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h WE PROPOSE A novel caring analytics system for

assisting with the long-term care of adults with spe-

cial needs. Our proposed system combines sensor

network-driven activity analysis and online learning

algorithms to analyze each resident’s care. The anal-

ysis should result in a variety of reports and alerts on

activities of interest (is the resident eating regularly?)

as well as recommendations (try a different type of

food). We do so in a complex environment: each

home contains several residents, one or more care-

givers, and visitors. Our system must extract the acti-

vity of each resident from this noisy environment.

Moreover, the conditions of the residents vary widely,

and the recommendation systemmust be robust even

though the available information may be limited.

The special needs community represents a wide

range of cognitive and physical disabilities, some-

t imes in combinat ion

known as multiple involve-

ments. People with special

needs may need different

amounts and types of atten-

tion and care in daily life

depending on their diagno-

sis. Over the past 30 years,

the United States has

moved away from institu-

tional care toward commu-

nity-based care for people with special needs. While

community-based care provides a more inclusive

environment, assisted living or group homes do not

have the staff and facilities to monitor and analyze

the status and progress of the residents to nearly the

same level as was possible for institutions. Much of

the care provided to people with physical and

cognitive special needs is not medical; instead, daily

care concentrates on basic needs, activities, and a

fulfilling life.

Service providers who provide care for adults with

special needs have started to explore the use of smart

homes to improve the quality and cost-effectiveness

of special needs care. Imagine! Colorado, a Colorado

Medicaid service provider, is one example of an

organization that has run two smart homes for

special needs adults for several years (http://www.

imaginecolorado.org/smarthomes). However, mak-

ing best use of the rich data provided by these

sensor networks remains a challenge.

Our system builds on previous work in sensor

networks and machine learning. This problem pre-

sents several technical challenges, including model-

free analysis, analyzing data at multiple time scales,

Editor’s notes:
Medical cyber–physical systems are expected not only to provide a more
appropriate control of human physiological processes, but also to enable a
significant improvement in care for adults with special needs. This paper
describes a caring analytics system that collects and mines heterogeneous
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improving the care and quality of life of adults with special needs.
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and accurate classification of noisy data streams.

Our long-term goal is to analyze daily activity and

make customized recommendations for each resi-

dent based on their individual needs.

The next section describes the technical chal-

lenges of our problem and briefly discusses previous

work. We then go on to discuss our experimental

setup, the architecture of our caring analytics system

and our algorithms for activity analysis and learning-

based recommendation.

Challenges and previous work
The very practical problem of long-term care

introduces several technical challenges in the design

of algorithms for cyber–physical systems. We need

powerful activity analysis algorithms (tracking, in the

parlance of computer vision) that can infer useful

activities from limited sensor data. We need to be

able to identify the identity of the residents from the

tracks without relying on explicit tagging and in the

presence of multiple people in the home. Our part-

ners at Imagine! have found that residents and staff

rarely use the RFID tags that have been provided for

them; as a result, our algorithms must infer identity

from appearance and activity. Limitations exist on

where sensors can be placed due to both privacy

concerns and the practicalities of mounting sensors.

While some of our data will come from cameras that

can use appearance to help identify a subject, we

must also rely on nonspecific sensors such as electric

eyes at the doors of rooms. Hence, we need to be

able to use sparse data from sensor networks to

generate continuous, reliable tracks over extremely

long periodsVideally yearsVto adequately under-

stand the daily life of the residents.

Once we have extracted a set of activities from

the sensor data, we need to make useful recommen-

dations without relying on expert training. While the

caregivers can provide observations and sugges-

tions to the recommendation system, neither they

nor the medical and therapeutic staff will be experts

in computer science, computer engineering, or sig-

nal processing. The recommendation system must

combine personalized and group learning. Because

people with special needs exhibit a wide variety of

conditions, the recommendation system must be

able to adapt its recommendations to the observed

behavior of each personVwhat works for one

person may not work for another. However, some

general strategies may also work for over a broad

population. Group learning can help to codify strat-

egies for dealing with the residents, which can in

turn help to train new caregivers as they come on

board. The wide range of conditions also means that

we cannot rely on a predetermined set of candidate

behaviors and recommendations. Instead, we must

infer appropriate recommendations from experi-

ence with the residents. The wide range of condi-

tions that we must be able to handle distinguishes

our problem from elder care; although the elderly

exhibit natural variation, the aging process generally

follows a well-understood trajectory.

