Node 3 is a NOISE cycle
(comprising slots 5,6,7), etc.

C. Convergence Probability and Speed
Our object here is to provide an analytic estimate for

the probability that the proposed protocol converges to
TDMA/Round-Robin Transmission in a given number of slots.
We first estimate the probabilities that the protocol goes awry
in either of the two sync tests. In the Synchronization Phase,
this could happen in one of two ways: either (i) the system
is coordinated (i.e., H(z) = W (z) for all stations z and
W (z) = W (z′) for all stations z, z′) but at least one station
believes the system is not coordinated (i.e., fails the synchro-
nization check); or (ii) the system is not coordinated (i.e.,
either H(z) ̸= W (z) for some stations z or W (z) ̸= W (z′)
for some stations z, z′) but at least one station believes the
system is coordinated (i.e., passes the synchronization check).
In the S-Transmission Phase, this could again happen in one of
two ways: either (iii) the ordering of stations is consistent (for
all stations z ̸= z′ it is the case that w(z) ̸= w(z′)) but some
station believes it to be inconsistent, or (iv) the ordering of
stations is inconsistent (for some stations z ̸= z′ it is the case
that w(z) = w(z′)) but all stations believe it to be consistent.
If bounds on the probabilities of mis-detection/false alarm are
known, we can estimate the probabilities of each of (i), (ii),
(iii), (iv) and show that is possible to choose the parameters
r1,m1; r2,m2 so that each has probability less than any pre-

specified positive quantity. The formulation of these estimates
is in terms of the binomial distribution: given k,K, γ write
B(k,K; γ) for the probability of obtaining at least k successes
in K independent Bernoulli trials when the probability of
success in each trial is γ; the proofs of the following Lemmas
and the Theorem are in the Appendix.
Lemma 1 Fix r1,m1. Assume π(BUSY|0, 0) < ε (i.e., the
probability of false alarm is less than ε). If the system is
coordinated then the probability that at least one station fails
the sync test (i.e., believes the system is not coordinated) is
at most NℓB(m1, (r1 + 1); ε).
Lemma 2 Fix r1,m1. Assume π(IDLE|n, 0) < ε for each
n > 0 (i.e., the probability of mis-detection is less then ε). If
the system is not coordinated then the probability that at least
one station passes the sync test (i.e., believes the system is
coordinated) is at most N [1−B(m1, (r1 + 1); 1− ε)].
Lemma 3 Fix r2,m2. Assume π(BUSY|0, 0) < ε (i.e., the
probability of false alarm is less than ε). If the ordering is
consistent then the probability that at least one station believes
the ordering is not consistent is at most NB(m2, r2; ε).
Lemma 4 Fix r2,m2. Assume π(IDLE|n, 0) < ε for each
n > 0 (i.e., the probability of mis-detection is less then ε).
If the ordering is not consistent then the probability that at
least one station believes the ordering is consistent is at most
N [1−B(m2, r2; 1− ε)].

To minimize the possibility that the sync tests produce the
wrong result for some station we should choose r1,m1; r2,m2

to make the upper bounds in Lemmas 1-4 small. Since the
upper bound N∗ for the number of stations and ℓ = ⌊1 +
log2 N

∗⌋ are fixed, we can make all of them small at the
same time by choosing r1, r2 large and mi = ⌊1 + ri/2⌋ but
this is not the most efficient choice. Hence we set:
δ = 1− max

m1,m2

{
N∗⌊1 + log2 N

∗⌋B(m1, ℓ(r1 + 1); ε) ,

N∗[1−B(m1, (r1 + 1); 1− ε)],

N∗B(m2, r2; ε),

N∗[1−B(m2, r2; 1− ε)]
}

Note that δ depends on N∗, ε (which are characteristics of
the environment) and on r1, r2 (which are parameters chosen
by the designer/manager. In view of Lemmas 1-4, δ is a lower
bound for the probability that the sync tests produces the right
results when we use the optimal thresholds m1,m2. Assuming
ε < .5, it is easy to check that limr→∞ δ = 1 for each fixed
N∗, ε: repetition guarantees that the probability the sync test
gives the right result is as close to 1 as we like.

