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Abstract-Coordination is a central problem whenever sta­
tions (or nodes or users) share resources across a network. In 
the absence of coordination, there will be collision, congestion or 
interference, with concomitant loss of performance. This paper 
proposes new protocols, which we call perfect coordination (PC) 
protocols, that solve the coordination problem. PC protocols are 
completely distributed (requiring neither central control nor the 
exchange of any control messages), fast (with speeds comparable 
to those of any existing protocols), fully efficient (achieving perfect 
coordination, with no collisions and no gaps) and require minimal 
feedback. PC protocols rely heavily on learning, exploiting the 
possibility to use both actions and silence as messages and the 
ability of stations to learn from their own histories while simul­
taneously enabHng the learning of other stations. PC protocols 
can be formulated as fiuite automata and implemented using 
currently existing technology (e.g., wireless cards). Simulations 
show that, in a variety of deployment scenarios, PC protocols 
outperform existing state-of-the-art protocols - despite requiring 
much less feedback. 

I. INTRODUCTION 

In networks where a number of stations share common 
network resources (e.g., wireless spectrum), if more than one 
station attempts to access the same resource in the same s­
lot/period, collision, congestion or interference, with concomi­
tant loss of performance, will typically occur. Coordination 
among stations has the potential to avoid conflict and im­
prove utilization of network resources - especially to increase 
throughput and decrease delay. Because central control and 
the exchange of control messages between stations are typi­
cally wasteful of resources and often impossible, so the first 
desideratum for a coordination protocol is that it be distributed. 
Because gathering information (sensing) also uses resources, a 
second desideratum is that the protocol use minimal feedback. 
A third desideratum is that it achieve maximal good put. The 
search for such protocols is by now quite old (e.g. slotted 
Aloha [1][2] and the distributed coordination function [3][4]). 
These protocols are widely studied and used, but both fail 
the last two desiderata: they require substantial feedback and, 
because they do not eliminate collisions and empty slots, do 
not achieve maximal goodput. 
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This paper proposes and analyzes new protocols that meet 
all three of these desiderata; we call them Perfect Coordination 
protocols. We propose two protocols, the first designed for 
settings in which the number of stations is known, the second 
designed for settings in which the number of stations is not 
known (but an upper bound is known); each of these settings 
represents a realistic set of environments. The protocols we 
describe are perfectly distributed and require no central control, 
no exchange of control messages between stations and minimal 
feedback: stations that transmit learn whether or not their 
transmission is successful; stations that are idle can not/do not 
sense the channel and hence learn nothing. The assumption 
of minimal feedback - which distinguishes the present work 
from all of the literature of which we are aware - makes 
coordination much more difficult but is important: sensing 
activity on the channel when not transmitting requires the 
expenditure of energy and is prone to serious errors (because 
of the difficulty of distinguishing the traffic of other stations 
from ambient noise) which increase the fragility of protocols. 
The protocols we introduce converge as rapidly and with 
probability as high as previous protocols, and achieve perfect 
coordination, not merely zero collision - hence greater goodput 
and smaller delay - despite requiring much less feedback. 

Our protocols lead stations to learn about the evolving 
state of the system, to condition their pattern of actions on 
what is learned, and to enable the learning of other stations. 
In comparison with previous protocols, stations learn more 
and use more of what they have learned - especially about 
the pattern of actions of other stations. Remarkably, stations 
can learn all of this solely on the basis of their own histories 
of successful and unsuccessful transmissions. This is possible 
because stations learn cooperatively. This learning exploits two 
opposite facets of the environment: first, that actions of stations 
can be used as implicit messages, and second that silence can 
also be a message. 1 In addition to cooperative learning, actions 
as signals and silence as a signal, our protocols make extensive 
use of the idea that stations that are indistinguishable ex ante 
and randomize in an identical fashion may still experience 
different realizations of that randomization and hence become 
distinguishable ex post. We emphasize that the protocols we 

