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Sustaining cooperation among self-interested agents is critical for the proliferation of emerging online com-
munities. Providing incentives for cooperation in online communities is particularly challenging because of
their unique features: a large population of anonymous agents having asymmetric interests and dynami-
cally joining and leaving the community, operation errors, and agents trying to whitewash when they have
a low standing in the community. In this article, we take these features into consideration and propose a
framework for designing and analyzing a class of incentive schemes based on rating protocols, which consist
of a rating scheme and a recommended strategy. We first define the concept of sustainable rating protocols
under which every agent has the incentive to follow the recommended strategy given the deployed rating
scheme. We then formulate the problem of designing an optimal rating protocol, which selects the proto-
col that maximizes the overall social welfare among all sustainable rating protocols. Using the proposed
framework, we study the structure of optimal rating protocols and explore the impact of one-sided rating,
punishment lengths, and whitewashing on optimal rating protocols. Our results show that optimal rating
protocols are capable of sustaining cooperation, with the amount of cooperation varying depending on the
community characteristics.
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1. INTRODUCTION

Recent developments in technology have expanded the boundaries of communities in
which individuals interact with each other. For example, nowadays, individuals can
obtain valuable information or content from remotely located individuals in an online
community formed through online networking services [Adamic et al. 2008; Blanc
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et al. 2005; Cha et al. 2007; Miller et al. 2005; Ranganathan et al. 2004; Wang et al.
2005; Zhao et al. 2012]. However, a large population and the anonymity of individ-
uals in such an online community make it difficult to sustain cooperative behavior
among self-interested individuals [Awerbuch et al. 2004; Hanaki et al. 2007]. For ex-
ample, it has been reported that “free-riding” is widely observed in peer-to-peer net-
works [Lopez-Pintado 2007; Saroiu et al. 2002]. Hence, incentive schemes are needed
to cultivate cooperative behavior in online communities.

A variety of incentive schemes have been explored to induce cooperation in such
online communities. The most popular incentives are based on pricing schemes and
differential service provision. Pricing schemes use payments to reward and punish in-
dividuals for their behavior, which in principle can induce self-interested individuals to
cooperate with each other to attain the social optimum by internalizing their external
effects (see, e.g., [Bergemann and Ozman 2006; MacKie-Mason and Varian 1995]). The
main challenge with the pricing scheme is that the resources/services being exchanged
need to be accurately priced in order to make the punishment scheme effective. How-
ever, this prerequisite is difficult to fulfill in many online communities, where agents
interact frequently with each other and the services being exchanged between them
are not real goods but rather solutions to small tasks or small amounts of resources
which are difficult to price. One example of such applications is the online question
and answer forum [Adamic et al. 2008], where the service represents a small “favor”
in answering the questions posted by other agents, that is, knowledge is what is be-
ing exchanged here. The difficulty in pricing such small services (i.e., the knowledge
and resources being exchanged) in these applications prevents the pricing scheme of
being effective. Therefore, it is more effective to incentivize agents to provide services
by rewarding them in the form of rating scores/virtual credits, which allow them to ob-
tain the same type of services in the future from the community as a returning favor.
Also, a pricing scheme often requires a complex accounting infrastructure, which in-
troduces substantial communication and computation overheads [Vishnumurthy et al.
2003]. Hence, it is impractical for the pricing scheme and the corresponding infras-
tructure to be implemented in large-scale online communities, for example, peer-to-
peer systems [Feldman et al. 2004], mobile networks [Wang et al. 2005], etc., where
agents have limited computing and communication capabilities and are interacting
frequently with each other for small services (i.e., frequent transactions). For example,
there have been some works that design monetary-based incentive mechanisms for
peer-to-peer systems where each peer maintains a bank account and uses real money
to purchase resources. However, it has been measured that significant overheads are
introduced by the deployment of a payment infrastructure, and hence, such pricing
schemes were never actually implemented in such online communities. Finally, pricing
the services in online communities might discourage agents from participating in the
community.

Differential service schemes, on the other hand, reward and punish individuals by
providing differential services depending on their behavior instead of using monetary
rewards [Feldman et al. 2004; Ma et al. 2006; Park and van der Schaar 2010; Resnick
and Zeckhauser 2002; Zhang and van der Schaar 2011]. Differential services can be
provided by community operators or by community members. Community operators
can treat individuals differentially (e.g., by varying the quality or scope of services)
based on the information about the behavior of individuals. Incentive provision by
a central entity can offer a robust method to sustain cooperation [Park and van der
Schaar 2010]. However, such an approach is impractical in a large community, because
the burden of a central entity monitoring individuals’ behavior and providing differen-
tial services for them becomes prohibitively heavy as the population size grows. Alter-
natively, more distributed incentive schemes exist where community members monitor
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Rating Protocols in Online Communities 4:3

the behavior of each other and provide differential services based on their observations
[Feldman et al. 2004; Ma et al. 2006; Resnick and Zeckhauser 2002; Zhang and van der
Schaar 2011]. Such incentive schemes are based on the principle of reciprocity and can
be classified into personal reciprocation (or direct reciprocity) [Feldman et al. 2004;
Habib and Chuang 2006; Ma et al. 2006] and social reciprocation (or indirect reci-
procity) [Dellarocas 2005, 2006; Ellison 1994; Friedman and Resnick 2000; Kandori
1992; Resnick et al. 2000]. In personal reciprocation schemes, individuals can identify
each other, and behavior toward an individual is based on their personal experience
with that individual. Personal reciprocation is effective in sustaining cooperation in
a small community where individuals can identify each other and interact frequently
with fixed opponents, but it loses its power in a large community where individuals
have asymmetric interests and can freely and frequently change the opponents they
interact with [Kandori 1992]. In social reciprocation schemes, individuals obtain some
information about other individuals (e.g., rating) and decide their actions toward an
individual based on this available information. Hence, an individual can be rewarded
or punished by other individuals in the online community who have not had past in-
teractions with him [Kandori 1992; Okuno-Fujiwara and Postlewaite 1995]. Therefore,
social reciprocation has a potential to form a basis of successful incentive schemes for
online communities. As such, this article is devoted to the study of incentive schemes
based on social reciprocation.

Sustaining cooperation using social reciprocation has been investigated in the liter-
ature using the framework of anonymous random matching games in which each in-
dividual is repeatedly matched with different partners over time for service exchange
and tries to maximize his discounted long-term utility. To implement social recipro-
cation, it is important for the community to share enough information about past
interactions such that the community members know how to reward or punish oth-
ers. This existing literature makes different assumptions on the information revealed
to community members about other members. In Takahashi [2010], each community
member observes the entire history of the past plays of his current partner. In Ellison
[1994] and Deb [2007], community members are informed about the outcomes of the
matches in which they have been directly involved. Rating protocols have been pro-
posed [Kandori 1992; Okuno-Fujiwara and Postlewaite 1995], where each community
member is attached a rating score indicating his social status, which takes a value
from a finite set and records his past plays, and community members with different
rating scores are treated differently by other individuals they interact with. For online
communities, maintaining direct records of individuals’ past plays which are used [Deb
2007; Ellison 1994; Takahashi 2010] are not appropriate, because the communication
and storage costs for revealing the entire history of the past plays of an individual
grow unbounded with time. Since the use of rating score as a summary record requires
significantly less amount of information being maintained, we will design incentive
schemes based on rating protocols for online communities. A rating-based incentive
scheme can be easily implemented in online communities that deploy entities (e.g., a
tracker in P2P networks [Feldman et al. 2004], or a Web portal in Web-based appli-
cations [Adamic et al. 2008]) who can collect, process, and deliver information about
individuals’ play history to generate rating scores.

Cooperation among community members can be sustained in all these preceding
works on anonymous random matching games. However, all of them have focused
on obtaining the Folk Theorem by characterizing the set of equilibrium payoffs that
can be achieved when the discount factor of individuals is sufficiently close to 1. Our
work, on the contrary, addresses the problem of designing a rating-based incentive
scheme given a discount factor and other parameters arising from practical consider-
ations, which are not fully considered in the existing literature on anonymous random

ACM Transactions on Economics and Computation, Vol. 2, No. 1, Article 4, Publication date: March 2014.



�

�

�

�

�

�

�

�

4:4 Y. Zhang et al.

matching games. Specifically, our work takes into account the following features of
online communities.

— Asymmetry of Interests. As an example, consider a community where individuals
with different areas of expertise share knowledge with each other. It would rarely
be the case that a pair of individuals has a mutual interest in each other’s exper-
tise simultaneously. We allow for the possibility of asymmetric interests by model-
ing the interaction between a pair of individuals as a gift-giving game, instead of a
prisoner’s dilemma game which assumes mutual interests between a pair of indi-
viduals [Feldman et al. 2004; Kandori 1992; Okuno-Fujiwara and Postlewaite 1995;
Takahashi 2010]. It should be noted that the asymmetry of interests in this article
specifically refers to the fact that two agents in one stage game do not have mutual
interests in each other’s resources or services possessed simultaneously. Such asym-
metry of interests exists in various applications. For example, in an online question
and answer forum, such as Yahoo! Answers, a user i who answers a question of an-
other user j does not necessarily have to propose questions to user j as well [Adamic
et al. 2008].

— Report Errors. In an incentive scheme based on a rating protocol, it is possible that
the rating score (or label) of a specific individual is updated incorrectly because of
errors in the reports of his partners (i.e., other individuals he interacts with). Our
model incorporates the possibility of report errors, which allows us to analyze its
impact on design and performance, whereas most existing works on rating schemes
(e.g., [Kandori 1992; Okuno-Fujiwara and Postlewaite 1995]) adopt an idealized as-
sumption that rating scores are always updated correctly.

— Whitewashing. Whitewashing refers to the behavior of an individual creating multi-
ple identities by repeatedly entering an anonymous online community. In an online
community, individuals with bad rating scores may attempt to whitewash their rat-
ing scores by leaving and rejoining the community as new members to avoid pun-
ishments imposed by the system upon their old identities [Feldman et al. 2004]. We
consider this possibility and study the design of whitewash-proof rating protocols
and their performance.

Note that our model and analysis also differ significantly from most existing
works on reputation systems [Dellarocas 2005, 2006; Jurca 2007]. First, their models
[Dellarocas 2005, 2006; Jurca 2007] assume that individuals assume fixed roles in the
community (i.e., seller or buyer), which is common in applications where the groups of
sellers and buyers are separated and usually do not overlap [Resnick and Zeckhauser
2002]. Nevertheless, in online communities, such as P2P networks, online labor mar-
kets, etc., each agent can be both the provider and the receiver of services. Second, their
reputation systems [Dellarocas 2005, 2006; Jurca 2007] rely on differential pricing
schemes to incentivize sellers to cooperate. We have already mentioned that the ser-
vices being exchanged and shared in online communities are difficult to price, thereby
preventing such pricing-based reputation systems to be effectively deployed. Finally
and most importantly, they [Dellarocas 2005, 2006; Jurca 2007] consider the repeated
game between a unique long-lived seller and many short-lived buyers, and the design
principle there is to maximize the expected (discounted) long-term utility of the indi-
vidual long-lived seller. In contrast, we consider in this article the interplay among
a large number of long-lived individuals and aim to maximize the social welfare (i.e.,
the sum utility) of the entire community, which makes their designs [Dellarocas 2005,
2006; Jurca 2007] inapplicable here. A more detailed and in-depth comparison between
our work and theirs [Dellarocas 2005, 2006; Jurca 2007] is provided in Section 7. The
differences between our work and the existing literature on social reciprocity are sum-
marized in the Table I in order to highlight our contribution and novelty.
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Table I. Comparison between the Existing Literature and Our Work

[Takahashi [Kandori 1992;
[Dellarocas 2005,2010; Ellison Okuno-Fujiwara

2006]
[Jurca 2007] Our work

1994] and Postlewaite 1995]
Incentive Differential Differential Monetary Monetary Differential

device services services rewards rewards services
Asymmetry of

N/A No No No Yesinterests
Report errors N/A No Yes Yes Yes

Information
Entire history

Individual Individual Individual Individual
requirement

of stage game
rating rating rating ratingoutcomes

Discount factor
Sufficiently Sufficiently Sufficiently

Arbitrary Arbitraryclose to 1 close to 1 large
Number of long-

Multiple Multiple One One Multiplelived players
Protocol design No No Yes Yes Yes

Optimization
Individual Individual Individual Individual

Sum utility of
criterion

long-term long-term long-term long-term
all playersutility utility utility utility

The remainder of this article is organized as follows. In Section 2, we describe the
repeated anonymous matching game and incentive schemes based on a rating protocol.
In Section 3, we formulate the problem of designing an optimal rating protocol. In
Section 4, we provide analytical results about optimal rating protocols. In Section 5, we
extend our model to address the impacts of variable punishment length, whitewashing
possibility, and one-sided rating. We provide simulation results in Section 6, discuss
the related works in Section 7, and conclude in Section 8.

