
INTRODUCTION

Video analytics plays an important role in a wide variety of de-
fense-, monitoring- and surveillance-related systems for air and 
ground environments. In this context, multispectral video process-
ing is attracting increased interest in recent years, due in part to 
technological advances in video capture. Compared with mono-
chromatic video, multispectral video offers better spectral resolu-
tion, and different bands of multispectral video streams can en-
hance video analytics capabilities in different ways. For example, 
the infrared bands can provide better separation of shadows from 
objects, and improved spatial resolution in scenes that are impaired 
by fog or haze [16].

Multispectral video acquisition technology introduces novel 
opportunities and challenges for applying the paradigm of dynam-
ic, data-driven applications systems (DDDAS) [5] to design and 
implementation of video analytics systems. The subset of available 
multispectral bands that is stored and processed, and the hardware 
and software configurations that are used to perform the processing 
introduce a complex design space. Furthermore, the most effective 
operating point in this design space is dependent on the specific ap-
plication scenario and data characteristics that are encountered at 
a given point in time during system operation. For example, when 
system accuracy is of greatest importance, it may be desirable to 

operate on the full set of available multispectral bands, while in 
situations where resource constraints are critical (e.g., due to fail-
ures in certain subsystems or limited energy capacity), it may be 
most effective to select a proper subset of the available bands and 
process the selected bands in a way that optimizes accuracy subject 
to the given resource limitations.

Based on this view of selectively processed bands from multi-
spectral video data, we introduce in this article a novel system de-
sign framework for dynamic, data-driven video processing. A cen-
tral part of our framework is the application of model-based design 
methods based on dataflow techniques to represent and transform 
the functionality of multispectral video processing systems. This 
allows us to leverage existing knowledge on dataflow techniques, 
which are employed for design optimization in a wide variety of 
signal processing application areas, including speech processing, 
wireless communications, and video processing (e.g., see [2]).

The approach that we discuss supports the development of new 
DDDAS methods to dynamically select subsets of multispectral 
bands to process, and dynamically reconfigure the dataflow within 
the targeted video processing system to achieve the required pro-
cessing on the selected subset of bands. DDDAS is a paradigm that 
unifies computational and instrumentation aspects of applications 
systems, and thereby promotes deeply integrated approaches to mod-
eling, sensing, control, and data processing. DDDAS principles have 
great relevance to aerospace applications (e.g., see [4], [11], [19]).

Multispectral imaging is related to hyperspectral imaging in 
that both provide increased spectral discrimination compared with 
traditional imaging methods. The difference is primarily in the 
number of bands employed and the degree of spectral resolution 
(e.g., see [7]). Whereas multispectral imaging generally refers to 
a number of bands in the range of about 3–10, hyperspectral im-
aging uses significantly larger numbers of bands—e.g., hundreds, 
thousands, or more—and narrower bandwidths. Thus, this article 
is complementary to tutorials in IEEE AESM that have covered 
aspects of hyperspectral imaging. For example, Birk and McCord 
provide a review of many different airborne hyperspectral sensing 
systems, and also provide a detailed comparison of their system 
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specifications [3]. Matteoli, Diani, and Corsini present a survey 
of methods for processing hyperspectral imagery to detect small 
human-made anomalies that are relevant in defense and surveil-
lance applications [10].

We refer to our proposed new approach for multispectral image 
processing as LDspectral, where “LD” here stands for lightweight 
dataflow [18], [17]. LD is a lightweight design methodology that 
facilitates cross-platform prototyping, experimentation, and design 
optimization of signal processing systems. LD is “lightweight” in 
the sense that it is based on a compact set of application program-
ming interfaces that can be retargeted to different platforms and in-
tegrated into different design processes relatively easily. The light-
weight dataflow environment (LIDE) is a software tool that supports 
the LD design methodology, and that we apply in this work [17].

We prototype LDspectral using LIDE together with OpenCV, 
and present results of extensive experimentation with this proto-
type to demonstrate the utility of LDspectral. OpenCV provides 
a large library of software components for video processing (e.g., 
see [14]), including specialized capabilities that are complemen-
tary to the capabilities of LIDE for model-based design and imple-
mentation. In particular, the dataflow-based embedded software 
components (actors) that we employ to implement LDspectral in-
corporate calls to relevant OpenCV functions to perform specific 
image processing operations.