1 That the apparent absence of information can in fact be information has 
been well-known at least since Sherlock Holmes. Recall the exchange between 
Inspector Gregory of Scotland Yard and Sherlock Holmes in Arthur Conan 
Doyle's story 'Silver Blaze' [5] : Gregory: "Is there any other point to which 
you would wish to draw my attention?" Holmes: "To the curious incident of 
the dog in the night-time." Gregory: 'The dog did nothing in the night-time." 
Holmes: "That was the curious incident." 
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Channel Sensing When Yes Yes Yes Yes No Not Transmitting 
Fully 

Coordinated No No No No Yes 
Learn No No No No Yes #ojStations 

Number oj Unknown Unknown 
Known! 

Unknown 
Known! 

Stations Unknown Unknown 

Convergence· Very Fast Very Fast Fast Medium Very Fast (Small Networks)--
Convergence· Fast Fast Medium Slow Fast (Large Networks)" 

- Convergence speed IS the nwnber of slots reqwred such that the system enters the steady state 
(perfect coordination or zero collision) with probability 0.999. (Very Fast: < 100 slots; Fast : 100 - 500 
slots; Medium: 500-5000 slots; Slow: > 5000 slots.) 
** Small Networks: number of stations from 1 to 10; Large Networks: number of stations from 20 to 50. 

TABLE 1. COMPARISON OF ASSUMPTIONS, RESULTS 

propose require only finite memory, can be formulated as finite 
automata, and can be implemented using current wireless cards 
without requiring the development or deployment of any new 
hardware; see [6] for instance. We do require that local clocks 
of the stations be synchronized; this could be accomplished 
by time stamping from the access point (as in [13]), by GPS 
coordination (as in [12]) or by various other methods. 

The idea of utilizing collisions as a coordination device can 
be found in various existing network protocols, most notably in 
various versions of slotted Aloha protocols and in exponential 
backoff protocols. By and large, these protocols, are designed 
in an ad hoc manner and utilize available past information in a 
limited way, yielding only limited performance improvements. 
Coordination protocols [7]-[14] have received substantial atten­
tion in the literature; [7]-[11] are closest to the present work.2 

Table I below provides some comparisons between the current 
work and those papers. We defer more detailed comparisons 
until we present simulations in Section VI, but for now we 
would like to highlight a few points. First, all of these other 
papers assume that stations can sense the state of the channel 
when they are not transmitting; we do not. Second, all of 
these papers propose protocols that do not learn the number of 
stations and do not achieve perfect coordination, hence yield 
sub-optimal (possibly highly-suboptimal) goodput; our Perfect 
Coordination protocols do learn the number of stations and 
do achieve perfect coordination, hence yield optimal goodput. 
Third, the speed of our Perfect Coordination protocols is 
comparable to that of these other protocols, despite the fact 
that we assume much less feedback. 3 

In what follows, Section II presents our protocols, es­
tablishes analytic estimates of convergence probabilities and 
speeds, discusses robustness. Section ill uses simulations to 
provide performance analysis of our protocols and compar­
isons with other protocols. Section VI concludes. 

II. PERFECT COORDINATION PROTOCOLS 

A. The number of stations N is known 

For a known number of stations N, we propose a family 
Cf?(N, K,p) of Perfect Coordination protocols, depending on 

2[12] approach the problem somewhat differently and assume a very 
different information structure: stations can observe whether or not there was a 
successful transmission but cannot distinguish between a collision and ambient 
noise on an idle channel. This seems an unrealistic assumption, especially 
because such observation would almost surely entail a large error rate, which 
would be incompatible with the protocols they propose. 

3In fact, if we consider duration rather than number of slots, Table I 
underestimates the speed of our protocols because our protocols do not require 
full slots. We will discuss this is more detail later. 
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a length parameter K and a vector P of probabilities (strictly 
between 0,1) to be chosen by the administrator. (Different 
choices of K, P lead to different probabilities and speeds of 
convergence.) Each protocol is divided into phases, each phase 
is divided into cycles, each cycle is divided into slots. In the 
Learning phase, stations learn their place in an endogenously 
determined sequencing of all the stations; in the Transmission 
phase, stations transmit in the sequence determined in the first 
stage. 