2. MODEL

2.1. Repeated Matching Game

We consider a community where each member, or agent, can offer a valuable service
to other agents. Examples of services are expert knowledge, customer reviews, job
information, multimedia files, storage space, and computing power. We consider an
infinite-horizon discrete-time model with a continuum of agents [Feldman et al. 2004]
to highlight our focus on online communities with large agent populations. Such a con-
tinuum population model is commonly adopted in the analysis for large-scale dynamic
networks, for example, peer-to-peer systems [Feldman et al. 2004; Zhao et al. 2012],
grid networks [Ranganathan et al. 2004], social sharing websites [Adamic et al. 2008;
Cha et al. 2007], etc.1 In a period, each agent generates a service request [Massoulie
and Vojnovic 2005], which is sent to another agent that can provide the requested
service.2 We model the request generation and agent selection process using uniform
random matching: each agent receives exactly one request in every period, and each
agent is equally likely to receive the request of an agent, and the matching is indepen-
dent across periods.3 Such a model well approximates the matching process between
agents in large-scale online communities where agents interact with others in an ad-
hoc fashion and the interactions between agents are constructed randomly over time.

1It also has been shown in our technical report [Zhang and van der Schaar 2011] that the continuum model
can significantly reduce the complexity of designing optimal rating protocols in the anonymous random
matching game while incurring small efficiency loss compared to the case where a finite population model
is employed.
2It should be noted that our analysis can be readily extended to the case where each agent generates a
service request with probability λ < 1. We assume λ = 1 in this article only for the simplicity of illustrations.
3The impact of matching schemes on the incentive of agents and the performance of online communities
falls out of the scope of this article but serves as an important next step in this line of research.
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Table II. Pay-Off Matrix of a Gift-Giving Game

Server
F D

Client b, −c 0, 0

For example, in a mobile relay network [Wang et al.] where agents (e.g., mobile de-
vices) within a certain area are able to relay traffic for each other through unlicensed
spectrum (e.g., WLAN) to the destination (e.g., nearby cellular base stations), the relay
node that each mobile agent encounters at each moment could be approximately as-
sumed to be random, since this mobile agent is moving around the area randomly over
time. In other words, each idle agent in the same area has approximately the same
probability of being chosen as the relay node.

In a pair of matched agents, the agent that requests a service is called a client, while
the agent that receives a service request is called a server. In every period, each agent
in the community is involved in two matches, one as a client and the other as a server.
Note that the agent with whom an agent interacts as a client can be different from that
with whom he interacts as a server, reflecting asymmetric interests between a pair of
agents at a given instant.

We model the interaction between a pair of matched agents as a gift-giving game
[Johnson et al. 2000]. In a gift-giving game, the server has the binary choice of whether
to fulfill or decline the request, while the client has no choice. The server’s action de-
termines the payoffs of both agents. If the server fulfills the client’s request, the client
receives a service benefit of b > 0, while the server suffers a service cost of c > 0. We
assume that b > c so that the service of an agent creates a positive net social benefit.
If the server declines the request, both agents receive zero payoffs. The set of actions
for the server is denoted by A = {F, D}, where F stands for “fulfill” and D for “decline”.
The payoff matrix of the gift-giving game is presented in Table II. An agent plays the
gift-giving game repeatedly with changing partners until he leaves the community. We
assume that at the end of each period, a fraction α ∈ [0, 1] of agents in the current
population leave and the same amount of new agents join the community. We refer to
α as the turnover rate [Feldman et al. 2004].

Social welfare in a time period is measured by the average payoff of the agents in
that period. Since b > c, social welfare is maximized when all the servers choose action
F in the gift-giving games they play, which yields payoff b − c to every agent. On the
contrary, action D is the dominant strategy for the server in the gift-giving game, which
constitutes a Nash equilibrium of the gift-giving game. When every server chooses his
action to maximize his current payoff myopically, an inefficient outcome arises where
every agent receives zero payoff.

2.2. Incentive Schemes Based on a Rating Protocol

In order to improve the efficiency of the myopic equilibrium, we use incentive schemes
based on rating protocols. A rating protocol is defined as the rules that a community
uses to regulate the behavior of its members. These rules indicate the established and
approved ways of operating (e.g., exchanging services) in the community: adherence to
these rules is positively rewarded, while failure to follow these rules results in (pos-
sibly severe) punishments [Mailath and Samuelson 2006]. This gives rating protocols
a potential of providing incentives for cooperation. We consider a rating protocol that
consists of a rating scheme and a recommended strategy, as in Kandori [1992] and
Okuno-Fujiwara and Postlewaite [1995]. A rating scheme determines the ratings of
agents depending on their past actions as a server, while a recommended strategy
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prescribes the actions that servers should take depending on the ratings of the
matched agents.

Formally, a rating scheme is represented by three parameters (�, K, τ): � denotes
the set of rating scores that an agent can hold, K ∈ � denotes the initial rating score
attached to newly joining agents, and τ is the rating update rule. After a server takes
an action, the client sends a report (or feedback) about the action of the server to the
third-party device or infrastructure that manages the rating scores of agents, but the
report is subject to errors with a small probability ε. That is, with probability ε, D
is reported when the server takes action F, and vice versa. Assuming a binary set of
reports, it is without loss of generality to restrict ε in [0, 1/2]. When ε = 1/2, reports are
completely random and do not contain any meaningful information about the actions
of servers. We consider a rating scheme that updates the rating score of a server based
only on the rating scores of matched agents and the reported action of the server. Then,
a rating scheme can be represented by a mapping τ : �×�×A → �, where τ(θ , θ̃ , aR)
is the new rating score for a server with current rating score θ when he is matched with
a client with rating score θ̃ and his action is reported as aR. A recommended strategy
is represented by a mapping σ : � × � → A, where σ(θ , θ̃ ) is the approved action for a
server with rating score θ that is matched with a client with rating score θ̃ .4

To simplify our analysis, we initially impose the following restrictions on rating
schemes.5

(1) � is a nonempty finite set, that is, � = {0, 1, . . . , L} for some nonnegative
integer L.

(2) K = L.
(3) τ is defined by

τ(θ , θ̃ , aR) =
{

min{θ + 1, L} if aR = σ(θ , θ̃ ),
0 if aR �= σ(θ , θ̃ ).

(1)

Note that with these three restrictions, a nonnegative integer L completely describes
a rating scheme, and thus a rating protocol can be represented by a pair κ = (L, σ).
We call the rating scheme determined by L the maximal punishment rating scheme
(MPRS) with punishment length L. In the MPRS with punishment length L, there are
L + 1 rating scores, and the initial rating score is specified as L. If the reported action
of the server is the same as that specified by the recommended strategy σ , the server’s
rating score is increased by 1 while not exceeding L. Otherwise, the server’s rating
score is set as 0. A schematic representation of an MPRS is provided in Figure 1.

We now summarize the sequence of events in a time period.

(1) Agents generate service requests and are matched.
(2) Each server observes the rating of his client and then determines his action.
(3) Each client reports the action of his server.
(4) The rating scores of agents are updated, and each agent observes his new rating

score for the next period.
(5) A fraction of agents leave the community, and the same amount of new agents join

the community.

4The strategies in the existing rating mechanisms [Kandori 1992; Okuno-Fujiwara and Postlewaite 1995]
determine the server’s action based solely on the client’s rating score, and thus can be considered as a special
case of the recommended strategies proposed in this article.
5We will relax the second and third restrictions in Section 5.
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Fig. 1. Schematic representation of a maximal punishment rating scheme.

3. PROBLEM FORMULATION

3.1. Stationary Distribution of Rating Scores

As time passes, the rating scores of agents are updated, and agents leave and join
the community. Thus, the distribution of rating scores in the community evolves over
time. Let ηt(θ) be the fraction of θ -agents in the total population at the beginning of an
arbitrary period t, where a θ -agent means an agent with rating θ . Suppose that all the
agents in the community follow a given recommended strategy σ . Then the transition
from {ηt(θ)}L

θ=0 to {ηt+1(θ)}L
θ=0 is determined by the rating scheme, taking into account

the turnover rate α and the error probability ε, as shown in the following expressions:

ηt+1(0) = (1 − α)ε,
ηt+1(θ) = (1 − α)(1 − ε)ηt(θ − 1) for 1 ≤ θ ≤ L − 1,
ηt+1(L) = (1 − α)(1 − ε){ηt(L) + ηt(L − 1)} + α.

(2)

Since we are interested in the long-term payoffs of the agents, we study the distribu-
tion of rating scores in the long run.

Definition 1 (Stationary Distribution). {η(θ)} is a stationary distribution of rating
scores under the dynamics defined by Eq. (2) if it satisfies

∑L
θ=0 η(θ) = 1, η(θ) ≥ 0, ∀θ ,

and

η(0) = (1 − α)ε,
η(θ) = (1 − α)(1 − ε)η(θ − 1) for 1 ≤ θ ≤ L − 1,
η(L) = (1 − α)(1 − ε){η(L) + η(L − 1)} + α.

(3)

The following lemma shows the existence of and convergence to a unique stationary
distribution.

LEMMA 1. For any ε ∈ [0, 1/2] and α ∈ [0, 1], there exists a unique stationary dis-
tribution {η(θ)} whose expression is given by

η(θ) = (1 − α)θ+1(1 − ε)θ ε, for 0 ≤ θ ≤ L − 1,

η(L) =
{

1 if α = ε = 0,
(1−α)L+1(1−ε)Lε+α

1−(1−α)(1−ε)
otherwise.

(4)

Moreover, the stationary distribution {η(θ)} is reached within (L + 1) periods starting
from any initial distribution.

ACM Transactions on Economics and Computation, Vol. 2, No. 1, Article 4, Publication date: March 2014.
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PROOF. Suppose that α > 0 or ε > 0. Then Eq. (3) has a unique solution.

η(θ) = (1 − α)θ+1(1 − ε)θ ε, for 0 ≤ θ ≤ L − 1,

η(L) = (1−α)L+1(1−ε)Lε+α
1−(1−α)(1−ε)

,
(5)

which satisfies
∑L

θ=0 η(θ) = 1. Suppose that α = 0 and ε = 0. Then solving Eq. (3)
together with

∑L
θ=0 η(θ) = 1 yields a unique solution η (θ) = 0 for 0 ≤ θ ≤ L − 1 and

η(L) = 1. It is easy to see from the expressions in Eq. (2) that η(θ) is reached within
(θ + 1) periods, for all θ , starting from any initial distribution.

Since the coefficients in the equations that define a stationary distribution are inde-
pendent of the recommended strategy that the agents follow, the stationary distribu-
tion is also independent of the recommended strategy, as can be seen in Eq. (4). Thus,
we will write the stationary distribution as {ηL(θ)} to emphasize its dependence on the
rating scheme, which is represented by L.