We now turn to our analytic estimate for the speed and
probability of convergence (Theorem 1). The statement is a
bit complicated so some prior explanation may be useful.
First, note that by definition and construction of the protocol,
convergence means that the protocol has gone through the
Synchronization Phase, that all stations have passed the sync
test (i.e., all stations agree that H(z) = W (z) and agree on
the common value of these counters), and that all stations are
correct. However, the protocol does not enter the Synchroniza-
tion phase until D∗ slots have elapsed and the Synchronization
phase itself requires 2ℓ(r1 + 1) slots, so convergence cannot
occur before D∗+2ℓ(r1+1) slots have elapsed. If the protocol
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has gone through the Synchronization phase and all stations
have failed the sync test then the protocol returns to the
Initialization Phase and begins again, so the protocol cannot
possibly converge until at least another D∗ + 2ℓ(r1 + 1)
slots have elapsed, and so forth. Moreover, if the protocol
has passed the Synchronization Phase but failed the sync test
in the the S-Transmission phase this requires another r2N
slots. Second, note that any errors in the Coordination Phase
might lead to failure of the system to be synchronized; the
easiest way to take this into account is simply to give a
lower bound on the the probability that no errors occur during
the Coordination Phase (in a particular round). However, we
also have to worry about errors of synchronization, and in
some sense those errors are more problematic since if stations
disagree about the results of the sync tests they will never
recover. However, as we have already noted, no matter what
ε is, the probability that this occurs can be made arbitrarily
small by appropriate choice of the parameters D∗, r1, r2 (but
it cannot be made equal to 0).

We will find a lower bound α for the probability that after
D∗ slots of the Coordination Phase, all stations agree that
H(z) = W (z) and agree on the common value (call this
coordination) conditional on no errors having occurred and
a lower bound β for the probability that no errors occur
during the Coordination Phase in that round; we have already
found a lower bound δ for the probability that the stations all
receive the correct result from the sync test. It follows that the
probability of convergence in one round is at least αβδ, and
it can be shown that the probability of convergence in one or
two rounds is at least αβδ + (1 − αβ)αβδ2, and so on; this
is our analytic estimate.
Theorem 1 Fix N∗ (the maximum possible number of stations)
and the parameters D∗, r. If

π(BUSY|0, 0) < ε , π(FAILURE|1, 1) < ε
π(IDLE|m, 0) < ε , π(SUCCESS|n, 1) < ε

for each m > 0, n > 1 (i.e., all the error probabilities are less
than ε) then, for the Basic Protocol:

1) the probability of coordination in one round (D∗ slots) of
the Coordination phase, conditional on no errors occurring, is
at least α = 1− 2 exp

(
− 2(D∗−7N)2

3(D∗−4N)

)
;

2) the probability of no errors occurring during one round of
the Coordination Phase is at least β = 1−D∗Nε;
3) the probability of convergence in one round of the Basic
Protocol (D∗ + 2ℓ(r1 + 1) slots) is at least αβδ;
4) for R ≥ 2 the probability of convergence in at most R
rounds of the Basic Protocol (R[D∗+2ℓ(r1+1)]+(R−1)r2N ]
slots) is at least αβδ+(1−αβ)αβδ2+. . .+(1−αβ)R−1αβδR.

As Table II shows, Theorem 1 gives very fast rates of
convergence – but the actual rates of convergence (from
simulations) are even better. One reason is that Theorem 1
treats all errors as equal and catastrophic – but not all errors
are equal (loss of acknowledgement creates only minor delay
in convergence, not collapse of the protocol) and not all errors
are catastrophic (some errors may be rectified by later errors).
Moreover, the proof of Theorem 1 treats the probability that
any given cycle of the Coordination Phase ends in HIT as .5

TABLE II
ESTIMATES AND SIMULATIONS OF CONVERGENCE SPEED (ε = 10−5)

– but if the number of active users exceeds 2 this probability
is at least .75.