By definition a protocol specifies random actions condition­
al on personal history; however Cf? (N, K, p) uses only some of 
the information contained in those histories (in addition to the 
parameters K,p): (1) the current phase; (2) the location of the 
current cycle within the current phase; (3) the location of the 
current slot within the current cycle; (4) personal information 
about the previous slot; (5) a summary statistic of personal 
history: the station's index, an integer between 0 and N. 

A station's index is a convenient way for the station to 
keep track of whether it has at some point won a lottery (as 
described below) and, if so, when. Each station knows only 
its own index. At any slot, a station's index will depend on its 
index in the previous slot and the station's personal observation 
about the previous slot. We initialize so that index( z) = 0 for 
all stations z. 

Fix a positive integer K and an N -vector P = (PI, ... ,PN) 
of probabilities strictly between 0,1. The protocol Cf?(N, K,p) 
begins in the Learning phase. 

• In slot 1, all stations randomize: they transmit with 
probability PI and remain silent with the complemen­
tary probability (1 - PI)' This randomization creates 
an endogenous lottery. 

• In slot 2 each station conditions on what it observes 
about slot 1 (its personal history). A station z that 
transmitted in slot 1 and was successful - won the 
lottery - sets its index(z) = 1 and transmits with prob­
ability 1 in the second slot (and in every succeeding 
slot in the current cycle); a station that did transmit 
but was unsuccessful - did not win the lottery - or did 
not transmit (and hence observed nothing) randomizes 
again in slot 2, with the same probabilities PI, 1 - Pl. 

• The process continues through slot K (one cycle of 
the Learning phase). 

• At the end of the first through N -th cycles of 
the Learning phase, the protocol repeats the process 
above, with three changes: 

o stations that won a lottery (those with 
index( z) > 0) remain silent (inactive) through­
out the current cycle; 

o stations that have not won a lottery (those with 
index( z) = 0) randomize with probabilities 
Pn,1 - Pn; 

o a station z that wins the lottery in cycle n sets 
index(z) = n4 

At any point in time, index(z) > 0 if and only if 
station z won the lottery in cycle index( z) of the 
Learning phase; if index(z) = 0 then station z has 
not won a lottery in any cycle. 

4 A station that wins the lottery in some slot during cycle n transmits in every 
succeeding slot in that cycle, so at most one station can transmit successfully 
in any given cycle and so no two stations can have the same index. 
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Fig. 1. illustration of PC protocol when N is known. (N = 3, K = 4) 

• At the end of N cycles of the Learning phase, stations 
enter the Transmission phase. If index(z) = n > 0 
then station z transmits in slot n and only in slot n; 
if index( z) = 0, then station z transmits in every slot 
of the Transmission phase. 

• After N slots (one cycle) of the Transmission phase 
all stations will have had the same experience: either 
at least one collision or success whenever transmitting. 
If all stations experienced at least one collision, then 
stations are not perfectly coordinated; in that case, all 
stations set index = 0 and return to the beginning 
of the protocol. If all stations experienced success 
whenever transmitting, then stations are perfectly co­
ordination; in that case, all stations return to the 
beginning of the Transmission phase and repeat the 
Transmission phase indefinitely. 

Both individual and cooperative learning play important roles 
in this protocol. In the Learning phase, stations are creating 
an endogenous lottery: creating the lottery is cooperative 
(although it requires no communication, only conformity to 
the protocol); winning the lottery is individualistic. A station 
that wins the lottery in the current cycle transmits in every 
remaining slot of the current cycle, and stations that have won 
lotteries in previous cycles do not participate in the current 
cycle; both of these cooperative activities avoid interference 
with the learning of other stations. Learning of a different 
sort occurs in the Transmission phase: all stations learn either 
that perfect coordination has been achieved, so that they 
should remain in the Transmission phase indefinitely, or that 
perfect coordination has not been achieved, so that they should 
re-initialize and begin the Learning phase again. Figure 1 
illustrates the operation of this protocol with N = 3, K = 4. 
Station 1 wins the lottery in Cycle 1, Slot 2; Station 3 wins the 
lottery in Cycle 2, Slot 3; Station 2 wins the lottery in Cycle 
3, Slot 2. 