3.2. Sustainable Rating Protocols

We now investigate the incentive for agents to follow a prescribed recommended strat-
egy. For simplicity, we check the incentive of agents at the stationary distribution of
rating scores, as in Okuno-Fujiwara and Postlewaite [1995] and Adlakha et al. [2008].
Since we consider a non-cooperative scenario, we need to check whether an agent can
improve his long-term payoff by a unilateral deviation. Note that any unilateral devi-
ation from an individual agent would not affect the evolution of rating scores and thus
the stationary distribution, because we consider a continuum of agents.6

Let cσ (θ , θ̃ ) be the cost suffered by a server with rating score θ that is matched with
a client with rating score θ̃ and follows a recommended strategy σ , that is, cσ (θ , θ̃ ) = c
if σ(θ , θ̃ ) = F and cσ (θ , θ̃ ) = 0 if σ(θ , θ̃ ) = D. Similarly, let bσ (θ , θ̃ ) be the benefit
received by a client with rating score θ̃ that is matched with a server with rating
score θ following a recommended strategy σ , that is, bσ (θ , θ̃ ) = b if σ(θ , θ̃ ) = F and
bσ (θ , θ̃ ) = 0 if σ(θ , θ̃ ) = D. Since we consider uniform random matching, the expected
period payoff of a θ -agent under rating protocol κ before he is matched is given by

vκ(θ) =
∑
θ̃∈�

ηL(θ̃)bσ (θ̃ , θ) −
∑
θ̃∈�

ηL(θ̃)cσ (θ̃ , θ). (6)

To evaluate the long-term payoff of an agent, we use the discounted sum criterion
in which the long-term payoff of an agent is given by the expected value of the sum
of discounted period payoffs from the current period. Let pκ(θ ′|θ) be the transition
probability that a θ -agent becomes a θ ′-agent in the next period under rating protocol
κ. Under MPRS, pκ(θ ′|θ) can be expressed as

pκ(θ ′|θ) =
⎧⎨
⎩

1 − ε if θ ′ = min{θ + 1, L},
ε if θ ′ = 0,
0 otherwise.

for all θ ∈ � (7)

Then we can compute the long-term payoff of an agent from the current period (before
he is matched) by solving the following recursive equations

v∞
κ (θ) = vκ(θ) + δ

∑
θ ′∈�

pκ(θ ′|θ)v∞
κ (θ ′) for all θ ∈ �, (8)

6This is true for any deviation by agents of measure zero.
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where δ = β(1 − α) is the weight that an agent puts on his future payoff. Because an
agent leaves the community with probability α at the end of the current period, the
expected future payoff of a θ -agent is given by (1 − α)

∑
θ ′∈� pκ(θ ′|θ)v∞

κ (θ ′), assuming
that an agent receives zero payoff once he leaves the community. The expected future
payoff is multiplied by a common discount factor β ∈ [0, 1), which reflects the time
preference, or patience, of agents.

Now suppose that an agent deviates and uses a strategy σ ′ under rating protocol κ.
Because the deviation of a single agent does not affect the stationary distribution, the
expected period pay-off of a deviating θ -agent is given by

vκ,σ ′(θ) =
∑
θ̃∈�

ηL(θ̃)bσ (θ̃ , θ) +
∑
θ̃∈�

ηL(θ̃)cσ ′(θ , θ̃ ). (9)

Let pκ,σ ′(θ ′|θ , θ̃ ) be the transition probability that a θ -agent using the strategy σ ′ be-
comes a θ ′-agent in the next period under rating protocol κ, when he is matched with
a client with rating score θ̃ . For each θ , θ ′ = min{θ + 1, L} with probability (1 − ε)

and θ ′ = 0 with probability ε if σ(θ , θ̃ ) = σ ′(θ , θ̃ ), while the probabilities are reversed
otherwise. Then pκ,σ ′(θ ′|θ) = ∑

θ̃∈� ηL(θ̃)pκ,σ ′(θ ′|θ , θ̃ ) gives the transition probability of
a θ -agent before knowing the rating score of his client, and the long-term payoff of a
deviating agent from the current period (before he is matched) can be computed by
solving

v∞
κ,σ ′(θ) = vκ,σ ′(θ) + δ

∑
θ ′∈�

pκ,σ ′(θ ′|θ)v∞
κ,σ ′(θ ′) for all θ ∈ �. (10)

In our model, a server decides whether to provide a service or not after he is matched
with a client and observes the rating score of the client. Hence, we check the incentive
for a server to follow a recommended strategy at the point when he knows the rating
score of the client. Suppose that a server with rating score θ is matched with a client
with rating score θ̃ . When the server follows the recommended strategy σ prescribed
by rating protocol κ, he receives the long-term payoff −cσ (θ , θ̃ ) + δ

∑
θ ′ pκ(θ ′|θ)v∞

κ (θ ′),
excluding the possible benefit as a client in the current period. On the contrary, when
the server deviates to a recommended strategy σ ′, he receives the long-term payoff
−cσ ′(θ , θ̃ ) + δ

∑
θ ′ pκ,σ ′(θ ′|θ , θ̃ )v∞

κ,σ ′(θ ′), again excluding the possible benefit as a client.
By comparing these two payoffs, we can check whether a θ -agent has an incentive to
deviate to σ ′ when he is matched with a client with rating score θ̃ .

Definition 2 (Sustainable Rating Protocols). A rating protocol κ is sustainable if

−cσ (θ , θ̃ ) + δ
∑

θ ′ pκ(θ ′|θ)v∞
κ (θ ′) ≥ −cσ ′(θ , θ̃ ) + δ

∑
θ ′ pκ,σ ′(θ ′|θ , θ̃ )v∞

κ,σ ′(θ ′), (11)

for all σ ′, for all (θ , θ̃ ).

In other words, a rating protocol κ = (L, σ) is sustainable if no agent can gain from
a unilateral deviation regardless of the rating score of the client he is matched with
when every other agent follows the recommended strategy σ and the rating scores are
determined by the MPRS with punishment length L. Thus, under a sustainable rat-
ing protocol, agents follow the prescribed recommended strategy in their self-interest.
Checking whether a rating protocol is sustainable using the preceding definition re-
quires computing deviation gains from all possible recommended strategies whose
computation complexity can be quite high for moderate values of L. By employing the
criterion of unimprovability in Markov decision theory [Whittle 1983], we establish
the one-shot deviation principle for sustainable rating protocols, which provides sim-
pler conditions. For notation, let ca be the cost suffered by a server that takes action a,
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and let pκ,a(θ ′|θ , θ̃ ) be the transition probability that a θ -agent becomes a θ ′-agent in
the next period under rating protocol κ when he takes action a to a client with rating
score θ̃ . The values of pκ,a(θ ′|θ , θ̃ ) can be obtained in a similar way to that of obtaining
pκ,σ ′(θ ′|θ , θ̃ ), by comparing a with σ(θ , θ̃ ).

LEMMA 2 (ONE-SHOT DEVIATION PRINCIPLE). A rating protocol κ is sustainable
if and only if

cσ (θ , θ̃ ) − ca ≤ δ

[∑
θ ′

{pκ(θ ′|θ) − pκ,a(θ ′|θ , θ̃ )}v∞
κ (θ ′)

]
, (12)

for all a �= σ(θ , θ̃ ), for all (θ , θ̃ ).

PROOF. If rating protocol κ is sustainable, then clearly there are no profitable
one-shot deviations. We can prove the converse by showing that if κ is not sustain-
able, there is at least one profitable one-shot deviation. Since cσ (θ , θ̃ ) and ca are
bounded, this is true by the unimprovability property in Markov decision theory
[Kreps 1977].

Lemma 2 shows that if an agent cannot gain by unilaterally deviating from σ only
in the current period and following σ afterwards, he cannot gain by switching to any
other recommended strategy σ ′ either, and vice versa. The left-hand side of Eq. (12)
can be interpreted as the current gain from choosing a, while the right-hand side of
Eq. (12) represents the discounted expected future loss due to the different transition
probabilities induced by choosing a. Using the one-shot deviation principle, we can
derive incentive constraints that characterize sustainable rating protocols.

First, consider a pair of rating scores (θ , θ̃ ) such that σ(θ , θ̃ ) = F. If the server with
rating score θ serves the client, he suffers the service cost of c in the current period,
while his rating score in the next period becomes min{θ + 1, L} with probability (1 − ε)
and 0 with probability ε. Thus, the expected long-term payoff of a θ -agent when he
provides a service is given by

Vθ (F; F) = −c + δ[(1 − ε)v∞
κ (min{θ + 1, L}) + εv∞

κ (0)] . (13)

On the contrary, if a θ -agent deviates and declines the service request, he avoids the
cost of c in the current period, while his rating score in the next period becomes 0 with
probability (1 − ε) and min{θ + 1, L} with probability ε. The expected long-term payoff
of a θ -agent when he does not provide a service is given by

Vθ (D; F) = δ[(1 − ε)v∞
κ (0) + εv∞

κ (min{θ + 1, L})] . (14)

The incentive constraint that a θ -agent does not gain from a one-shot deviation is given
by Vθ (F; F) ≥ Vθ (D; F), which can be expressed as

δ(1 − 2ε)[v∞
κ (min{θ + 1, L}) − v∞

κ (0)] ≥ c. (15)

Now, consider a pair of rating scores (θ , θ̃ ) such that σ(θ , θ̃ ) = D. Using a similar
argument as before, we can show that the incentive constraint that a θ -agent does not
gain from a one-shot deviation can be expressed as

δ(1 − 2ε)[v∞
κ (min{θ + 1, L}) − v∞

κ (0)] ≥ −c. (16)

Note that Eq. (15) implies Eq. (16), and thus for θ such that σ(θ , θ̃ ) = F for some θ̃ , we
only have to check the first incentive constraint (Eq. (15)). Therefore, a rating protocol
κ is sustainable if and only if Eq. (15) holds for all θ such that σ(θ , θ̃ ) = F for some θ̃ and
Eq. (16) holds for all θ such that σ(θ , θ̃ ) = D for all θ̃ . The left-hand side of the incentive
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constraints of Eqs. (15) and (16) can be interpreted as the loss from punishment that
rating protocol κ applies to a θ -agent for not following the recommended strategy. In
order to induce a θ -agent to provide a service to some clients, the left-hand side should
be at least as large as the service cost c, which can be interpreted as the deviation
gain. We use minθ∈�{δ(1 − 2ε)[v∞

κ (min{θ + 1, L}) − v∞
κ (0)]} to measure the strength

of the incentive for cooperation under the rating protocol κ, where cooperation means
providing the requested service in our context.

3.3. Rating Protocol Design Problem

Since we assume that the community operates at the stationary distribution of rating
scores, social welfare under rating protocol κ can be computed by

Uκ =
∑
θ

ηL(θ)vκ(θ). (17)

The community operator aims to choose a rating protocol that maximizes social welfare
among sustainable rating protocols. Then the problem of designing a rating protocol
can be formally expressed as

maximize
(L,σ)

Uκ = ∑
θ

ηL(θ)vκ (θ)

subject to δ(1 − 2ε) [ v∞
κ (min{θ + 1, L}) − v∞

κ (0)] ≥ c, ∀θ such that ∃θ̃ such that σ(θ , θ̃ ) = F,
δ(1 − 2ε) [ v∞

κ (min{θ + 1, L}) − v∞
κ (0)] ≥ −c, ∀θ such that σ(θ , θ̃ ) = D ∀θ̃ .

(18)

A rating protocol that solves the design problem of Eq. (18) is called an optimal rating
protocol.