Several groups have developed activity analysis

systems for healthcare and other applications. Much

of this work has concentrated on well-defined tasks

of relatively short duration. Acampora et al. sur-

veyed research in ambient intelligence in healthcare

[1]. They identified several characteristics of such

systems: context-aware, personalized, anticipatory,

adaptive, ubiquitous, and transparent. Fine and

Singer [2] introduced hierarchical hidden Markov

models (HHMMs); they used a generalization of the

Baum–Welch algorithm to estimate model data.

Patel et al. [3] used HHMMs to model home use of a

walker. Pentney et al. [4] used a Markov logic to

model learning of activities. Rashidi et al. [5] used a

context-driven algorithm to identify sequences and a

clustering algorithm to identify common contexts.

Robben et al. [6] used ambient sensors to measure

the activity of two persons over a long period; how-

ever, the individuals they measured were isolated

and thus they did not need to separate observations

among possible persons, nor did they make recom-

mendation based on their analysis. Dawadi et al. [7]

used sensors to evaluate the performance of older

adults on predefined tasks. Wan et al. [8] segmented

sensor data to identify a set of discrete activities.

Diagnosis and recommendation algorithms have

also been developed for medical applications.

Bennett et al. [9] use a finite horizon Markov decision

process (MDP)Veffectively, a finite decision treeVto

create a framework to reduce care costs. In compa-

rison with previous work, Bennett et al. achieve

substantial improvements (in the metric they use)

because their method looks ahead: at each deci-

sion point, it optimizes with respect to all possible

future paths of outcomes and decisions (weighted

according to probabilities) rather than simply

optimizing with respect to the decision to be taken

at the moment. Our analysis and recommendation
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framework can also be compared with well-known

machine learning techniques including decision

trees [10] and Bayesian networks [11]. Given an initial

context and a sequence of actions and observations,

those methods can determine the likelihood of the

next state when the next action is applied. In the deci-

sion tree [10] or Bayesian network [11] frameworks,

learning and reward maximization are uncoupled:

learning is performed on the training data and reward

is evaluated on the test data.

Approach

The long-term care environment
Adults with special needs require assistance for

daily life. Their conditions range widely, including

both cognitive (intellectual disability, autism, bipo-

lar disorder, etc.) and physical (cerebral palsy, paral-

ysis, epilepsy, etc.) disabilities. Adults with special

needs require a wide range of care: daily activities

(dressing, eating, and toileting); monitoring to en-

sure their safety; monitoring of medical issues; etc.

Beginning in the 1970s, the United States started to

move from an institutional care model to a commu-

nity-based care model for special needs adults. Al-

though institutions had permanent, trained staffs,

much long-term care is provided either by family

members or by caregivers who are not trained as

nurses; a recent article by Dukakis [12] describes

the importance of caregivers and the difficulties in

finding them. Long-term care workers are often

highly motivated by the opportunity to work with

special needs adults, but financial compensation for

suchwork is usually poor and the

work itself can be frustratingV

progress can be difficult to see

and the paperwork required to

document each resident’s care

is burdensome. As a result there

is high turnover among care-

givers. We hope that our cyber–

physical systems will not only

provide assistance to the special

needs adults directly but also

support caregivers.

In the United States, Medicaid

provides funding for the long-

term care of special needs adults.