1) The Probability of Convergence: It is straightforward to 
calculate the probability that perfect coordination is achieved in 
one round (N cycles) of the Learning phase. From this we can 
calculate the probability that the protocol converges to perfect 
coordination within a given number of rounds and hence in 
a given number of slots. (Translation from rounds into slots 
is straightforward: if perfect coordination is achieved after R 
rounds of the Learning Phase then RN K +(R-1)N slots will 
have elapsed.) As a consequence, it follows that, for every N 
and every choice of K, p, convergence to perfect coordination 
in finite time occurs with probability 1; i.e., for each E > 
o there is some T so that the probability of convergence to 
perfect coordination in T slots or less is at least 1 -E. 

Theorem 1: Fix N, K,p = (PI, ... ,PN) (with 0 < Pn < 
1 for all n). The probability that the protocol Cf>(N, K,p) 
achieves perfect coordination in no more than R rounds (no 
more than RNK + (R -l)N slots) is exactly 

1-(1-g {I-[I-(N -n+l)Pn(1-Pn)N-njK } r (I) 

3863 

Proof: Omitted due to space limitation. See [15]. • 

Corollary 1: For every N and every choice of K, P 
(PI, ... ,PN) (with 0 < Pn < 1 each n), the protocol 
Cf>(N, K,p) converges to perfect coordination in finite time 
with probability 1. 

Proof: For fixed N, K,p the probability in (1) tends to 
00 with R. • 

2) A Numerical Estimate: The expression (1) is somewhat 
intractable and does not provide a simple rule for an ad­
ministrator who wishes to guarantee a given probability of 
convergence. However a judicious choice of the probability 
vector P and some simple manipulation yields (Theorem 2) 
both a tractable estimate and a useful procedure for choosing 
K, R to guarantee a given probability of convergence. We first 
isolate two simple lemmas. 

Lemma 1: For x > 1, 1 - (x;l r-1 
is a decreasing 

function of x and 

. (X_1)X-1 
hm --

X-+OO X 
1 
e 

Proof: Take logarithms and differentiate; then use the fact 
that log is a concave function to derive the first assertion and 
L'Hopital's rule to derive the second assertion. • 

Lemma 2: For C a strictly positive integer 

(C_1)
l-1 ( l)

l-l 
max Cp(l - p)l-l = -- = 1 - -O<p<l C C 

Moreover, the maximum is attained when P = 1 I c. 

Proof: Apply the the first-order condition. • 

Theorem 2: Fix N and set p* = (pi,···, PH)' p� 1 N-n+1' 
(i) The probability that the protocol Cf>(N, K,p) converges to 

perfect coordination in at most R rounds of the learning 
phase (RNK + (R -l)N slots) is at least 

1 - (I - { 1 - [I -
m r rr 

(ii) Fix E > O. In order that Cf>(N, K, p) converges to perfect 
coordination in at most R rounds of the learning phase 
with probability at least 1 -E it is sufficient that 

K > 10gN -(lIR) logE 
- -log[l - (lie)] 

Proof: Omitted due to space limitation. See [15]. • 

To make Theorem 2 more concrete, take N = 10 and 
E = 10-4 so that we seek convergence with probability at least 
0.9999. In view of (ii), it is sufficient to take R = 1, K = 25 
or R = 2, K = 15. The former choice would seem to be 
superior to the latter (250 slots vs. 310 slots) but note that if 
K = 15 then convergence actually occurs in one round (150 
slots) with probability greater than 0.99 - so using the latter 
choice leads to a much smaller expected time to convergence. 

As the simulations in Section VI will make clear, these 
analytic estimates are not sharp; but they do have the virtue of 
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simplicity, and the rate of convergence they provide is already 
quite good (especially when interpreted in terms of time rather 
than number of slots). 