IV. THE CAPTURE PROTOCOL

The Basic Protocol makes no special provision for capture
(at least 2 stations transmit but one transmission is “captured”
and acknowledged), as distinct from other types of errors.
However, in some environments, capture has much higher
probability than the other types of errors we have discussed.
In such environments, the Basic Protocol might require many
rounds to converge. It seems desirable therefore to propose
a modification on the Basic Protocol that handles capture
smoothly. The idea of the modification is simple: whenever
a cycle of the Coordination Phase does not terminate after
the first slot (i.e., when the first slot is not EMPTY), the sta-
tions will convey additional information to confirm/disconfirm
whether a successful transmission resulted from a single
station transmitting in a particular slot or a capture. This
will require 4 slots – instead of 2 or 3. We can most easily
describe the modification by classifying behavior according to
the number of currently active stations.
• There is exactly 1 active station. The station that is active
knows it is alone in its subset of the partition. This station
takes the actions 1,0,1,1 (Transmit, Silent, Transmit, Transmit).
All stations observe 1011, interpret this as WIN and adjust
counters accordingly.
• There are at least 2 active stations. All active stations
randomize in the first slot. The remainder of the step depends
on what happens in the first slot
– All stations are silent in the first slot. The outcome of this
step will be 0; all stations observe this, adjust the counter D
(only) and then move directly to the Start module.
– All stations transmit in the first slot. All stations are silent
in the second and fourth slots. Any station that observed
SUCCESS in the first slot is silent in the third slot; every
other active station observed COLLISION in the first slot and
transmits in the third slot. (Because there are at least two active
stations, the observation of SUCCESS must necessarily be the
result of a capture.) The outcome of this step must be 1010;
all stations observe this and interpret that there has been a
further partition of the set of stations, and adjust the counters
D,H, h accordingly.
– At least one agent transmits in the first slot and at least
one agent is silent in the first slot. Stations that transmitted
in the first slot and observed SUCCESS in the first slot are
silent in the third slot, stations that transmitted in the first
slot and observed COLLISION transmit in the third slot;
all stations that transmitted in the first slot are silent in
the fourth slot. Stations that transmitted in the second slot
and observed SUCCESS in the second slot are silent in the
fourth slot, stations that transmitted in the second slot and
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observed COLLISION transmit in the fourth slot; all stations
that transmitted in the second slot are silent in the third slot.
A station that observed a SUCCESS in the first (second) slot
and IDLE in the third (fourth) slot knows that the SUCCESS
was real (no other station was transmitting) and interprets
the SUCCESS as an error and adjusts its flag; a station that
observed a SUCCESS in the first (second) slot and BUSY
in the third (fourth) slot knows that the SUCCESS was a
capture (some other station was transmitting) and does not
adjust its flag. All stations that were not active observe 11xx
and increase their H,h counters by 1.
• If some stations are randomizing and all stations transmit
in the first slot, then all stations will be silent in the second
slot. When this occurs, all stations know that a partition did
not occur and that any acknowledgement received in the first
slot must have been an accidental capture (because stations
that transmitted in the first slot were randomizing, hence not
alone in their subset of the partition). The capture is ignored
and all stations will be silent again in the third slot. All stations
will observe this step to be NOISE.
• If some stations are randomizing, some stations transmit in
the first slot and some stations are silent in the first slot, then
some stations will transmit in the second slot. When this oc-
curs, all stations know that a partition did occur. Now stations
must learn whether captures that occurred in the first or second
slots were accidental captures; to accomplish this, stations that
transmitted in the first slot and received an acknowledgement
will be silent in the third slot, while stations that transmitted
in the first slot and did not receive an acknowledgement will
transmit in the third slot; stations that transmitted in the first
slot and received an acknowledgement but observe BUSY in
the third will learn they experienced a false capture and will
ignore it. Similarly, stations that transmitted in the second slot
and received an acknowledgement will be silent in the fourth
slot, while stations that transmitted in the second slot and did
not receive an acknowledgement will transmit in the fourth
slot; stations that transmitted in the second slot and received
an acknowledgement but observe BUSY in the fourth slot will
learn they experienced a false capture and will ignore it.

The analytic estimate for convergence of the capture proto-
col (Theorem 2) is almost the same as for the Basic Protocol:
all that changes is that the various cycles are longer. To avoid
confusion, we use D for the number of slots that must elapse
before entering the Synchronization Phase.
Theorem 2 Fix N∗ (the maximum possible number of stations)
and the parameters D, r1, r2. If

π(BUSY|0, 0) < ε , π(FAILURE|1, 1) < ε
π(IDLE|m, 0) < ε , π(SUCCESS|n, 1) < ε

for each m > 0, n > 1 (i.e., all the error probabilities are less
than ε) then, for the Capture Protocol:
1) the probability of coordination in one round of the Coor-
dination Phase (D slots), conditional on no errors occurring,
is at least α = 1− 2 exp

(
− (D−(21N/2))2

2(D−(17N/2))

)
;

2) the probability of no errors occurring in one round of the
Coordination Phase is at least β = 1−DNε;
3) the probability of convergence in one round (D+2ℓ(r+1)
slots) of the Capture Protocol is at least αβδ;

Fig. 2. Convergence of the Capture Protocol (Capture Probability = .01)

4) for R ≥ 2 the probability of convergence in at most R
rounds of the Capture Protocol (R[D + 2ℓ(r1 + 1)] + (R −
1)r2N ] slots) is at least αβδ + (1 − αβ)αβδ2 + . . . + (1 −
αβ)R−1αβδR.