Each resident is required to have

an individualized service plan

(ISP) that is updated yearly. The plan is created and

implemented by the care team. The plan lists a set of

goals; depending on the individual, these can range

from learning to eat with a fork to acquiring job-related

skills. Progress on the goal is tracked throughout the

year; progress from one year’s plan is used to help

formulate the next ISP. Systems such as ours can help

to track progress on the ISP and make recommenda-

tions to help fulfill the plan’s goals. Monitoring allows

caregivers to monitor and assist the resident as much

as possible: alerts tell them when the resident needs

attention; long-term records give them a better under-

standing of overall health and behavior. Monitoring is

a much broader term than surveillance: it encom-

passes progress on the ISP, reporting on trends in resi-

dent behavior to identify problems early, and

evaluations that help to develop new goals.

Architecture
Figure 1 shows the organization of our proposed

system for long-term care analytics. In this person-in-

the-loop scenario, our online tools provide alerts

and information for use by staff. Some activities to

be monitored for each resident are identified by his/

her ISP; other daily activities, such as meals, recrea-

tion, and sleeping, can also be analyzed.

Sensor data can be used to create three types of

outputs that are important to the care of special

needs adults:

h reports on the condition of the resident, including

both daily reports for use by staff and loved ones

as well as reports on the resident’s progress on

Figure 1. Block diagram for the caring analytics architecture.
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their ISP; these reports will be generated based on

the identification of patterns in the resident’s

activity;

h concerns that alert the staff about changes to the

resident’s condition; these concerns will be gene,

rated by unusual patterns or changes to patterns,

with learning to reject unnecessary concerns;

h recommendations on the progress toward goals in

the ISP and what actions can be taken to achieve

the goals.

This is a soft real-time system that must perform

online analysis of event-oriented signals. The algo-

rithms we use for both activity analysis and recom-

mendations are designed to support the incremental

updates and analysis required for this type of online

operation. Activity analysis classifies events and ob-

servations into tracks for each resident that are fed to

the recommendation system as well as storing the

tracks in case staff wants to further analyze the acti-

vity of a resident. The recommendation system keeps

a history of activities, the interventions posed by staff,

and the results of those interventions. That history is

used by its learning algorithms to generate new re-

commendations.

Given the computational requirements of activity

analysis and recommendation generation, we be-

lieve that a distributed architecture is best suited to

the application: perform initial sensor analysis (com-

puter vision, etc.) locally, then ship observations to

the cloud for higher level processing.

Activity analysis
As shown in Figure 2, activity analysis maps sen-

sor observations onto resident activity. The residence

has, in general, several sensors, each of which gene-

rates a stream of observations. For example, a ca-

mera may generate an observation when a person

enters the camera’s field of view; the camera could

provide a time stamp as well as an appearance

model for each person. An electric eye at a door

would fire when someone crossed the door’s thresh-

old. That type of sensor can provide a time stamp but

no other information. We are also given a graph

model, known as a path graph, of the spatial rela-

tionships between sensors; an edge connects two

nodes for which there is a direct path between the

corresponding sensors. The activity analysis system

maps those observations onto a set of tracks, one for

each resident. It uses Bayesian models to identify the

most likely assignment of observations to tracks. Ap-

pearance is one factorVall observations in a track

should have a similar appearance. Spatiotemporal

relationships also help narrow the choices. For ex-

ample, if a person is unlikely tomove a large distance

in a very short amount of time, then two observations

close in time but far away in distance are unlikely to

be of the same resident. Markov chain Monte Carlo

(MCMC) algorithms have been used by several

authors [13]–[15] to solve this tracking problem.

We have developed an algorithm for activity anal-

ysis from sparse sensor networks [16], [17]. Our ori-

ginal algorithm was designed to work with camera

Figure 2. Activity analysis from sensor observations.
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networks that could provide appearance models to

help identify subjects. We have now explored the use

of this algorithm in mixed sensor networks that in-

clude some sensors that do not provide appearance

models. The sensors generate a set of observations

by observing an unknown number K of objects. We

use a new form of path graph whose structure helps

eliminate certain types of unlikely tracks. An obser-

vation includes an appearance measurement ðoiÞ, a
timestamp ðtiÞ, and a sensor index. The goal of acti-

vity analysis is to partition the observations into sub-

sets !K ¼ fY1;Y2; . . . ;YKg where each Yi represents

the activity of a single resident. An observation can

belong to only one activity. We wish to find a partition

instance that maximizes the conditional probability

Pð!K jY Þ, which can be formulated as

Pð!K jY Þ /
1

c

YK
k¼1

Pbðxk;1Þ
YNk

i¼2
Pðxk;i jxk;i�1Þ

"