B. The number of stations N is Unknown 
Now we assume that the true number N of stations is 

unknown but that an upper bound Nmax is known. We could 
apply any of the protocols if! (Nmax, K,p) in this setting, but 
the result might not be very satisfactory: If N < Nmax then 
if! ( Nmax, K, p) will eventually reach the situation in which 
the N stations transmit in tum but in a cycle of length 
Nmax, so that there will be gaps and throughput will be less 
than optimal; moreover since if! (Nmax , K, p) executes at least 
Nmax cycles in the Learning phase, the protocol might take 
much longer than is necessary - much longer than necessary 
if N is much smaller than Nmax. We avoid both of these 
problems by modifying the Learning phase slightly and adding 
two intermediate phases so that the protocol moves into the 
Transmission phase as soon as all stations have learned their 
indices and closes gaps along the way. 

As before, our protocols depend on Nmax and on parame­
ters that can be chosen by the administrator: a length parameter 
K (a positive integer) and a vector of probabilities parameters 
q = (ql, ... , qNmax), each qm strictly between 0, 1. The 
protocol ifJ(Nmax, K, q) consists of four phases: Learning-to­
Win, Rectifying-the-Count, Learning-the-Losers, Coordinated 
Transmission. 

As before, ifJ(Nmax, K, q) uses only some of the infor­
mation contained in personal histories (in addition to K, q): 
(1) the current phase; (2) the location of the current cycle 
within the current phase; (3) the location of the current slot 
within the current cycle; (4) the station's personal information 
about the previous slot; (5) two summary statistics of the 
station's personal history: stationcount (an integer between 
o and Nmax), which will tell the station when to move to 
the Coordinated Transmission phase; and index (either * or 
an integer between 0 and Nmax), which will tell the station in 
which slot of the Coordinated Transmission phase to transmit). 

Each station knows its own statistics - stationcount and 
index. At any slot, a station's stationcount and index will 
depend on the values in the previous slot and the station's 
observation of the previous slot. It is convenient to refer to a 
station z as a winner if index(z) > 0, a loser if index(z) = 0 
and as a waiter if index(z) = *. Winners are stations that 
have won a lottery and learned their indexed, waiters are 
stations that have won a lottery but have not yet learned their 
index, losers are stations that have not yet won a lottery. At 
various times, some of these categories will be empty (e.g., 
at the beginning of the protocol all stations are losers); at any 
moment in time there is at most one waiter. Because stations 
always know their own statistics, they know to which category 
they belong. The protocol begins in the Learning-to-Win phase. 

• In the Learning-to-Win phase, waiters and winners 
remain silent throughout. 5 Losers randomize: if this is 
the M -th time the protocol has entered the Learning­
to-Win phase, Losers transmit with probability qm 
and remain silent with the complementary probability 
(1- qm), where m = min{Nmax,M}. (Stations can 
compute m without computing M because they only 

5 In fact there will never be a waiter at this point. 

3864 

need to count as high as m = Nmax - and then 
stop counting.) As before, this creates an endogenous 
lottery. 

• A station z that wins the lottery in some slot in the 
current Learning-to-Win cycle sets index ( z) = * and 
transmits in every subsequent slot; losers continue to 
randomize. 

• The process continues through slot K (one cycle of 
Learning-to-Win). 

• At the end of each cycle of Learning-to-Win, the 
protocol enters the Rectifying-the-Count phase which 
consists of m slots. In each slot: losers remain silent; 
the waiter (if one exists) transmits in every slot; win­
ners transmit in the slot corresponding to their index. 
An inductive argument shows that if there are W < m 
winners at this stage then their indices are 1, . . .  , W. 
Hence if there is a waiter, all winners experience a 
collision and the waiter experiences collisions in slots 
1, . . .  , W and success in slot W + 1. The waiter sets 
its index equal to W + 1; the waiter and all winners set 
their stationcount equal to W + 1. Note that at this 
point W + 1 is indeed the correct number of winners. 