The Capture Protocol is immune to captures (because
captures are always detected and corrected) and hence the
speed of convergence is independent of the capture probability.
(However, because HIT, NOISE, and WIN cycles are longer in
the Capture Protocol than in the Basic Protocol – 4 slots in the
Capture Protocol; 2, 3 and 3 slots in the Basic Protocol – the
Capture Protocol is approximately roughly 50% slower than
the Basic Protocol and the probabilities of Misdetection/False
Alarm are correspondingly higher.) Figure 2 illustrates perfor-
mance of the Basic Protocol and the Capture Protocol in a
setting where capture is relatively likely (probability = .01):
as can be seen, the Capture Protocol converges much more
quickly than the Basic Protocol.

V. ENTRY
The initialization protocol coordinates secondary stations.

If secondary stations always entered the network at the same
time, the protocols proposed above are all that would be
required. However this is seldom the case: secondary stations
arrive (and depart) at need. There are many different cognitive
radio environments and different environments may call for
different entry protocols: an entry protocol that works smooth-
ly in a single-channel environment may not work smoothly
in a multi-channel environment; an entry protocol that works
smoothly in an environment in which when primary stations
can be recognized by their signatures may not work at all in an
environment in which primary stations can not be recognized
by their signatures [8]. Here we offer only a single, simple
entry protocol but many others could be constructed using the
same principles. The entry protocol is typically much faster
than the coordination protocol(s) proposed above so it is more
efficient to employ this entry protocol when possible rather
than abandoning the coordination that already exists and re-
coordinating from scratch.

In what follows we assume that primary users can be
recognized by their signatures (so only entry of secondary
users needs to be considered), that entry does not occur too
often (so at most one entry occurs during the coordination
phase of the entry protocol), and that entry occurs at a
point in which Current Stations are perfectly coordinated and
transmitting in a round-robin/TDMA fashion with no gaps. In
particular, we assume that, at the point just before the Entrant
attempts to enter: (1) all Current Stations stations know the
number N of stations; (2) all Current Stations know the order
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in which they should transmit; (3) all Current Stations transmit
in turn.

In order for an additional station to enter and the resulting
N + 1 stations to again become perfectly coordinated, three
things must happen: Current Stations must learn that there is
an Entrant, Current Stations must “make space” for the entrant,
and the Entrant must learn to occupy that space. In order for
a Current Station to learn that there is an entrant, something
must happen that a current station does not expect: the only
thing this could be is a collision. Because stations who do not
transmit cannot distinguish between a successful transmission
and a collision, each of the Current Stations must experience a
collision. Having experienced a collision, the Current Stations
can “make space” by waiting one additional slot. In order for
an Entrant to learn to occupy the space created, something
must happen that the Entrant does not expect: the only thing
this could be is a success. But one success is not enough;
the Entrant must experience two successes, so that it learns
the number of Current Stations (as the length of the interval
between these two successes). The Entry Protocol arranges
these events in a convenient way. We describe the protocol in
an environment in which there are no errors; it can be made
robust to errors by appending a synchronization check, as in
the Basic Protocol.
Entry Protocol
• Entrant The Entrant e keeps an indicator g(e) and a
counter G(e). Initially g(e) = G(e) = 0. While g(e) = 0
the Entrant transmits in every slot until it experiences one
successful transmission, at which point it sets g(e) := 1. While
g(e) = 1 the Entrant continues to transmit until it experiences
a collision, at which point it sets g(e) := 2 and G(e) := 1.
While g(e) = 2 the Entrant continues to transmit and steps
the counter G(e) in each slot, until it experiences a second
successful transmission, at which point it sets g(e) := 3. The
Entrant then remains silent for G(e) slots (note that G(e) is
the number of successive collisions experienced by the Entrant
after the first successful transmission, which will be precisely
the number of Current Stations), then transmits, then is silent
for G(e) slots, etc.
• Current Station Each Current Station transmits in turn
every N slots until experiencing a collision, which reveals that
a new station (necessarily a secondary station in this case) has
appeared. Following a collision, the Current Station waits one
extra slot before transmitting again; i.e., following a collision
each Current Station transmits every N + 1 slots.