4. ANALYSIS OF OPTIMAL RATING PROTOCOLS

4.1. Optimal Value of the Design Problem

We first investigate whether there exists a sustainable rating protocol, that is, whether
the design problem of Eq. (18) has a feasible solution. Fix the punishment length L
and consider a recommended strategy σD

L defined by σD
L (θ , θ̃ ) = D for all (θ , θ̃ ). Since

there is no service provided in the community when all the agents follow σD
L , we have

v∞
(L,σD

L )
(θ) = 0 for all θ . Hence, the relevant incentive constraint of Eq. (16) is satisfied

for all θ , and the rating protocol (L, σD
L ) is sustainable. This shows that the design

problem of Eq. (18) always has a feasible solution.
Assuming that an optimal rating protocol exists, let U∗ be the optimal value of the

design problem of Eq. (18). In the following proposition, we study the properties of U∗.

PROPOSITION 1. The optimal value of the design problem of (18) satisfies the fol-
lowing properties.

(i) 0 ≤ U∗ ≤ b − 1−ε
1−2ε

c.

(ii) U∗ = 0 if c
b >

β(1−α)(1−2ε)
1−β(1−α)(2−3ε)

.
(iii) U∗ ≥ [1 − (1 − α)ε] (b − c) if c

b ≤ β(1 − α)(1 − 2ε).
(iv) U∗ = b − c if ε = 0 and c

b ≤ β(1 − α).
(v) U∗ = b − c only if ε = 0 and c

b ≤ β(1−α)
1−β(1−α)

.

PROOF. See Appendix A.

Proposition 1(i) proves that the optimal social welfare cannot be negative but is al-
ways strictly bounded away from b − c, which is the social welfare when all agents

ACM Transactions on Economics and Computation, Vol. 2, No. 1, Article 4, Publication date: March 2014.



�

�

�

�

�

�

�

�

Rating Protocols in Online Communities 4:13

cooperates, when ε > 0. Hence full cooperation cannot be achieved in this scenario.
Since we obtain zero social welfare at myopic equilibrium, without using a rating pro-
tocol, we are interested in whether we can sustain a rating protocol in which agents
cooperate in a positive proportion of matches. In other words, we look for conditions
on the parameters (b, c, β, α, ε) that yield U∗ > 0. From Propositions 1(ii) and 1(iii), we
can regard c/b ≤ [β(1 − α)(1 − 2ε)] /[ 1 − β(1 − α)(2 − 3ε)] and c/b ≤ β(1 − α)(1 − 2ε)
as necessary and sufficient conditions for U∗ > 0, respectively. Moreover, when there
are no report errors (i.e., ε = 0), we can interpret c/b ≤ β(1 − α)/[ 1 − β(1 − α)] and
c/b ≤ β(1 − α) as necessary and sufficient conditions to achieve the maximum social
welfare U∗ = b−c, respectively. As a corollary of Proposition 1, we obtain the following
results in the limit.

COROLLARY 1. For any (b, c) such that b > c, (i) U∗ converges to b − c as β → 1,
α → 0, and ε → 0, and (ii) U∗ converges to 0 as β → 0, α → 1, or ε → 1/2.

Corollary 1 shows that we can design a sustainable rating protocol that achieves
near efficiency (i.e., U∗ close to b − c) when the community conditions are good (i.e., β
is close to 1, and α and ε are close to 0). Moreover, it suffices to use only two ratings
(i.e., L = 1) for the design of such a rating protocol. On the contrary, no cooperation
can be sustained (i.e., U∗ = 0) when the community conditions are bad (i.e., β is close
to 0, α is close to 1, or ε is close to 1/2), as implied by Proposition 1(ii).

4.2. Optimal Recommended Strategies Given a Punishment Length

In order to obtain analytical results, we consider the design problem of Eq. (18) with
a fixed punishment length L, denoted DPL. Note that DPL has a feasible solution,
namely, σD

L , for any L and that there are a finite number (total 2(L+1)2
) of possible

recommended strategies given L. Therefore, DPL has an optimal solution for any L.
We use U∗

L and σ ∗
L to denote the optimal value and the optimal recommended strat-

egy of DPL, respectively. We first show that increasing the punishment length cannot
decrease the optimal value.

PROPOSITION 2. U∗
L ≥ U∗

L′ for all L and L′ such that L ≥ L′.

PROOF. See Appendix B.

Proposition 2 shows that U∗
L is nondecreasing in L. Since U∗

L < b − c when ε > 0, we
have U∗ = limL→∞ U∗

L = supL U∗
L. It may be the case that the incentive constraints

eventually prevent the optimal value from increasing with L so that the supremum
is attained by some finite L. This conjecture is verified in Figure 2, where U∗

L stops
increasing when L ≥ 5. Hence, it is plausible for the protocol designer to set an upper
bound on L in practical designs with little efficiency loss incurred. Now we analyze the
structure of optimal recommended strategies given a punishment length. The proper-
ties characterized in the following proposition can effectively reduce the design space
of the optimal recommended strategy given L and thus reduces the computation com-
plexity of the optimal rating protocol design.

PROPOSITION 3. If we have that ε > 0 and α < 1, the optimal rating protocol ex-
hibits the following structures.

(i) A 0-agent does not receive service from some agents, that is, σ ∗
L(θ , 0) = D, ∃θ ∈ �.

(ii) If σ ∗
L(0, θ̂ ) = F for some θ̂ , then agents with sufficiently high rating scores always

receive service from 0-agents, that is, σ ∗
L(0, θ̃ ) = F for all θ̃ ≥ min{ln c

b/ ln β, L}.

ACM Transactions on Economics and Computation, Vol. 2, No. 1, Article 4, Publication date: March 2014.
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4:14 Y. Zhang et al.

Fig. 2. Optimal performance giving the punishment length L.

(iii) L- agents receive service from other agents whose rating scores are sufficiently high,
that is, if θ ∈ {1, . . . , L − 1} satisfies θ ≥ L − (ln c

b − ln Y(α, ε, L))
/

ln β, where

Y(α, ε, L) = (1 − α)L+1(1 − ε)Lε − (1 − α)L+2(1 − ε)L+1ε

(1 − α)L+1(1 − ε)Lε + α
, (19)

then σ ∗
L(θ , L) = F.

(iv) L-agents always provide service to other L-agents, that is, σ ∗
L(L, L) = F.

PROOF. See Appendix C.

As Proposition 3 shows, to construct an optimal rating protocol, sufficient punish-
ment should be provided to agents with low rating scores, while sufficient rewards
should be provided to agents with high rating scores.

4.3. Illustration with L = 1 and L = 2

We can represent a recommended strategy σL as an (L + 1) × (L + 1) matrix whose
(i, j)-entry is given by σL(i − 1, j − 1). Proposition 3 provides some structures of an
optimal recommended strategy σ ∗

L in the first column and the last row of the matrix
representation, but it does not fully characterize the solution of DPL. Here we aim
to obtain the solution of DPL for L = 1 and 2 and analyze how it changes with the
parameters. We first begin with the case of two ratings, that is, L = 1. In this case, if
σ1(θ , θ̃ ) = F for some (θ , θ̃ ), the relevant incentive constraint to sustain κ = (1, σ1) is
δ(1 − 2ε)[ v∞

κ (1) − v∞
κ (0)] ≥ c. By Propositions 3(ii) and 3(iv), if σ ∗

1 (θ , θ̃ ) = F for some
(θ , θ̃ ), then σ ∗

1 (0, 1) = σ ∗
1 (1, 1) = F, provided that ε > 0 and α < 1. Hence, among the

total of 16 possible recommended strategies, only four can be optimal recommended
strategies. These four recommended strategies are

σ 1
1 =

[
D F
F F

]
, σ 2

1 =
[

F F
D F

]
, σ 3

1 =
[

D F
D F

]
, σ 4

1 = σD
1 =

[
D D
D D

]
. (20)

For notational convenience, we define a recommended strategy σD0
L by σD0

L (θ , 0) =
D for all θ , and σD0

L (θ , θ̃ ) = F for all θ and all θ̃ > 0. In Eq. (20), we have σ 3
1 =

σD0
1 . The following proposition specifies the optimal recommended strategy given the

parameters.
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PROPOSITION 4. Suppose that 0 < (1 − α)ε < 1/2. Then

σ ∗
1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ 1
1 if 0 < c

b ≤ β(1−α)2(1−2ε)ε

1+β(1−α)2(1−2ε)ε
,

σ 2
1 if β(1−α)2(1−2ε)ε

1+β(1−α)2(1−2ε)ε
< c

b ≤ β(1−α)(1−2ε)[1−(1−α)ε]
1−β(1−α)2(1−2ε)ε

,

σ 3
1 if β(1−α)(1−2ε)[1−(1−α)ε]

1−β(1−α)2(1−2ε)ε
< c

b ≤ β(1 − α)(1 − 2ε),

σ 4
1 if β(1 − α)(1 − 2ε) < c

b < 1.

(21)

PROOF. Let κ i = (1, σ i
1), for i = 1, 2, 3, 4. We obtain that

Uκ1 = (1 − η1(0)2)(b − c), Uκ2 = (1 − η1(0)η1(1))(b − c),
Uκ3 = (1 − η1(0))(b − c), Uκ4 = 0.

(22)

Since 0 < (1−α)ε < 1/2, we have η1(0) < η1(1). Thus, we have Uκ1 > Uκ2 > Uκ3 > Uκ4 .
Also, we obtain that

v∞
κ1(1) − v∞

κ1(0) = η1(0)(b − c), v∞
κ2(1) − v∞

κ2(0) = b − η1(0)(b − c),
v∞

κ3(1) − v∞
κ3(0) = b, v∞

κ4(1) − v∞
κ4(0) = 0.

(23)

Thus, we have v∞
κ3(1) − v∞

κ3(0) > v∞
κ2(1) − v∞

κ2(0) > v∞
κ1(1) − v∞

κ1(0) > v∞
κ4(1) − v∞

κ4(0).
By choosing the recommended strategy that yields the highest social welfare among
sustainable ones, we obtain the result.

Proposition 4 shows that the optimal recommended strategy is determined by the
service cost-to-benefit ratio c/b. When c/b is sufficiently small, the recommended strat-
egy σ 1

1 can be sustained, yielding the highest social welfare among the four candidate
recommended strategies. As c/b increases, the optimal recommended strategy changes
from σ 1

1 to σ 2
1 to σ 3

1 and eventually to σ 4
1 . Figure 3 shows the optimal recommended

strategies with L = 1 as c varies. The parameters we use to obtain the results in the
figures of this article are set as follows unless otherwise stated: β = 0.8, α = 0.1,
ε = 0.2, and b = 10. Figure 3(a) plots the incentive for cooperation of the four recom-
mended strategies. We can find the region of c in which each strategy is sustained by
comparing the incentive for cooperation with the service cost c for σ 1

1 , σ 2
1 , and σ 3

1 , and
with −c for σ 4

1 . The solid portion of the lines indicates that the strategy is sustained
while the dashed portion indicates that the strategy is not sustained. Figure 3(b) plots
the social welfare of the four candidate strategies, with solid and dashed portions hav-
ing the same meanings. The triangle-marked line represents the optimal value, which
takes the maximum of the social welfare of all sustained strategies.

Next, we analyze the case of three ratings, that is, L = 2. In order to provide a
partial characterization of the optimal recommended strategy σ ∗

2 , we introduce the
following notation. Let σ #

2 be the recommended strategy with L = 2 that maximizes
min{v∞

κ (1) − v∞
κ (0), v∞

κ (2) − v∞
κ (0)} among all the recommended strategies with L = 2.

Let γ δ(1 − ε), as defined in Appendix A, and define a recommended strategy σB
L by

σB
L (L − 1, 0) = D and σB

L (θ , θ̃ ) = F for all (θ , θ̃ ) �= (L − 1, 0). We have the following
conclusion about σ ∗

2 and σ #
2 .

PROPOSITION 5. Suppose that ε > 0, α < 1, and
c
b

<
η2(2)

η2(1)

1 − γ

γ
<

b
c

. (24)

(i) σ #
2 = σD0

2 ; (ii) if η2(0) < η2(2), then σ ∗
2 = σB

2 .
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Fig. 3. Performance of the four candidate recommended strategies when L = 1.