• At the end of one cycle of Rectifying-the-Count, the 
protocol enters the Learning-the-Losers phase which 
again consists of m slots. In every slot: losers transmit 
in every slot; winners transmit in the slot correspond­
ing to their index. (There are no waiters at this point.) 
If there are no losers, the winners all experience 
success; if there are losers then both winners and 
losers experience collision. Hence after this cycle, all 
stations know whether or not losers remain. 

• If no losers remain after Rectifying-the-Count and 
Learning-the-Losers, then every station moves to the 
Coordinated Transmission Phase and all stations trans­
mit in sequence according to their indices, in a cycle 
of length stationcount (w) for any station w. This 
is perfect coordination and repeats indefinitely. If 
some loser or losers remain after Rectifying-the-Count 
and Learning-the-Losers then all stations return to 
Learning-to-Win and proceed as above. 

Again, both individual and cooperative learning play im­
portant roles here. In the Learning-to-Win phase there is little 
to add to what we have already said about the Learning phase 
in the protocol if!(N, K, p) . In the Rectifying-the-Count phase, 
winners have learned the current total number of winners and 
their own place in the sequence; now winners and the waiter (if 
there is one) cooperate so that all can learn whether there is a 
waiter, in which case the waiter becomes a winner, all winners 
learn the new total number of winners, and all winners learn 
their places in the sequence. Note that waiters can count the 
number of current winners because each of them transmits 
in tum, so that the waiter experiences collisions, but then 
the current winners are silent, so that the waiter experiences 
success. In the Learning-the-Losers phase, all stations learn 
whether there are remaining losers; if so they return to the 
Learning-to-Win phase, if not they transit to the Transmission 
phase. Figure 2 provides an illustration of the operation of 
the protocol, with N = 3 and Nmax 

= 4. Each cycle of the 
Learning-to-Win phase consists of K = 4 slots. Station 1 wins 
the lottery in Cycle 1 Slot 2; Station 3 wins the lottery in Cycle 
2 Slot 3; there are no winners in Cycles 3, 4; Station 2 wins 
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Ph ... 3 I ,I I 
Fig. 2. lllustratlOn of PC protocol when N is known. (N 3, K 
4, Nmax = 4) 

the lottery in Cycle 5 Slot 2. The winners transmit in their 
corresponding slots in the Rectifying-the-Count and Learning­
the-Losers phases. 

1) The Probability of Convergence: At this point it is 
natural to ask for a parallel to Theorem 2 that provides, for 
each K, q, the precise probability of convergence to perfect 
coordination in a specified number of slots. However, a closed 
form expression for the precise probability seems difficult to 
provide. Instead, Theorem 4 provides convergence estimates 
for the particular vector of probabilities q* 

= (qi, ... , q'Nmax ) 
defined by 

* 1 * 1 * * 1 ql = Nmax' q2 = (Nmax _ 1)"'" qNmax_l = qNmax = "2 

As our simulations will show these estimates are not at all 
sharp (much worse than the estimates from Theorem 3 when 
N is known), but they are good enough to establish (Corollary 
2) convergence in finite time with probability 1. To state 
the estimate formally, write B (N, Rj () for the probability 
of getting at least N successes in R 2: N independent 
trials each of which has probability of success (. (As before, 
we can translate rounds into slots although the translation is 
more complicated. Learning-to-Win requires K slots in every 
round; if the current round is r then Rectifying-the-Count and 
Learning-the-Losers each require min{r, Nmax} slots. Hence 
if R < Nmax the total number of slots that have occurred in -

R R rounds of the first three phases is Lr=l (K + r + r) = 

RK + R(R + 1) ; if R > Nmax then - because there are 
R-Nmax rounds in which Rectifying-the-Count and Learning­
the-Losers require Nmax slots - the total number of slots is 
Nmax K + Nmax (Nmax + 1) + (R - Nmax) (K + 2Nmax).) 