We demonstrate and evaluate the performance of LDspectral 
capabilities using a background subtraction application, along with 
a recently introduced data set for experimenting with multispectral 
background subtraction techniques [1]. As compared with a stan-
dard image processing pipeline, the dynamic, integrated adjust-
ment of data flow and spectral band selection provides systematic 
trade-off optimization among computational efficiency and multi-
spectral video processing accuracy.

RELATED WORK

Benezeth et al. [1] present a publicly available collection of mul-
tispectral video sequences that includes ground truth annotation 

of moving objects. They also apply this data set to demonstrate 
improvements in background subtraction accuracy when using 
multispectral video streams compared with RGB (Red, Green, and 
Blue) streams. Additionally, they provide an evaluation of alterna-
tive background subtraction techniques that operate on multispec-
tral video.

This article demonstrates the capabilities of the proposed DD-
DAS-motivated LDspectral system using the multispectral data set 
introduced in [1]. Figure 1 shows an example of the data associated 
with a single video frame within the employed multispectral data 
set. Specifically, Figure 1 shows 7 different images correspond-
ing to the 7 different bands for the same scene and the foreground 
result of this scene.

Our work on LDspectral is different from the methods dis-
cussed in [1] in its emphasis on integrating DDDAS methods into 
multispectral video processing, and specifically, on supporting 
flexible optimization involving the subset of available multispec-
tral bands that is processed, and the associated trade-offs between 
accuracy and computational cost. Additionally, pixel-level fusion 
in the front-end of the processing chain for background subtrac-
tion is investigated. Pixel-level fusion improves computational ef-
ficiency, and reduces the execution time costs incurred by incorpo-
rating additional bands (i.e., larger subsets of the available bands) 
into the video processing pipeline.

While pixel-level fusion is applied in our demonstration of LD-
spectral, the LDspectral framework does not require use of pixel-
level fusion, nor any other specific form of multiband processing. 
This flexibility allows for integration and experimentation with 
alternative methods for fusion and analysis of video data across 
multiple bands (e.g., see [15], [13], [16]) that may enhance the 
available operating points and overall system adaptivity in terms 
of accuracy, throughput, and other relevant metrics. Exploration 
of such alternative methods in the context of LDspectral is an in-
teresting direction for further study to develop multispectral image 
fusion systems with user interaction [9].

The developments in this article provide new models and 
methods that are promising for integration in cloud-computing 
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frameworks for information fusion, such as the class of frame-
works reviewed in [8]. Exploration of such integration is another 
useful direction for further investigation.

DESIGN METHODOLOGY

Compared with traditional imaging methods, multispectral im-
aging provides increased spectral discrimination, which can ex-
ploit increasing spectral resolution and spectral diversity. Con-
ventional approaches assume that all of the available bands are 
employed for the video processing tasks. When system accuracy 
is of the greatest importance, it may be desirable to use all bands. 
However, it may be most effective to select a proper subset of all 
the available bands in situations where resource constraints are 
critical due to failures in certain subsystems or limited energy 
capacity.

In the DDDAS-driven video processing system design prob-
lem that we target in this article, we assume the availability of mul-
tispectral data that comes from a set Z = {B1, B2, …, BN} of spectral 
bands, where N denotes the total number of available bands. In 
resource- or heavily performance-constrained scenarios where it 
may not be desirable or feasible to process all bands, this leads a 
problem of strategically selecting a subset S ∈ 2Z, where 2Z is the 
power set of Z, that is, the set of all subsets of Z.

We assume that we are given a constraint Cr (in units of time) 
on execution time performance for a particular video processing 
scenario. Our problem then is to select the set S ∈ 2Z to store and 
process, and the associated strategy to process this selected subset 
of bands such that video analysis accuracy is maximized subject to 
the constraint Cr. In this article, we focus on the former aspect of 
this problem—the selection of S ∈ 2Z—while laying a foundation 
for incorporating the second aspect as a useful direction for future 
work.