If there are N Current Stations and the Entrant enters
in slot k, there will be N successive collisions, followed
by 1 successful transmission by the Entrant, followed by N
more successive collisions – a total of 2N + 1 coordinating
slots. After that, the Entrant and the Current Stations will be
perfectly coordinated: in slot k + 2N + 1 the Entrant will
transmit, followed by the N Current Stations, followed by the
Entrant, etc. See Figure 3 for a simple schematic diagram.

VI. SIMULATIONS

A. Convergence Speed of the Basic Protocol

We have already reported in Table II the result of sim-
ulations that compares the actual speed of convergence of

Fig. 3. Operation of the Entry Protocol

Fig. 4. Convergence Speeds.

the Basic Protocol with the estimate provided by Theorem
1 for various values of N = 3, 5, 10, 20 and assuming
ε = 10−5. Figure 4 shows the results of simulations for
ε = 10−6, 10−5, 10−4, 10−3.6 As the reader will see, the Basic
Protocol converges quickly – so long as the product of the
error probability, the number of users and the checking interval
D∗ (roughly, the probability that some station makes an error
during the Coordination phase) is not too big.

Table III compares (by simulation) speed of convergence
of our Basic Protocol with the L-ZC (Zero Collision with
Learning) protocol proposed in [15] (as an improvement on
the ZC (Zero Collision) protocol proposed in [16]). As will
be seen, the Basic Protocol is comparably fast or faster –
even though the Basic Protocol allows for errors and achieves
round-robin/TDMA transmission, which L-ZC (and other ex-
isting protocols) do not.
B. Goodput

Speed of convergence is not the only relevant metric, of
course; other metrics, such as goodput, are also important.
We define normalized goodput to be the ratio of the number of
successful transmissions to the total number of slots. In Table
IV we show the results of a simulation in which we compare
the normalized goodput (after 10,000 slots) of our Initialization
Protocol followed by our Operating Protocol (IP+OP) against
L-ZC [15] and Protocol with Memory (PwM) proposed in [13]
for a simple single-channel scenario with a fixed number of
stations. As is clear, the improvement in goodput is dramatic.7

6Suitable values for D∗ can be computed from Theorem 1 or by simulation.
7L-ZC achieves zero collisions but only achieves full efficiency if the size

of the contention window happens to coincide with the number of stations.
PwM never achieves perfect coordination and only achieves zero collisions
at the cost of extreme unfairness across stations. In the simulation we use a
contention window size of 50 for L-ZC and a fairness parameter of 0.5 for
PwM.
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TABLE III
COMPARISON OF CONVERGENCE SPEEDS

TABLE IV
GOODPUT COMPARISON.

C. Channel Hopping

As a final simulation, we consider goodput performance of
the Entry Protocol in a setting in which secondary stations
hop among 3 channels in a network. For the purpose of these
simulations, we take the station hopping process to be exoge-
nous: every T slots, a randomly chosen station switches to
another channel.8 Figure 5 illustrates the normalized goodput
for different average numbers of stations per channel under
different channel hopping frequencies.

VII. CONCLUSIONS AND FURTHER DIRECTIONS

In this paper, we have proposed a new class of MAC
protocols based on cooperative learning that enables secondary
stations to achieve and maintain perfect coordination. Our
proposed MAC protocols are completely distributed, requir-
ing neither any central control nor any exchange of control
messages between secondary stations, fast, scalable and robust
to many kinds of errors. In the present context, perfect
coordination makes it possible for users to share a channel
in a TDMA/round-robin fashion. More generally, perfect co-
ordination can make it possible for stations to efficiently share
specific resources – not necessarily slots.

As noted in the Introduction, the methods developed here
enable learning, teaching and coordination among anonymous
users by signaling through actions with no direct messaging.
The current paper applies those methods to a specific problem
in a specific setting. However, because these methods provide
ways to exchange information by signaling through actions
with no direct messaging, they may be applicable to many
other problems in many other settings, including settings in
which users are not fully anonymous; we discuss only a few.