Theorem 3: If N is the true number of stations and R 2: N 
set 

The probability that \II (Nmax ,K, q*) converges to perfect 
coordination in no more than R rounds is at least B (N, Rj () . 

Proof: Omitted due to space limitation. See [15]. • 

Corollary 2: For every N, Nmax and every choice of K, 
the protocol \II (N, K, q*) converges to perfect coordination in 
finite time with probability 1. 

Proof" For all N and all ( > 0 the probability B (N, Rj () 
tends to 00 with R. • 

We caution the reader that the estimate in Theorem 3 
is very crude and that simulations show that the actual rate 
and probability of convergence are much better. For instance, 
suppose N = 5, Nmax = 10, K = 20. Theorem 3 estimates 
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that the probability of convergence to perfect coordination in 
10 rounds is at least .96 - but simulations show that the true 
probability of convergence to perfect coordination is greater 
than .9999. 

C. Robustness 

All protocols have some sensitivity to errors. The most ob­
vious errors in the context we consider are the failure to detect 
an idle channel (not distinguishing a channel that is busy from 
a channel that is idle but noisy), and the failure to recognize 
a successful transmission (loss of acknowledgement). Because 
our protocols do not require stations that do not transmit to 
observe anything, our protocols are completely immune to 
the first of these errors - unlike other protocols that depend 
heavily on detection of idle channels. Failure to recognize 
a successful transmission in a given slot during the learning 
phases of either <I> or \II would have exactly the same effect as 
an unsuccessful transmission in that slot, so a small probability 
of loss of acknowledgement simply raises the probability of 
an unsuccessful transmission in a single slot by the same 
small amount. Failure to recognize a successful transmission 
in a given slot during the Transmission phase of <I> could 
result in confusion: some stations would experience success 
and believe perfect coordination had been achieved, hence 
repeat the transmission phase, while at least one station would 
experience collision and believe perfect coordination had not 
been achieved, hence return to the learning phase. However, 
the probability that confusion occurs could be made arbitrarily 
small simply by repeating the Transmission phase several 
times; confusion would occur only if some station experienced 
errors in each repetition. If loss of acknowledgement occurs 
with probability 0 then the probability that confusion would 
occur in a single cycle of the Transmission phase would be 
1 - (1 - 0) N but k repetitions would reduce the probability to 
1 - (1 -Ok)N - and k repetitions require only kN slots. For 
instance, if 0 = 10-2 and N = 10, k = 3 repetitions would 
reduce the probability of confusion below 10-5 at the cost of 
only 30 slots - less than 7ms. Repetition would be similarly 
effective with similarly low cost in the Rectifying-the-Count 
and Learning-the-Losers phases of the protocol \II. 

III. SIMULATIONS 

In this section, we provide simulation results to evaluate 
the performance of the proposed Perfect Coordination pro­
tocols and provide comparisons with existing protocols. For 
these simulations, we adopt the parameters specified by IEEE 
802.l1a, as in Table II. 

TABLE II. SIMULATION CONFIGURATION 
Parameters Values 

Packet payload 1024 octets 
MAC header 28 octets 

ACK frame size 14 octets 
Data rate 54 Mbps 

PHY header time 20 Jts 
SIFS 16 Jts 
DIFS 34 Jts 

Table III documents the estimated and simulated speed of 
convergence of our protocols for N = 4, 8, 16, 24, 32: the 
number of slots required for the stations to achieve perfect co­
ordination with pre-specified probabilities 0.99, 0.999, 0.9999. 
For N known, we record the estimate implied by Theorem 3; 



Globecom 2013 - Wireless Communications Symposium 

TABLE TIl. 