� pðok;i � ok;i�1jxk;i ; xk;i�1Þ

� pðtk;i � tk;i�1jxk;i; xk;i�1Þ
#
;

where Pbðxk;1Þ is the probability of a new person

appearing in the observations, Pðxk;i jxk;i�1Þ is a tran-

sition probability, pðok;i � ok;i�1jxk;i ; xk;i�1Þ is an ap-

pearance similarity density, and pðtk;i � tk;i�1jxk;i ;
xk;i�1Þ is a travel time density.

This form of tracking problem presents a huge

search spaceVthe number of possible partitions of

the observations into tracks is given by Bell’s number

BðnÞ. This maximum posterior estimation problem is

reduced to a maximum weight matching problem,

which can be solved by the Hungarian method or

MCMC optimization. The Hungarian method can

provide an optimal solution. However, it is less scala-

ble to large amounts of data and parallel operation

than are MCMC-based algorithms. MCMC-based algo-

rithms seek an optimal solution by recursively gene-

rating plausible partition instances based on a

current partition instance. For the Monte Carlo ope-

ration, Kim et al. [16] propose three moves: ‘‘update’’

moves an observation from one subset to another;

‘‘split’’divides a subset into two subsets; and ‘‘merge’’

combines two subsets into one. One of the chal-

lenges in using MCMC for activity analysis is gene-

rating an initial estimate of the posterior and of the

number of tracks. Our algorithm places each event

in a separate subset and shows that both the number

of subsets and the posterior quickly converge to

the actual number of activities and the maximum

a posteriori. We have developed a distributed version

of our algorithm that parallelizes well and exhibits

good memory behavior.

Different observations come with different

amounts of appearance and identification, depend-

ing on the type of sensor used. For example, a

camera can report approximate body size, color of

clothing and hair, etc. However, many other types of

useful sensors do not give such specifics. For ex-

ample, electric eyes at the doors do not report who

walked through the door or even the direction of

travel. Similarly, monitors on water faucets and elec-

tric outlets provide useful information but without

personal identification. Our inference approach helps

us propagate identification information from observ-

ations that provide it to observations that do not.

Personalized recommendations
Once observations of the resident have been or-

ganized into activity tracks, the system uses learning

algorithms to make use of those activities. Given the

outcomes of those activities (did the resident com-

plete his or her exercise?), the recommendation will

classify activities and outcomes and make recom-

mendations on what future actions to recommend

to best meet goals.

The resident’s state evolves stochastically as care

actions are taken on the resident. For each care ac-

tion taken in a given state, a reward is obtained. The

reward can be either positive or negative: for the in-

termediate care actions, it represents the care cost

incurred; for the final action that ends the care, it

represents the final care benefit after the goal of care

is completed. The optimal planning problem can be

solved as aMarkov decision process (MDP) using the

estimated transition probabilities and reward func-

tions. However, one of the key challenges for many

long-term care systems is that access to relevant data

is limited. Hence, transfer of knowledge from past

scenarios is key. Existing data sets often have distri-

butions that do not necessarily capture the informa-

tion needed for performing the best care for a new

resident or one whose condition is changing. To im-

prove the recommendation for each resident, wewill

learn not only from that resident’s activity but also

from the activity from other residents.

A care plan is a set of care actions that are re-

commended to the care team in the various states.
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The goals of the care plan are set by the resident’s

ISP. The overall care is evaluated on the basis of the

sequence of costs and benefits. We define the long-

term care reward for resident t

R ¼
X

t¼1;...;LðtÞ
�l rl ;

where ri is the intermediate reward and � is a dis-

count factor.