PROOF.

(i) Let κ = (2, σD0
2 ). Then v∞

κ (1)−v∞
κ (0) = v∞

κ (2)−v∞
κ (0) = b. We can show that under

the given conditions, any change from σD0
2 results in a decrease in the value of

v∞
κ (1)−v∞

κ (0), which proves that σD0
2 maximizes min{v∞

κ (1)−v∞
κ (0), v∞

κ (2)−v∞
κ (0)}.

(ii) Since ε > 0 and α < 1, we have η2(θ) > 0 for all θ = 0, 1, 2, and thus replacing D
with F in an element of a recommended strategy always improves social welfare.
Hence, we first consider the recommended strategy σF

L defined by σF
L (θ , θ̃ ) = F for

all (θ , θ̃ ). σF
2 maximizes social welfare Uκ among all the recommended strategies

with L = 2, but v∞
κ (1) − v∞

κ (0) = v∞
κ (2) − v∞

κ (0) = 0. Thus, we cannot find pa-
rameters such that σF

2 satisfies the incentive constraints, and thus σF
2 �= σ ∗

2 . Now
consider recommended strategies in which there is exactly one D element. We can
show that under the given conditions, having σ2(θ , θ̃ ) = D at (θ , θ̃ ) such that θ̃ > 0
yields v∞

κ (1) − v∞
κ (0) < 0, whereas having σ2(θ , θ̃ ) = D at (θ , θ̃ ) such that θ̃ = 0

yields both v∞
κ (1) − v∞

κ (0) > 0 and v∞
κ (2) − v∞

κ (0) > 0. Thus, for any recommended
strategy having the only D element at (θ , θ̃ ) such that θ̃ > 0, there do not exist
parameters in the considered parameter space with which the incentive constraint
for 0-agents, δ(1 − 2ε)

[
v∞

κ (1) − v∞
κ (0)

] ≥ c, is satisfied. On the other hand, for any
recommended strategy having the only D element at (θ , θ̃ ) such that θ̃ = 0, we
can satisfy both incentive constraints by choosing β > 0, α < 1, ε < 1/2, and c
sufficiently close to 0. This shows that, among the recommended strategies having
exactly one D element, only those having D in the first column are possibly sus-
tainable. Since η2(1) < η2(0) < η2(2), σB

2 achieves the highest social welfare among
the three candidate recommended strategies.

Let us try to better understand now what Proposition 5 mean. Proposition 5(i) im-
plies that the maximum incentive for cooperation that can be achieved with three
ratings is β(1 − α)(1 − 2ε)b. Hence, cooperation can be sustained with L = 2 if and

ACM Transactions on Economics and Computation, Vol. 2, No. 1, Article 4, Publication date: March 2014.



�

�

�

�

�

�

�

�

Rating Protocols in Online Communities 4:17

Fig. 4. Optimal social welfare and the optimal recommended strategy of DP2.

only if β(1 − α)(1 − 2ε)b ≥ c. That is, if c/b > β(1 − α)(1 − 2ε), then σD
2 is the only sus-

tainable recommended strategy, and thus U∗
2 = 0. Therefore, when we increase c while

holding other parameters fixed, we can expect that σ ∗
2 changes from σD0

2 to σD
2 around

c = β(1 − α)(1 − 2ε)b. Note that the same is observed with L = 1 in Proposition 4.
We can see that [ητ (2)/ητ (1)] [(1 − γ )/γ ] converges to 1 as α goes to 0 and β goes to 1.
Hence, for given values of b, c, and ε, the Condition (24) is satisfied, and thus some
cooperation can be sustained if α and β are sufficiently close to 0 and 1, respectively.

Consider a rating protocol κ = (2, σB
2 ). We obtain that

min{v∞
κ (1) − v∞

κ (0), v∞
κ (2) − v∞

κ (0)} = v∞
κ (2) − v∞

κ (0) = (1 − α)2(1 − ε)ε(b − βc), (25)

and Uκ = (1 − (1 − α)3(1 − ε)ε2)(b − c). Proposition 5(ii) states that σ ∗
2 = σB

2 when the
community conditions are “favorable.” More precisely, we have σ ∗

2 = σB
2 if (1 − α)2(1 −

ε)ε(b − βc) ≥ c, or

c
b

≤ β(1 − α)3(1 − 2ε)(1 − ε)ε

1 + β2(1 − α)3(1 − 2ε)(1 − ε)ε
. (26)

Also, Proposition 5(ii) implies that U∗
2 ≤ (1 − (1 − α)3(1 − ε)ε2)(b − c) always holds.

In Figure 4, we show the optimal value and the optimal recommended strategy of
DP2 as we vary c. The optimal recommended strategy σ ∗

2 changes in the following order
before becoming σD

2 as c increases:

σ 1
2 =

⎡
⎣ F F F

D F F
F F F

⎤
⎦ , σ 2

2 =
⎡
⎣ D F F

F F F
F F F

⎤
⎦ , σ 3

2 =
⎡
⎣ D F F

D F F
F F F

⎤
⎦ ,

σ 4
2 =

⎡
⎣ F F F

F F F
D F F

⎤
⎦ , σ 5

2 =
⎡
⎣ F F F

D F F
D F F

⎤
⎦ , σ 6

2 =
⎡
⎣ D F F

F F F
D F F

⎤
⎦ , σ 7

2 =
⎡
⎣ D F F

D F F
D F F

⎤
⎦ .

(27)

Note that σ 1
2 = σB

2 for small c and σ 7
2 = σD0

2 for large c (but not too large to sus-
tain cooperation), which are consistent with the discussion about Proposition 5. For
the intermediate values of c, only the elements in the first column change in or-
der to increase the incentive for cooperation. We find that the order of the optimal
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recommended strategies between σ 1
2 = σB

2 and σ 7
2 = σD0

2 depends on the community’s
parameters (b, c, β, α, ε).

5. EXTENSIONS

5.1. Rating Schemes with Shorter Punishment Length

So far we have focused on MPRS under which any deviation in reported actions results
in a rating score of 0. Although this class of rating schemes is simple in that a rating
scheme can be identified with the number of rating scores, it may not yield the highest
social welfare among all possible rating schemes when there are report errors. When
there is no report error, that is, ε = 0, an agent maintains rating score L as long as
he follows the prescribed recommended strategy. Thus, in this case, punishment exists
only as a threat, and it does not result in an efficiency loss. On the contrary, when
ε > 0 and α < 1, there exists a positive proportion of agents with any rating from 0
to L − 1 in the stationary distribution, even if all the agents follow the recommended
strategy. Thus, there is a tension between efficiency and incentive. In order to sustain
a rating protocol, we need to provide a strong punishment so that agents do not gain
by deviation. At the same time, too severe a punishment reduces social welfare. This
observation suggests that, in the presence of report errors, it is optimal to provide
incentives just enough to prevent deviations. If we can provide a weaker punishment
while sustaining the same recommended strategy, it will improve social welfare. One
way to provide a weaker punishment is to use a random punishment. For example,
we can consider a rating scheme under which the rating score of a θ -agent becomes 0
in the next period with probability qθ ∈ (0, 1] and remains the same with probability
1 − qθ when he reportedly deviates from the recommended strategy. By varying the
punishment probability qθ for θ -agents, we can adjust the severity of the punishment
applied to θ -agents. This class of rating schemes can be identified by (L, {qθ }). MPRS
can be considered as a special case, where qθ = 1 for all θ .

Another way to provide a weaker punishment is to use a smaller punishment length,
denoted M. Under the rating scheme with (L+1) rating scores and punishment length
M, rating scores are updated by

τ(θ , θ̃ , aR) =
{

min{θ + 1, L} if aR = σ(θ , θ̃ ),
max{θ − M, 0} if aR �= σ(θ , θ̃ ).

(28)

When a θ -agent reportedly deviates from the recommended strategy, his rating score
is reduced by M in the next period if θ ≥ M, and becomes 0 otherwise. Note that this
rating scheme is analogous to real-world rating schemes for credit rating and auto
insurance risk rating. This class of rating schemes can be identified by (L, M) with
1 ≤ M ≤ L.7 MPRS can be considered as a special case where M = L.

In this article, we focus on the second approach to investigate the impacts of
the punishment length on the social welfare Uκ and the incentive for cooperation
min

θ
{δ(1 − 2ε)[ v∞

κ (min{θ + 1, L}) − v∞
κ (max{θ − M, 0})]} of a rating protocol κ, which is

now defined as (L, M, σ). The punishment length M affects the evolution of the rating

7We can further generalize this class by having the punishment length depend on the rating. That is, when
a θ -agent reportedly deviates from the recommended strategy, his rating is reduced to θ − Mθ in the next
period for some Mθ ≤ θ .
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Fig. 5. (a) Stationary distribution of rating scores; (b) the cumulative distribution when L = 5.

distribution, and the stationary distribution of rating scores with the rating scheme
(L, M), {η(L,M)(θ)}L

θ=0, satisfies the following equations:

η(L,M)(0) = (1 − α)ε
M∑

θ=0
η(L,M)(θ),

η(L,M)(θ) = (1 − α)(1 − ε)η(L,M)(θ − 1) + (1 − α)εη(L,M)(θ + M) for 1 ≤ θ ≤ L − M,
η(L,M)(θ) = (1 − α)(1 − ε)η(L,M)(θ − 1) for L − M + 1 ≤ θ ≤ L − 1,
η(L,M)(L) = (1 − α)(1 − ε){η(L,M)(L) + η(L,M)(L − 1)} + α.

(29)

Let {μ(L,M)(θ)}L
θ=1 be the cumulative distribution of {η(L,M)(θ)}L

θ=1, that is, μ(L,M)(θ) =
θ∑

k=0
η(L,M)(k) for θ = 0, . . . , L. Figure 5 plots the stationary distribution {η(L,M)(θ)}L

θ=1

and its cumulative distribution {μ(L,M)(θ)}L
θ=1 for L = 5 and M = 1, . . . , 5. We can see

that the cumulative distribution monotonically decreases with M, that is, μ(L,M1)(θ) ≤
μ(L,M2)(θ) for all θ if M1 > M2. This shows that as the punishment length increases,
there are more agents holding a lower rating score. As a result, when the community
adopts a recommended strategy that treats an agent with a higher rating score better,
increasing the punishment length reduces social welfare while it increases the incen-
tive for cooperation. This trade-off is illustrated in Figure 6, which plots social welfare
and the incentive for cooperation under a rating protocol (3, M, σC

3 ) for M = 1, 2, 3,
where the recommended strategy σC

L is defined by σC
L (θ , θ̃ ) = F if and only if θ̃ ≥ θ ,

for all θ .
In general, the recommended strategy adopted in the community is determined to-

gether with the rating scheme in order to maximize social welfare while satisfying the
incentive constraints. The design problem with variable punishment lengths can be
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Fig. 6. Social welfare and the incentive for cooperation under recommended strategy σC
L when L = 3.

Fig. 7. Social welfare and the incentive for cooperation under the optimal recommended strategy when
L = 3.

formulated as follows. First, note that the expected period payoff of a θ -agent, vκ(θ),
can be computed by Eq. (6), with the modification of the stationary distribution to
{η(L,M)(θ)}L

θ=1. Agents’ long-term payoffs can be obtained by solving Eq. (8), with the
transition probabilities now given by

pκ(θ
′ |θ) =

⎧⎪⎨
⎪⎩

1 − ε if θ
′ = min{θ + 1, L},

ε if θ
′ = max{θ − M, 0},

0 otherwise.
for all θ ∈ �, (30)

Finally, the design problem can be written as

maximize
(L,M,σ)

Uκ = ∑
θ

η(L,M)(θ)vκ(θ)

subject to δ(1 − 2ε)[v∞
κ (min{θ + 1, L}) − v∞

κ (max{θ − M, 0})] ≥ c,
∀θ such that ∃θ̃ such that σ(θ , θ̃ ) = F,
δ(1 − 2ε)[v∞

κ (min{θ + 1, L}) − v∞
κ (max{θ − M, 0})] ≥ −c,

∀θ such that σ(θ , θ̃ ) = D ∀θ̃ .