NisKnown 

Prob. N=4 N=8 N=16 N=24 N=32 

0.99 
Sim. 40 104 240 384 544 
Est. 56 120 272 408 576 

0.999 
Sim 56 128 320 456 704 
Est. 72 160 336 528 736 

0.9999 
Sim. 64 160 368 552 768 
Est. 92 192 416 648 864 

NisUnknown (Nmox = 32) 

Prob. N-4 N-8 N-16 N-24 N-32 

0.99 
Sim. 288 442 740 1053 1483 
Est. 1224 1976 2850 2704 1516 

0.999 
Sim. 380 532 836 1120 1582 
Est. 1656 2511 3302 2998 1592 

0.9999 
Sim. 456 588 874 1176 1592 
Est. 2106 2998 3682 3226 1626 

NUMBER OF SLOTS FOR PERFECT COORDINATION WITH 
PROBABILITIES .99, .999, .9999 

for N unknown we assume Nmax = 32 and use the estimate 
implied by Theorem 4. In both cases the simulation results are 
generated from 104 Monte Carlo tests. There are two reasons 
why convergence is slower when the number of stations N is 
unknown. As we have noted earlier, when N is unknown, the 
protocol must go through the additional phases of Rectifying­
the-Count and Leaming-the-Losers at least N times; this 
requires at least N x (N + 1) slots, which is substantial when 
N is large. More subtly, and more importantly, when N is not 
known we can tailor the probability parameter to the upper 
bound Nmax - but we cannot tailor it to N itself. However, 
we note that actual convergence as measured by time - rather 
than number of slots - is very fast even if the number of 
slots is substantial, especially since during the coordination 
phase(s) we can use small slots in which stations only send 
a small payload (e.g. 100 bytes) in each slot. Allowing for 
packet overhead and signaling intervals, these small slots can 
be as short as 90 fJ,s. (After perfect coordination is achieved, 
stations can revert to regular slots, typically 230 fJ,s.) If we use 
these small slots, the actual simulated time to convergence in 
the worst case illustrated in Table III is only a few tenths of 
a second. 

Assuming Nmax is known but N is unknown, we compare 
the goodput of our proposed Perfect Coordination protocol 
against the Zero Collision protocol (zq proposed in [7] 
and the modification L-ZC proposed in [8]. As above, we 
assume that our Perfect Coordination protocol uses small slots 
of 90 fJ,s in the coordination phases and regular slots of 
230 fJ,S (including a 1024-Byte Payload and overhead) in the 
Transmission phase. To be generous to ZC, we assume it uses 
idle slots of 34 fJ,S (i.e. a DIFS duration with a 9fJ,s empty slot) 
when no stations are transmitting and regular slots of 230 fJ,S 
when some station is transmitting. In both cases we assume the 
upper bound on the number of stations is Nmax = 32, which 
means that in ZC the contention window size (the number of 
slots in a cycle) is also M = 32. Table IV shows goodput 
achieved by PC, ZC and L-ZC as a function of the true 
number of stations N. For each protocol, we show goodput 
in Mbps and the fraction of theoretically optimal goodput 
(which in this case is 35.94 Mbps, after taking overhead into 
account). PC reaches perfect coordination rapidly and achieves 
optimal goodput independently of N; ZC and L-ZC both leave 
gaps, but leave fewer gaps - use the available slots more 
efficiently, hence achieve greater goodput - when N is large 
than when N is small. (If the size of the contention window is 

3866 

ZCIL-ZC 

PC 

TABLE IV. 

N=4 N=8 N= 16 N=24 N=32 

Mbps 17.58 24.82 31.28 34.24 35.94 

Fraction 0.49 0.69 0.87 0.95 1.00 

Mbps 35.94 35.94 35.94 35.94 35.94 

Fraction 1.00 1.00 1.00 1.00 1.00 

GOODPUT COMPARISON FOR VARIOUS NUMBER OF 
STATIONS (Nmax = 32) 

M = Nmax = 32 and the true number of stations is N, both 
ZC and L-ZC leave M - N gaps.) 

IV. CONCLUSION 

In this paper, we have proposed a new class of MAC 
protocols that deploy sophisticated learning techniques to 
achieve perfect coordination. Our proposed protocols are com­
pletely distributed, requiring neither any central control nor 
any exchange of control messages between stations and use 
minimal feedback. Our results show that despite this minimal 
feedback the proposed protocols converge very quickly to 
perfect coordination and yield optimal throughput. 
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