The state transitions are probabilistic, represent-

ing possible future actions of the resident. The tran-

sition probabilities and the reward function are

Markovian; they depend only on the current state of

the special needs adult. This is a reasonable approx-

imation in practice. The optimal plan maximizes the

long-term expected reward in each state, which is

defined using the Bellman equation

VðajsÞ ¼ rðajsÞ þ �
X
s0

pðs0js; aÞV ðs0Þ:

Due to the lack of a training data set, it is initially

impossible to construct a good plan for a new resi-

dent. Instead, we have a set of K existing plans fp1;
. . . ; pKg constructed using existing data sets. How-

ever, the relationship and the effectiveness of these

plans on the new special needs adults are unknown

a priori. Our algorithm begins by exploring the

existing plans for new special needs adults. After

accumulating sufficient data, it uses the learned

similarity between the special needs adults to build

new individualized plans that maximize the long-

term care reward. There are two major questions

that remain to be addressed: 1) which existing plan

to apply when we are exploring the existing plans

before accumulating sufficient data; and 2) how to

build new individualized plans after data are

accumulated.

Ideally, we would like to always apply the most

effective existing plan. However, this is impossible

since we cannot evaluate the effectiveness of existing

plans before the system starts. To do this, we make

the optimal tradeoff between exploring different ex-

isting plans in order to learn their effectiveness on-

line and exploiting the most effective plans that are

learned so far in order to maximize the long-term

care reward. Moreover, since the existing policies

may have different performance on different special

needs adults, we also adaptively cluster patterns of

Figure 3. The recommendation generation process.
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the residents according to the effectiveness of differ-

ent existing policies.

As shown in Figure 3, when a new resident enters

the system, we use the resident’s diagnosis to place

him or her into an initial cluster. We then determine

if there exist any underexplored existing plans ac-

cording to a carefully designed threshold. If one

exists, the system recommends care actions to the

care team according to this plan for this resident;

otherwise, the system recommends care actions to

the care team according to the plan with the highest

estimated long-term care reward. We also check if

there have been sufficiently many cases in the current

cluster according to another carefully designed

threshold. If yes, the current cluster is further parti-

tioned into smaller clusters so that learning can be

refined.

Special needs adults whose most effective plans

are the same are considered to be similar. The data

about these adults are grouped together to construct

new individual plans when sufficient data/experi-

ences are collected. Since there

are K existing plans, we create

K groups of residents that have

been received so far: plan pk is

the most effective for special

needs adults in group k. For

each group, the transition prob-

abilities and reward functions

are estimated using the data

about adults in this group based

on which an individualized

care plan can be constructed

by solving the MDP described

earlier.

Using our algorithm, we can

derive a following confidence

bound on the learned effective-

ness of existing plans. Having

such a confidence bound is es-

sential, since it provides the care

givers with information about

the effectiveness of each plan,

thereby being able to reduce

ambiguity about plans and in-

creased confidence in these

plans by caregivers. We can also

prove that the algorithm con-

verges in sublinear time to the

optimal performance.

Results
We performed experiments to determine the

effectiveness of both our activity analysis and

recommendation algorithms in the long-term care

environment.

We evaluated our activity analysis algorithm

under different sensor configurations. Our original

algorithm was designed to work with camera data

that included appearance models as well as time-

stamps and camera location. In many cases, the

number of cameras will be limited, and we must rely

on electric eyes or other nonidentifying sensors to

sense activity. We conducted a new simulation expe-

riment to determine the effectiveness of our algo-

rithm with a mixture of appearance-bearing and

non-appearance-bearing observations.

We compared three scenarios using a set of sim-

ulated data: a set of 121 simulated cameras on a grid

(EXP-I); and a combination of 96 cameras and

25 pressure sensors on a grid (EXP-II); and a partial

grid of 96 cameras (EXP-III). Figure 4 shows the

Figure 4. Results of two different tracking algorithms in three different
scenarios.
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results of the camera/pressure sensor experiment

comparing our algorithm using two different algo-

rithms to solve the tracking problem: nearest neigh-

bor matching and maximum weighted matching.