(31)

We find the optimal recommended strategy given a rating scheme (L, M) for L = 3
and M = 1, 2, 3, and plot the social welfare and the incentive for cooperation of the
optimal recommended strategies in Figure 7. Since different values of M induce dif-
ferent optimal recommended strategies given the value of L, there are no monotonic
relationships between the punishment length and social welfare as well as the incen-
tive for cooperation, unlike in Figure 6. The optimal punishment length given L can
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Fig. 8. Optimal punishment length when L = 3.

be obtained by taking the punishment length that yields the highest social welfare,
which is plotted in Figure 8. We can see that as the service cost c increases, the opti-
mal punishment length increases from 1 to 2 to 3 before cooperation becomes no longer
sustainable. This result is intuitive in that larger c requires a stronger incentive for
cooperation, which can be achieved by having a larger punishment length.

5.2. Whitewashing-Proof Rating Protocols

So far we have restricted our attention to rating schemes where newly joining agents
are endowed with the highest rating score, that is, K = L, without worrying about the
possibility of whitewashing. We now make the initial rating score K as a choice variable
of the design problem while assuming that agents can whitewash their rating scores in
order to obtain rating score K [Feldman et al. 2004]. At the end of each period, agents
can decide whether to whitewash their rating scores or not after observing their rating
scores for the next period. If an agent chooses to whitewash his rating score, then he
leaves and rejoins the community with α fraction of agents and receives initial rating
score K. The cost of whitewashing is denoted by cw ≥ 0.

The incentive constraints in the design problem of Eq. (18) are aimed at preventing
agents from deviating from the prescribed recommended strategy. In the presence of
potential whitewashing attempts, we need additional incentive constraints to prevent
agents from whitewashing their rating scores. A rating protocol κ is whitewash-proof
if and only if v∞

κ (K) − v∞
κ (θ) ≤ cw for all θ = 0, . . . , L.8 Note that v∞

κ (K) − v∞
κ (θ)

is the gain from whitewashing for an agent whose rating score is updated as θ . If
v∞

κ (K)−v∞
κ (θ) ≤ cw, there is no net gain from whitewashing for a θ -agent. We measure

the incentive for whitewashing under a rating protocol κ by maxθ∈�{v∞
κ (K) − v∞

κ (θ)}.
A rating protocol is more effective in preventing whitewashing, as the incentive for
whitewashing is smaller.

To simplify our analysis, we fix the punishment length at M = L so that a rating
scheme is represented by (L, K) with 0 ≤ K ≤ L. Let {η(L,K)(θ)}L

θ=1 be the stationary
distribution of rating scores under rating scheme (L, K). Then the design problem is
modified as follows (it should be noted here that similar to Section 5.1, both {vκ(θ)}

8This condition assumes that an agent can whitewash his rating only once in his lifespan in the community.
More generally, we can consider the case where an agent can whitewash his rating multiple times. For ex-
ample, an agent can use a deterministic stationary decision rule for whitewashing, which can be represented
by a function w : � → {0, 1}, where w(θ) = 1 (resp. w(θ) = 0) means that the agent whitewashes (resp. does
not whitewash) his rating if he holds rating θ in the next period. This will yield a different expression for
the gain from whitewashing.
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Fig. 9. Social welfare and the incentive for whitewashing under recommended strategy σC
L when L = 3 and

cw = 1.

and {v∞
κ (θ)} in this section are computed using a stationary distribution different than

Eq. (4), which depends on the value of K).

maximize
(L,K,σ)

Uκ = ∑
θ

η(L,K)(θ)vκ (θ)

subject to δ(1 − 2ε) [v∞
κ (min{θ + 1, L}) − v∞

κ (0)] ≥ c, ∀θ such that ∃θ̃ such that σ(θ , θ̃ ) = F,
δ(1 − 2ε) [v∞

κ (min{θ + 1, L}) − v∞
κ (0)] ≥ −c, ∀θ such that σ(θ , θ̃ ) = D ∀θ̃ ,

v∞
κ (K) − v∞

κ (θ) ≤ cw, ∀θ .

(32)

Now an optimal rating protocol is the one that maximizes social welfare among sus-
tainable and whitewash-proof rating protocols. Note that the design problem of Eq. (32)
always has a feasible solution for any cw ≥ 0, since (L, K, σD

L ) is sustainable and
whitewash-proof for all (L, K). Nevertheless, (L, K, σD

L ) is trivial, since no service takes
place in the community as a consequence. Next, we show that given the existence of
sustainable rating protocols which deliver a positive level of cooperation, that is, when
U∗ solved by Eq. (18) is positive, whitewash-proof rating protocols also exist.

LEMMA 3. If a rating protocol (L, K, σ) is sustainable, then the rating protocol
(L, 0, σ) is also sustainable.

Lemma 3 shows that it never reduces agents’ incentive of cooperation by assigning
the newly joined agents the lowest ratings. With this result, we prove the existence of
whitewash-proof rating protocols.

PROPOSITION 6. If U∗ > 0, then whitewash-proof rating protocols always exist.

PROOF. If U∗ > 0, then sustainable rating protocols that stimulate positive levels
of cooperation always exist. According to Lemma 3, if a protocol κ with K = θ > 0 is
sustainable, then a protocol κ ′ with the same rating scheme and recommended strategy
and K = 0 is also sustainable. Meanwhile, it can be verified that κ ′ is whitewash-proof,
since an agent cannot get any benefit by leaving and rejoining the community while
also suffering the whitewashing cost. Hence, Proposition 6 follows.

Now we investigate the impacts of the initial rating score K on social welfare and
the incentive for whitewashing. We first consider the case where the recommended
strategy is fixed. Figure 9 plots social welfare and the incentive for whitewashing un-
der a rating protocol (3, K, σC

3 ) for K = 0, . . . , 3, where σC
L is defined by σC

L (θ , θ̃ ) = F
if and only if θ̃ ≥ θ , for all θ , as in the preceding section. We can see that larger K
yields higher social welfare and at the same time a larger incentive for whitewash-
ing, since new agents are treated better. Hence, there is a trade-off between efficiency
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Fig. 10. Social welfare and the incentive for whitewashing under the optimal recommended strategy when
L = 3 and cw = 1.

Fig. 11. Optimal initial rating score when L = 3.

and whitewash-proofness as we increase K while fixing the recommended strategy.
Next we consider the optimal recommended strategy given a rating scheme (L, K).
Figure 10 plots social welfare and the incentive for whitewashing under the optimal
recommended strategy for L = 3 and K = 0, . . . , 3. We can see that giving the highest
rating score to new agents (K = 3) yields the highest social welfare, but it can prevent
whitewashing only for small values of c. With our parameter specification, choosing
K = 3 is optimal only for small c, and optimal K drops to 0 for other values of c with
which some cooperation can be sustained. Figure 11 plots the optimal initial rating
K∗ as we vary the whitewashing cost cw, for c = 1, 2, 3. As cw increases, the incentive
constraints for whitewashing becomes less binding, and thus K∗ is nondecreasing in
cw. On the other hand, as c increases, it becomes more difficult to sustain cooperation
while the difference between v∞

κ (0) and v∞
κ (min{θ + 1, L}) increases for all θ such that

σ(θ , θ̃ ) = F for some θ̃ . As a result, K∗ is nonincreasing in c.

5.3. One-Sided Rating Protocols

The preceding discussion focuses on the design of optimal rating protocols, where the
recommended strategy utilizes both the rating scores of the client and the server in
order to determine the server’s action. We refer to such recommended strategies as
two-sided recommended strategies since they involve the rating scores of both players
involved in the stage game.

In this section, we discuss the design of optimal rating protocols with a simple
class of recommended strategies that only utilize one-sided rating scores, which we
refer to as one-sided recommended strategies. Particularly, a one-sided recommended
strategy determines an agent’s serving action solely based on either the agent’s own
rating score or the rating score of his client. To differentiate it with the previously dis-
cussed two-sided recommended strategies, we denote a one-sided recommended strat-
egy by ϕ, which can be represented by a mapping ϕ : � → A, and the corresponding
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rating protocol, which is called as a one-sided rating protocol, by π . It should be noted
that for a one-sided recommended strategy ϕ that utilizes the clients’ rating scores,
it is equivalent to a two-sided recommended strategy σ if σ(θ , θ̃ ) = ϕ(θ̃), ∀θ ∈ �, and
∀θ̃ ∈ �. Similarly, for a one-sided recommended strategy ϕ′ that utilizes the servers’
rating scores, it is equivalent to a two-sided recommended strategy σ ′ if σ ′(θ , θ̃ ) = ϕ′(θ),
∀θ ∈ �, and ∀θ̃ ∈ �. Therefore, the one-sided recommended strategies represent a sub-
set of the class of two-sided recommended strategies. In this section, we investigate
the emerging protocol designs which can be found using such simpler strategies and
the corresponding efficiency loss compared to the optimal performance obtained in
Section 4.

We first analyze one-side recommended strategies utilizing the clients’ rating scores.
Given a one-sided recommended strategy ϕ, the expected period payoff of a θ -agent
before he is matched, which is still denoted as vκ(θ) with slight abuse of notation, is
given as

vπ (θ) = bI(ϕ(θ) = F) −
∑
θ̃∈�

ηL(θ̃)cI(ϕ(θ̃) = F), (33)

where I(x) is an indicator function which takes value of 1 when x = 1. The correspond-
ing social welfare, which is denoted as Wπ , can be computed by

Wπ =
∑
θ∈�

ηL(θ)vπ (θ) =
∑
θ∈�

ηL(θ)(b − c)I(ϕ(θ) = F). (34)

The following proposition characterizes the general designing rule of the optimal
rating protocol, which is denoted as π∗ = (L∗, ϕ∗), with the corresponding optimal
social welfare denoted as W∗.

PROPOSITION 7. With one-sided recommended strategies utilizing the clients’
rating scores, the optimal rating protocol π∗ that maximizes of (34) satisfies the follow-
ing conditions: when c/b ≤ δ(1 − 2ε), W∗ = (1 − ε + εα)(b − c) with L∗ = 1, ϕ∗(0) = D,
and ϕ∗(1) = F; when c/b > δ(1 − 2ε), W∗ = 0 with ϕ∗(θ) = D, ∀θ ∈ �.

PROOF. See Appendix D.

The optimal rating protocol from Proposition 7 is surprisingly simple and intuitive.
When the cost-to-benefit ratio is sufficiently small such that a positive level of coop-
eration can be sustained in the community, the optimal rating protocol contains only
two different rating values. Modulo the effects of noise, agents who comply with the
recommended strategy in the previous period have rating score 1, while agents who
deviate from the recommended strategy have rating score 0. The recommended strat-
egy then says that agents should play a tit-for-tat-like strategy, providing services to
agents with rating score 1 and punishing those with rating score 0. On the other hand,
when the cost-to-benefit ratio is sufficiently large, no cooperation can be sustained, and
W∗ = 0. Hence, when the recommended strategy is one-sided and solely utilizes the
clients’ rating scores, there is no need to construct complicated rating protocols that
are difficult for agents to understand or to heavily optimize parameters of the rating
protocol based on the properties of the community. Regarding the fact that the optimal
social welfare U∗ achieved by two-sided recommended strategies is upper bounded by
b − c, we have the following corollary.

COROLLARY 2. When c/b ≤ δ(1 − 2ε), U∗ − W∗ < ε(1 − α)(b − c).
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Therefore, the efficiency loss introduced by one-sided recommended strategies mono-
tonically decreases and approaches 0 when ε → 0 or α → 1.