The present protocol is constructed to operate in a particular
setting, in which stations have constant and identical traffic
needs that can be efficiently satisfied in a round-robin fashion,
and the protocol achieves efficiency in that setting. As we
have already noted, the protocol can also operate, with similar
efficiency, in the setting in which stations have constant but
non-identical traffic needs, by the simple device of viewing a
station with greater traffic needs as multiple stations. Similarly
efficient protocols can be constructed to operate in more
general settings. For instance, suppose that packet arrivals are
“bursty” – perhaps with different arrival rates for different
stations, so that some stations occasionally have many more

8We treat the switching problem as orthogonal to this paper; for an analysis
of this problem, see [8] for instance.

Fig. 5. Goodput Station Hopping.

packets to send than their average. Applying the protocol, as
written, coordinates stations according to their average arrival
rates, so that if station A has twice the average arrival rate
of station B it will be allocated twice as many slots. (Note
that the 802.11e wireless standard allocates slots according to
initial requests of average rates but it does so in a centralized
fashion; our protocol can accomplish the same allocation in a
decentralized fashion.) This solves the coordination problem
“on average” but it does leave open the problem of allocating
additional slots on those occasions when the actual packet
arrivals of station A are greater than the average arrival rate.
One way to approach this problem is to view it as much
like the problem of entry, already discussed (albeit briefly)
in the paper. That is: when station A has many more packets
than expected, it should behave “as if” the additional packets
belonged to another station, and follow the entry protocol as
discussed in the paper; this will have the effect of allocating
additional slots to station A. However, this approach may not
be good enough: if a large burst is an unusual occurrence, it
would be wasteful to allocate these additional slots to station
A on a permanent basis so in addition to an entry protocol
there should be a corresponding exit protocol.9 Alternatively,
the protocol might be modified so that, during the coordination
phase, stations signal the mean and variance (and perhaps other
required traffic specification parameters) of their traffic needs
for the protocol to allocate slots accordingly.

In Section V we have proposed a protocol for entry of sec-
ondary users. This is an appropriate protocol for environments
in which primary users can be identified by their physical
signatures, so that (re-)entry of primary users does not require
signaling and coordination. For environments in which primary
users cannot be identified by their physical signatures, the
proposed entry protocol can be modified to allow efficient
entry of primary users by directing primary and secondary
users to create distinguishable action signatures.

There are of course other problems that our protocol does
not address: How do secondary users detect primary users?
How do secondary users decide which channel to attempt to
access? How do secondary users detect less-used channels?
To a considerable extent, these are individualistic problems,
and a substantial amount of work has been done on these
problems. Our work, which focuses on coordination problems,
is complementary to this existing work. However, coordination
may be relevant for some of these problems as well; for
instance, if there are many channels, scanning of channels to

9An exit protocol is discussed in [20]; that protocol could be modified to
account for the possibility of errors.
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detect those not occupied by primary users can be a demanding
task, and could be made much more efficient if secondary
users coordinate so that each secondary user only scans a
subset of the channels. A similar issue arises with multi-user
MAC power control protocols: which channel should each
user use for transmission? It is well known that it is best for
each user to concentrate power across a few channels (rather
than spreading power across many channels), thereby reducing
mutual interference. However this leaves open the coordination
problem of which stations should use which channels and this
is the kind of coordination problem that our methods can help
solve. REFERENCES
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APPENDIX: PROOFS AND FLOW CHARTS
Proof of Lemma 1 Consider a single station z. If the system is
coordinated then z is silent in r1 +1 slots in each of ℓ digits,

and its observation should be IDLE in every one of these slots.
z fails the sync test if for at least one of these digits it observes
BUSY in at least m1 of these slots so the probability that z
fails the sync test is at most ℓB(m1, (r1 + 1); ε). Hence the
probability that at least one of the N stations fails the sync
test – which in this case means gets the wrong answer – is at
most NℓB(m1, (r1 + 1); ε). �
Proof of Lemma 2 Consider a single station z. If the system
is not coordinated then there is at least one digit in which z
is silent and its observation should be BUSY in every one of
(r1 + 1) slots. z fails the sync test if it observes BUSY in
at least m1 of these slots so the probability that z fails the
sync test in this digit is at least B(m1, (r1 + 1); 1 − ε) and
the probability that z passes the sync test in this digit at most
1− B(m1, (r1 + 1); 1− ε), and the probability that z passes
the sync test overall is no bigger. Hence the probability that
at least one of the N stations passes the sync test – which in
this case means gets the wrong answer – is at most N [1 −
B(m1, (r1 + 1); 1− ε)]. �

The proofs of Lemmas 3, 4 are essentially identical and are
omitted.
Proof of Theorem 1 (1) Assume there are no errors; we
count the endogenous number of cycles. By definition and
construction, the algorithm converges as soon as all stations
pass the sync check. This requires N cycles of the Coordi-
nation Phase that end in WIN and N − 1 cycles that end in
HIT (for simplicity we treat this as N ); all other cycles end in
EMPTY or NOISE and are “wasted”. WIN Cycles begin with
a single active station, and that station is not randomizing;
all other cycles begin with at least two active stations and
all active stations are randomizing. Let C be the number of
cycles that do begin with randomization. If a HIT cycle and a
wasted cycle were equally likely, we would expect that to get
N HIT cycles we will also need N wasted cycles, of which
half will be EMPTY and half will be NOISE. (In fact a HIT
cycle is more likely that a wasted cycle when the number of
active stations is at least 3 but our estimation procedure does
not take account of that fact.) So we estimate the probability
that at least N of these C cycles are HIT cycles and at
least N/2 of the remaining cycles are EMPTY cycles, which
means that at most C − 3N/2 are NOISE. A cycle ends in
EMPTY if all active stations randomize and receive silent;
a cycle ends in NOISE if all active stations randomize and
receive transmit; other randomizing cycles end in HIT. Hence
the probability that a randomizing cycle ends in HIT is at
least .5 and conditional on a randomizing cycle not ending in
HIT the probability that it ends in EMPTY is exactly .5. We
now apply the sharp Chernoff bounds: if the probability of a
success in one trial is (at least) .5 then the probability that
the number of successes in K trials is less than .5K − a is
at most e−2a2/K . The probability we want is the probability
of at least N HIT cycles and at least N/2 EMPTY cycles
– which leaves at most C − 3N/2 NOISE cycles. A little
algebra shows that the probability of at least N HIT cycles in
C cycles is at least 1 − exp[−(C − 2N)2/2C] and that the
probability of at least N/2 EMPTY cycles in C−N remaining
cycles is at least 1− exp[−(C− 2N)2/2(C−N)]. Hence the
probability of at least N HIT cycles and at least N/2 EMPTY
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cycles is at least 1− 2 exp[−(C − 2N)2/2(C −N)]. If there
are N HIT cycles and N/2 EMPTY cycles and the remaining
C−3N/2 cycles are NOISE then the total number of slots will
be 2N +N/2+3(C−3N/2) = 3C−2N . Since we have D∗

slots to use (before the protocol enters the Synchronization
Phase) and 3N of these slots will be used up by N WIN
cycles, we need take 3C−2N = D∗−3N or 3C = D∗−N .
Hence C − 2N = (D∗ − 7N)/3 and C −N = (D∗ − 4N)/3
so −(C − 2N)2/2(C −N) = −2(D∗ − 7N)2/3(D∗ − 4N);
substituting gives the desired expression.

(2) The probability of one station making an error in one
slot is at most ϵ so the probability that at least of N stations
makes an error in at least on of D∗ slots is at most ND∗ε
and the probability of no error is at least 1−ND∗ε.

(3) The probability of convergence in one round is at least
the product of the probability of convergence in one round
conditional on no errors times the probability of no errors in
the first D∗ slots times the probability of getting the right
answer in the Synchronization Phase.

(4) If convergence fails in the first round and all stations
agree that convergence has failed in the first round (get the
right answer), then the protocol starts again – but if some
station believes convergence has succeeded (gets the wrong
answer) then failure is permanent. Hence the probability of
convergence in the second round is the probability of failure
to coordinate in the first round times the probability that failure
is detected times the probability of success in the second
round, and so forth for any number of rounds. This gives an
exact formula for the probability of convergence in at most
R rounds. We do not have exact values for the probability of
coordination in each round conditional on no errors, for the
probability of no errors, and for the probability of getting the
wrong answer in the Synchronization phase, but we do have
lower bounds for all of these probabilities, and it is easy to
check that substituting the lower bounds for these probabilities
into the exact formula for convergence in at most R rounds
gives a lower bound for the probability of convergence; this
is the result asserted. �
Proof of Theorem 2 The proof is identical to that of Theorem
1, except that WIN cycles, HIT, NOISE slots all take 4 slots.
�
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