(Precision is the fraction of recognized activities that

are relevant; recall is the fraction of ground truth

activities that were recognized.) Using pressure sen-

sors somewhat reduced accuracy and completeness

(EXP-II) but using them was better than relying on a

reduced set of cameras (EXP-III).

We evaluated our recommendation algorithm

using real-world sensor data collected from various

users. Three major components of the system need

to be deployed for data collect and system evalua-

tion. The server responsible for user and scenario

management, context, and activity classification was

deployed to the medical network servers of the Univ-

ersity of California, Los Angeles (UCLA). The domain

expert client was given the collaborators at the

UCLA’s Department of Neurology. The end-user com-

ponent is a physical package containing four body

worn inertial measurement units (IMUs) with Velcro

attachments, a Nexus 7 table, and the associated

mobile application. Note, however, that the pro-

posed method can also be applied a standalone

system which does not feature a client–server archi-

tecture. The server continuously receives classifica-

tion requests from end-users through wireless

transmissions (Wifi, Bluethooth, or cellular).

We considered three possible activities, ‘‘run-

ning,’’ ‘‘walking around,’’ and ‘‘walking normal,’’ as

possible plans. The activity ‘‘walking around’’ refers

to nonsustained walking segments that are typical of

walking in confined spaces, while ‘‘walking normal’’

refers to sustained long-distancewalk typical of open

spaces. If the resident performs well in one plan, the

recommendation can change for him/her to move to

the next plan. A track identified by activity analysis

can be classified into these three categories based on

the pace of observations (running versus walking)

and the physical length of the tracks (walking

around versus walking normal).

The results in Table 1, which breaks out the re-

ward values for different types of activities, show that

our algorithm can correctly track the various activi-

ties and that it outperforms the considered bench-

marks. As a benchmark we compare our methods

reward against the well-known weighted majority

and Adaboost methods.

Finally, we investigate the tradeoff between ener-

gy consumption (i.e., classification cost) and classi-

fication accuracy. Figure 5 illustrates the accuracy

and energy consumption tradeoff curve of the pro-

posed algorithm. The energy consumption is nor-

malized to the maximum power consumption when

all sensors are activated. Note that WM and

AdaBoost use all sensors for all requests and, hence,

they are not able to make tradeoff between energy

consumption and accuracy. As can be seen from the

figure, a higher accuracy can be obtained at a cost

of higher energy consumption for all three activities

as well the overall performance.

Future Steps
Based on our experiments, we are working with

Imagine! Colorado to deploy a prototype system in a

smart home with real residents. As we look forward

to that ambitious project, we plan to work on several

important extensions. We plan to extend our activity

analysis algorithm to also identify patterns of activity

based on metrics for similarity between tracks. By

recursively defining the similarity measure, we can

identify patterns made of subpatterns, which will

Table 1 Normalized reward for individual activities.

Figure 5. Tradeoff between accuracy and energy
consumption (normalized to the maximum energy
consumption).

IEEE Design & Test42

Cyber–Physical Systems for Medical Applications



allow us to identify patterns of activity over multiple

time scales, such as daily versus weekly patterns.

We also need to analyze the robustness of our re-

commendation algorithms. We will see wide varia-

tions in the capabilities and behaviors of residents,

and group-oriented learning should not be confused

by these variations. As a practical matter, we need to

find a recipe for the right mixture of sensors that al-

lows us to capture the activities that are of most in-

terest to the residents and staff. Both privacy and the

practicality of mounting sensors in a house limit both

the number and types of sensors that we can use.

LONG-TERM CARE of special needs adults presents

new challenges for data analysis, recommendation

systems, and sensor networks. We also believe that a

Big-Data-centric, broad spectrum approach is the

only way to bridge the gap in care left by the closure

of large, highly staffed institutions. We think that the

combination of new sensors, transfer learning, and

the ability to provide confidence bounds to profes-

sionals by such systems will help the healthcare

community to fulfill its potential to provide adults

with special needs with fulfilling lives. h
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