We then study one-sided recommended strategies utilizing only the servers’ rating
scores. It is shown in the following proposition that no cooperation can be sustained
in this case, which always yields an optimal social welfare W∗ = 0. Hence, one-sided
recommended strategies utilizing only the servers’ rating scores can never correctly
incentivize service provisions and prevent agents from free-riding.

PROPOSITION 8. With one-sided recommended strategies utilizing the servers’ rat-
ing scores, the optimal rating protocol π∗ always delivers an optimal social welfare
W∗ = 0 with ϕ∗(θ) = D, ∀θ ∈ �.

PROOF. See Appendix E.

6. ILLUSTRATIVE EXAMPLES

In this section, we present numerical results to illustrate in detail the performance
of optimal rating protocols. Unless stated otherwise, the setting of the community is
as follows: the benefit per service (b = 10), the cost per service (c = 1), the discount
factor (β = 0.8), the turnover rate (α = 0.1), the report error (ε = 0.2), the punishment
step (M = L), and the initial rating score (K = L). Since the number of all possible
recommended strategies given a punishment length L increases exponentially with L,
it takes a long time to compute the optimal recommended strategy, even for a moderate
value of L. Hence, we consider rating protocols κ = (L, σ ∗

L) for L = 1, 2, 3.
We first compare the performances of the optimal rating protocol and the fixed rating

protocol for L = 1, 2, 3. For each L, we use (L, σC
L ) as the fixed rating protocol. Figure 12

illustrates the results, with the black bar representing the pareto optimal value b − c,
that is, the highest social welfare that can be possibly sustained by a rating protocol,
the gray bar representing the social welfare of the optimal rating protocol, and the
white bar representing the social welfare of (L, σC

L ). As it shows, the optimal rating
protocol (L, σ ∗

L) outperforms (L, σC
L ). When c is small, (L, σ ∗

L) delivers higher social wel-
fare than (L, σC

L ). When c is sufficiently large such that no cooperation can be sustained
under (L, σC

L ) (the height of the white bar becomes 0), a positive level of cooperation
can still be sustained under (L, σ ∗

L).
Next, we analyze the impacts of the community’s parameters on the performance of

optimal rating protocols.

Impact of the Discount Factor. We discuss the impact of the discount factor β on the
performance of optimal rating protocols. As β increases, an agent puts a higher weight
on his future payoff relative to his instant payoff. Hence, with larger β, it is easier to
sustain cooperation using future reward and punishment through a rating protocol.
This is illustrated in Figure 13(a), which shows that social welfare is nondecreasing
in β.

Impact of the Turnover Rate. Increasing α has two opposite effects on social welfare.
As α increases, the weight on the future payoffs, δ = β(1 − α), decreases, and thus
it becomes more difficult to sustain cooperation. On the other hand, as α increases,
there are more agents holding the highest rating score given the restriction K = L.
In general, agents with the highest rating score are treated well under optimal rec-
ommended strategies, which implies a positive effect of increasing α on social welfare.
From Figure 13(b), we can see that when α is large, the first effect is dominant, making
cooperation unsustainable. We can also see that the second 0effect is dominant for the
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Fig. 12. Performances of the optimal rating protocol (L, σ∗
L) and the fixed rating protocol (L, σC

L ).

values of α with which cooperation can be sustained, yielding an increasing tendency
of social welfare with respect to α.

Impact of the Report Errors. As ε increases, it becomes more difficult to sustain co-
operation because reward and punishment provided by a rating protocol become more
random. At the same time, larger ε increases the fraction of 0-agents in the station-
ary distribution, which usually receive the lowest long-term payoff among all rating
scores. Therefore, we can expect that optimal social welfare has a nonincreasing ten-
dency with respect to ε, as illustrated in Figure 13(c). When ε is sufficiently close to
1/2, σD

L is the only sustainable recommended strategy social welfare falls to. On the
other direction, as ε approaches 0, social welfare converges to its upper bound b − c,
regardless of the punishment length, as can be seen from Proposition 1(iii). We can
also observe from Figure 13 that the regions of α and ε, where some cooperation can be
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Fig. 13. Optimal social welfare given L as β, α, and ε vary.

sustained (i.e., U∗
L > 0), become wider as L increases, whereas that of β is independent

of L.

7. COMPARISONS WITH EXISTING WORKS ON REPEATED GAMES WITH IMPERFECT
MONITORING

In this section, we compare our work with the existing literature on repeated games
with imperfect monitoring, including the works on reputation systems [Dellarocas
2005, 2006; Jurca 2007] and the seminal work of Fudenberg et al. [1994]. Impor-
tantly, our work exhibits significant technical differences from the existing litera-
ture. We would like to point out that although the results derived in this work
exhibit some structural similarity to Dellarocas [2005, 2006] and Jurca [2007],
they are derived under completely different settings and using different analyti-
cal methods. Also, the methodology in Fudenberg et al. [1994] cannot be applied in
our work.

We first compare our work with Dellarocas [2005, 2006] and Jurca [2007]. Their
models assume that agents have fixed roles in the community (i.e., sellers and buyers),
which is common in applications where the groups of sellers and buyers are separated
and usually do not overlap. However, in our work, agents are symmetric in the sense
that each of them can play both roles of server and of client. Our model is more appro-
priate for characterizing resource/knowledge sharing online communities.

More importantly, the objective in the protocol design of our work is also differ-
ent. Their design objective [Dellarocas 2005, 2006; Jurca 2007] is to maximize the
expected discounted long-term payoff of the seller starting from the best reputation
and a clean history (e.g., Propositions 2 and 3 in [Dellarocas 2005]). Translating this
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into the mathematical representation adopted in our article, their objective function
[Dellarocas 2005, 2006; Jurca 2007] is

maximize
(L,σ)

Uκ = v∞
κ (L). (35)

Such an objective function is reasonable in their setting because they assume that
there is a unique long-lived player (seller) in the game who is foresighted. In each
period, the seller selects one buyer to interact with. Therefore, it makes sense to focus
on the lifetime discounted utility of this seller starting from the moment it joins the
community. Also, it should be pointed out that the selection of this objective function
of Eq. (35) is the main reason why the optimal design can be achieved in Dellarocas
[2005, 2006] and Jurca [2007] using a two-level reputation set with L = 1. Since the
future utility is discounted, the optimum of Eq. (35) can be achieved using a simple
grim-trigger strategy, that is, the seller cooperates as long as his reputation remains
at “good” and does not cooperate when his reputation falls to “bad”.

In contrast, our work assumes multiple long-lived players coexisting in the commu-
nity (i.e., each agent is long-lived and foresighted). Meanwhile, in each period, there
are multiple interactions between different players. Hence, it is more reasonable to
maximize the average social welfare of all agents in the long-run, as defined in Eq. (17),
which can be proved to be equivalent to the following objective function:

maximize
(L,σ)

Uκ =
∑
θ

ηL(θ)v∞
κ (θ). (36)

It is easy to observe that given the grim-trigger strategy designed in Dellarocas [2005],
the long-run timing-average payoff of the seller is actually 0, even though his expected
discounted long-term payoff is maximized. Therefore, the design in Dellarocas [2005,
2006] and Jurca [2007] is never optimal from a social welfare perspective, given ε > 0.

Finally, their works focus on deriving the rating schemes that can achieve the up-
per bound of (A1) under the condition when the seller is sufficiently patient with his
discount factor δ (i.e., β in our article) close to 1 or when the payment-to-cost ratio ρ
(i.e., b/c in our article) is sufficiently large. They did not provide much insight on how
to derive the optimal rating scheme and what is the optimal expected long-term util-
ity that can be achieved when δ and ρ are small. (They simply state that the optimal
expected long-term utility is below the upper bound of (A1) in this case). In contrast,
our work tries to characterize the optimal rating scheme design for the entire region
of the parameters (β, b, c, ε), not only the scenario when these parameters are ideal.

Next, we compare our work with Fudenberg et al. [1994]. Their model does not con-
sider the anonymity and random matching among agents. Also, it assumes that the
entire history of public signals (i.e., the outcome of each stage game) is revealed dur-
ing the repeated game. It should be noted that the proof of Proposition 1 in Dellarocas
[2005] also relies on this assumption on the information structure in order to obtain
the upper bound on the efficiency. Nevertheless, under the rating protocol proposed in
our work, each agent only observes a limited set of past L signals from the past periods
and hence, the assumption that all past signals are revealed no longer holds here.

Another difference between our work and Fudenberg et al. [1994] is that the objec-
tive in Fudenberg et al. [1994] is also to maximize the expected long-term utility of
players starting from the beginning of the game (as described in Eq. (35)), which is
different from our objective function of Eq. (17).

Regarding all these reasons, we would like to point out that their methodology
[Fudenberg et al. 1994] cannot be applied to our work.
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8. CONCLUSIONS

In this article, we used the idea of rating protocols to establish a rigorous framework
for the design and analysis of a class of incentive schemes to sustain cooperation in on-
line communities. We derived conditions for sustainable rating protocols under which
no agent gains by deviating from the prescribed recommended strategy. We formulated
the problem of designing an optimal rating protocol and characterized optimal social
welfare and optimal recommended strategies given parameters. As special cases, we
analyzed the one-sided rating protocol which only utilizes the rating score of one party
in the stage game. It was shown that when only the clients’ rating scores are utilized,
the optimal one-sided rating protocol preserves a simple structure with two-level rat-
ing scores, whereas when only the servers’ rating scores are utilized, no sustainable
one-sided rating protocol can be designed. We also discussed the impacts of punish-
ment lengths and whitewashing possibility on the design and performance of opti-
mal rating protocols, identifying a trade-off between efficiency and incentives. Finally,
we presented numerical results to illustrate the impacts of the discount factor, the
turnover rate, and the probability of report errors on the performance of optimal rating
protocols. Our framework provides a foundation for designing incentive schemes which
can be deployed in real-world communities populated by anonymous, self-interested
individuals.

APPENDIXES

A. Proof of Proposition 1

(i) U∗ ≥ 0 follows by noting that (L, σD
L ) is sustainable. It is shown in Fudenberg et al.

[1994] that in a repeated game with public signal, the maximum long-run player
sequential equilibrium pay-off when the signal has full support is the solution to
the following linear programming problem.

maximize
a

u∞

subject to u∞ = u − c + δ(1 − ε)v∞(+) + δεv∞(−), for a = F
u∞ ≥ u − c + δ(1 − ε)v∞(+) + δεv∞(−), for a = D
u∞ ≥ u + δεv∞(+) + δ(1 − ε)v∞(−), for a = F
u∞ = u + δεv∞(+) + δ(1 − ε)v∞(−), for a = D.

(37)

Here, u is the benefit that the player can receive as a client in a stage game, v∞(+)
is the expected long-term utility of this player if his rating score is increased,
and v∞(−) is the expected long-term utility when his rating score is decreased.
With simple computation, the maximum solution of (37) can be written as 1

1−δ
(b−

1−ε
1−2ε

c). Since no player can achieve a long-run pay-off higher than this, it can be
concluded that the social welfare is also upper bounded by b − 1−ε

1−2ε
c.

(ii) By Eq. (8), we can express v∞
κ (1) − v∞

κ (0) as

v∞
κ (1) − v∞

κ (0)

= vκ(1) + δ[(1 − ε)v∞
κ (2) + εv∞

κ (0)] −vκ(0) − δ[(1 − ε)v∞
κ (1) + εv∞

κ (0)]
= vκ(1) − vκ(0) + δ(1 − ε)[v∞

κ (2) − v∞
κ (1)] .

(38)
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Similarly, we have

v∞
κ (2) − v∞

κ (1) = vκ(2) − vκ(1) + δ(1 − ε)[v∞
κ (3) − v∞

κ (2)] ,
...

v∞
κ (L − 1) − v∞

κ (L − 2) = vκ(L − 1) − vκ(L − 2) + δ(1 − ε)[v∞
κ (L) − v∞

κ (L − 1)] ,
v∞

κ (L) − v∞
κ (L − 1) = vκ(L) − vκ(L − 1).

(39)
In general, for θ = 1, . . . , L,

v∞
κ (θ) − v∞

κ (θ − 1) =
L−θ∑
l=0

γ l[vκ(θ + l) − vκ(θ + l − 1)] , (40)

where we define γ = δ(1 − ε). Thus, we obtain

v∞
κ (θ) − v∞

κ (0)

= vκ(θ) − vκ(0) + γ [vκ(θ + 1) − vκ(1)] + · · · + γ L−θ [vκ(L) − vκ(L − θ)]
+ γ L−θ+1[vκ(L) − vκ(L − θ + 1)] + · · · + γ L−1[vκ(L) − vκ(L − 1)]

=
L−1∑
l=0

γ l [vκ(min{θ + l, L}) − vκ(l)] ,

(41)

for θ = 1, . . . , L.
Since −c ≤ vκ(θ) ≤ b for all θ , we have vκ(θ) − vκ(θ̃) ≤ b + c for all (θ , θ̃ ). Hence, by
Eq. (42),

v∞
κ (θ) − v∞

κ (0) ≤ 1 − γ L

1 − γ
(b + c) ≤ b + c

1 − γ
, (42)

for all θ = 1, . . . , L, for all κ = (L, σ). Therefore, if δ(1 − 2ε)[(b + c)/(1 − γ )] < c,
or equivalently, c/b >[β(1 − α)(1 − 2ε)] /[1 − β(1 − α)(2 − 3ε)], then the incentive
constraint of (15) cannot be satisfied for any θ , for any rating protocol (L, σ). This
implies that any recommended strategy σ such that σ(θ , θ̃ ) = F for some (θ , θ̃ ) is
not sustainable, and thus U∗ = 0.

(iii) For any L, define a recommended strategy σD0
L by σD0

L (θ , θ̃ ) = D, for θ̃ = 0, and
σD0

L (θ , θ̃ ) = F, for all θ̃ > 0, for all θ . In other words, with σD0
L , each agent declines

the service request of 0-agents while providing a service to other agents. Consider
a rating protocol κ = (1, σD0

1 ). Then vκ(0) = −η1(1)c and vκ(1) = b−η1(1)c. Hence,
Uκ = [1− (1−α)ε] (b−c) and v∞

κ (1)−v∞
κ (0) = b, and thus the incentive constraint

δ(1 − 2ε)(v∞
κ (1) − v∞

κ (0)) ≥ c is satisfied by the hypothesis c/b ≤ β(1 − α)(1 − 2ε).
Since there exists a feasible solution that achieves Uκ = [1 − (1 − α)ε] (b − c), we
have U∗ ≥ [1 − (1 − α)ε] (b − c).

(iv) The result can be obtained by combining (i) and (iii).
(v) Suppose that U∗ = b− c, and let (L, σ) be an optimal rating protocol that achieves

U∗ = b−c. It is easy to obtain that ε = 0. Then, by (4), ηL(θ) = 0 for all 0 ≤ θ ≤ L−1
and ηL(L) = 1. Hence, σ should have σ(L, L) = F in order to attain U∗ = b − c.
Since vκ(L) = b − c and vκ(θ) ≥ −c for all 0 ≤ θ ≤ L − 1, we have v∞

κ (L) − v∞
κ (0) ≤

b/(1 − γ ) by Eq. (41). If δb/(1 − δ) < c, then the incentive constraint for L-agents,
δ[ v∞

κ (L) − v∞
κ (0)] ≥ c, cannot be satisfied. Therefore, we obtain c/b ≤ δ/(1 − δ).
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B. Proof of Proposition 2

Choose an arbitrary L. To prove the result, we will construct a recommended strat-
egy σL+1 using punishment length L + 1 that is sustainable and achieves U∗

L. Define
σL+1 by

σL+1(θ , θ̃ ) =

⎧⎪⎪⎨
⎪⎪⎩

σ ∗
L(θ , θ̃ ) for θ ≤ L and θ̃ ≤ L,

σ ∗
L(L, θ̃ ) for θ = L + 1 and θ̃ ≤ L,

σ ∗
L(θ , L) for θ ≤ L and θ̃ = L + 1,

σ ∗
L(L, L) for θ = L + 1 and θ̃ = L + 1.

(43)

Let κ = (L, σ ∗
L) and κ ′ = (L + 1, σL+1). From Eq. (4), we have ηL+1(θ) = ηL(θ) for

θ = 0, . . . , L−1 and ηL+1(L)+ηL+1(L+1) = ηL(L). Using this and Eq. (6), it is straight-
forward to see that vκ ′(θ) = vκ(θ) for all θ = 0, . . . , L and vκ ′(L + 1) = vκ(L). Hence, we
have that

Uκ ′ =
L+1∑
θ=0

ηL+1(θ)vκ ′(θ) =
L−1∑
θ=0

ηL+1(θ)vκ ′(θ) +
L+1∑
θ=L

ηL+1(θ)vκ ′(θ)

=
L−1∑
θ=0

ηL(θ)vκ(θ) +
L+1∑
θ=L

ηL+1(θ)vκ(L)

=
L−1∑
θ=0

ηL(θ)vκ(θ) + ηL(L)vκ(L) = Uκ = U∗
L.

(44)

Using Eq. (41), we can show that v∞
κ ′ (θ) − v∞

κ ′ (0) = v∞
κ (θ) − v∞

κ (0) for all θ = 1, . . . , L
and v∞

κ ′ (L + 1) − v∞
κ ′ (0) = v∞

κ (L) − v∞
κ (0). By the definition of σL+1, the right-hand side

of the relevant incentive constraint (i.e., c or −c) for each θ = 0, . . . , L is the same
under both σ ∗

L and σL+1. Also, under σL+1, the right-hand side of the relevant incentive
constraint for θ = L + 1 is the same as that for θ = L. Therefore, σL+1 satisfies the
relevant incentive constraints for all θ = 0, . . . , L + 1.

C. Proof of Proposition 3

To facilitate the proof, we define u∞
κ (θ) by

u∞
κ (θ) =

∞∑
l=0

γ lvκ(min{θ + l, L}), (45)

for θ = 0, . . . , L. Then, by Eq. (41), we have v∞
κ (θ) − v∞

κ (0) = u∞
κ (θ) − u∞

κ (0) for all
θ = 1, . . . , L. Thus, we can use u∞

κ (θ) − u∞
κ (0) instead of v∞

κ (θ) − v∞
κ (0) in the incentive

constraints of DPL.
Suppose that σ ∗

L(0, θ̂ ) = F for some θ̂ . Then the relevant incentive constraint for
a 0-agent is δ(1 − 2ε)[ u∞

κ (1) − u∞
κ (0)] ≥ c. Suppose that σ ∗

L(0, θ̄ ) = D for some θ̄ ∈
{1, . . . , L − 1} such that θ̄ ≥ ln c

b/ ln β. Consider a recommended strategy σ ′
L defined by

σ ′
L(θ , θ̃ ) =

{
σ ∗

L(θ , θ̃ ) for (θ , θ̃ ) �= (0, θ̄ ),
F for (θ , θ̃) = (0, θ̄ ).

(46)
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That is, σ ′
L is the recommended strategy that differs from σ ∗

L only at (0, θ̄ ). Let κ =
(L, σ ∗

L) and κ ′ = (L, σ ′
L). Note that vκ ′(0) − vκ(0) = −ητ (θ̄)c < 0 and vκ ′(θ̄) − vκ(θ̄) =

ητ (0)b > 0 since ε > 0 and α < 1. Thus, Uκ ′ − Uκ = ηL(0)ηL(θ̄)(b − c) > 0. Also,

u∞
κ ′ (θ) − u∞

κ (θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ vκ ′(0) − vκ(0)] +γ θ̄ [ vκ ′(θ̄) − vκ(θ̄)]
= (1 − α)θ̄+1(1 − ε)θ̄ ε[βθ̄b − c] for θ = 0,

γ θ̄−θ [ vκ ′(θ̄) − vκ(θ̄)] for θ = 1, . . . , θ̄ ,
0 for θ = θ̄ + 1, . . . , L.

(47)

Since θ̄ ≥ ln c
b/ ln β, we have u∞

κ ′ (0)−u∞
κ (0) ≤ 0. Thus, u∞

κ ′ (θ)−u∞
κ ′ (0) ≥ u∞

κ (θ)−u∞
κ (0)

for all θ = 1, . . . , L. Since σ ∗
L(0, θ̂ ) = F for some θ̂ , the relevant incentive constraint for

a θ -agent is the same both under σ ∗
L and under σ ′

L, for all θ . Hence, σ ′
L satisfies the

incentive constraints of DPL, which contradicts the optimality of σ ∗
L. This proves that

σ ∗
L(0, θ̃ ) = F for all θ̃ ≥ ln c

b/ ln β. Similar approaches can be used to prove σ ∗
L(0, L) = F,

(i), and (iii).

D. Proof of Proposition 7

To prove this proposition, we first show that the recommended strategy in the optimal
rating protocol is always threshold based. That is, there is an integer h such that
ϕ∗(θ) = D for all θ < h and ϕ∗(θ) = F for all θ ≥ h. We use a contradiction to verify
this. Suppose ϕ∗(θ̃) = F and ϕ∗(θ̃ + 1) = D for some θ . Consider a strategy ϕ′ satisfying
ϕ′(θ) = ϕ∗(θ) for all θ �= θ̃ + 1 and ϕ′(θ̃) = ϕ∗(θ̃). Since ϕ∗ is sustainable, then according
to Eq. (8), it is easy to verify that ϕ′ is also sustainable. Meanwhile, ϕ′ delivers a higher
social welfare than ϕ∗. Hence, the fact that ϕ∗ is optimal is contradicted, and we can
conclude that the optimal recommended strategy is always threshold-based. According
to Eq. (34), it is obvious that the social welfare upon agents’ compliance monotonically
decreases with threshold h. Next, we analyze how h affects the sustainability of the
recommended strategy.

Under a threshold-based recommended strategy with threshold h, the expected long-
term utility can be recursively represented as

v∞
κ (θ) = b −

ηL(θ)∑
θ≥h

c + δ(1 − ε)v∞
κ (min{θ + 1, L}) + δεv∞

κ (max{θ − 1, 0}), if θ ≥ h

v∞
κ (θ) = −

ηL(θ)∑
θ≥h

c + δ(1 − ε)v∞
κ (min{θ + 1, L}) + δεv∞

κ (max{θ − 1, 0}), if θ < h.
(48)

Hence, it can be shown that v∞
κ (1) − v∞

κ (0) = min
θ

{v∞
κ (θ) − v∞

κ (0)}. Meanwhile,

v∞
κ (1) − v∞

κ (0) monotonically decreases against h. Therefore, if a recommended strat-
egy with threshold h is sustainable, then the recommended strategy with threshold
h − 1 is also sustainable. However, according to Proposition 3, it should be noted that
the recommended strategy with h = 0 can never be sustainable. Therefore, to sum up,
for a given punishment length L, when sustainable one-sided rating protocols exist,
the threshold of the optimal recommended strategy ϕ∗ is always h = 1. It is easy to
compute that any threshold-based recommended strategy ϕ with h = 1 is sustainable if
and only if c/b ≤ δ(1−2ε), with the resulting social welfare being W = (1−ε+εα)(b − c).
Hence, Proposition 7 follows.
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E. Proof of Proposition 8

The proof of this proposition is similar to that of Proposition 7. First, it can be proved
that in the optimal rating protocol that uses servers’ rating scores, the recommended
strategy is always threshold-based. That is, there is an integer h such that ϕ∗(θ) =
F for all θ < h and ϕ∗(θ) = D for all θ ≥ h. However, under such threshold-based
recommended strategy, v∞

κ (θ) − v∞
κ (0) ≤ c hold for all θ ∈ �, and hence, (12) is never

satisfied and Proposition 8 follows.
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