Figure 2 illustrates our first version system design for LDspec-
tral, which is designed to address the design optimization problem 
described above. Here, video processing configurations are reeval-

uated periodically with the period of reevaluation being equal to 
the value of the reconfiguration interval parameter Tr. Lower val-
ues of Tr correspond to the possibility for more frequent reconfigu-
ration at the expense of increased overhead due to more frequent 
operations for reconfiguration management. The reconfiguration 
management overhead includes computations for dynamically de-
termining whether or not to reconfigure the system, and determin-
ing and applying the new operational parameters, including the 
band subset S, when reconfiguration is to be performed.

The block in Figure 2 labeled band subset selection (BSS) is in-
voked at time intervals determined by the reconfiguration interval 
parameter Tr, subject to application specifications. The BSS block 
attempts to optimize the subset of bands that is to be employed 
during the next interval of video processing. In this optimization 
process, offline data (subset selection profiles) pertaining to the 
effectiveness of selected subsets of bands is considered along with 
recent results from performance evaluation, and the current opera-
tional constraints Cr and Ce.

The output of BSS is a vector indicating the bands S = {Bs1, 
Bs2, …, Bsm} (m ≤ N or equivalently, S ⊂ Z) that are to be processed 
during the next video processing interval.

We perform pixel-level fusion, where the selected bands in 
a given multispectral image are combined pixel-by-pixel into a 
single image. In our fusion approach, each pixel in the combined 
image is derived from a weighted sum of the corresponding pix-
els in the individual bands. Compared with feature-level fusion, 
pixel-level fusion can have significantly reduced computational 
cost since features are extracted from the combined image rather 
than separately from each individual band (e.g., see [12], [20]). 
On the other hand, feature-level fusion allows for optimization of 
feature extraction algorithms for each band [6]. Extension of the 
LDspectral framework to include feature-level fusion and adaptive 
selection between pixel- and feature-level fusion is a useful direc-
tion for future work.

The video processing functionality performed on the selected 
bands is represented by the block in Figure 2 labeled band subset 

Figure 1. 
An example of a single video frame in the employed multispectral data set. Images 1–6 show the 6 visible bands, image 7 corresponds to the near-infra-
red band, and image 8 is the corresponding foreground result that is derived using LDspectral.
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processing. Further discussion on band subset processing in this 
work is given later in this article.

CASE STUDY: BACKGROUND SUBTRACTION

We demonstrate the importance of careful BSS, which is a core as-
pect of the LDspectral design methodology discussed previously. 
We demonstrate this through a case study involving background 
subtraction. The two metrics that we consider in this evaluation 
are the accuracy Fmeasure of the background subtraction (foreground 
extraction) results, and the average execution time tave to extract the 
foreground. We focus on quantifying trade-offs consisting of sin-
gleton (one-band) and two-band subsets, and demonstrate signifi-
cant variations in performance trade-offs among different subsets. 
Analysis and optimization of BSS trade-offs among larger subsets 
(i.e., where the subset size exceeds 2) are motivated through this 
preliminary study as useful directions for future work.

The band subset processing subsystem for this multispectral 
background subtraction case study is illustrated in Figure 3. In the 
context of this case study, this illustration represents the internal 
functionality associated with the block in Figure 2 that is labeled 
band subset processing. In the dataflow graph subsystem depicted 
in Figure 3, each actor reads a pointer to an image from its input 
buffer, and outputs a pointer to the image that results from the im-
age processing operation performed by the actor.

We use LIDE to develop a prototype implementation of the 
band subset processing subsystem in Figure 3, and we apply calls 
to selected OpenCV functions in some of the actors within this 
implementation. The image read actor in Figure 3 is used to inject 

a stream of pointers to successive images into the subsystem so 
that background subtraction can be performed separately on each 
image that is referenced (pointed to) in the stream. At the output of 
the image read actor, each image contains a set of m separate com-
ponents, where each component corresponds to one of the selected 
spectral bands (i.e., an element of the set S, as defined previously). 
The image combination actor then performs pixel-level fusion to 
combine the components associated with the selected bands into 
a singled “fused” image. We provide more details on the fusion 
operation performed by this actor later in this article.

The background subtraction actor then computes an initial 
background subtraction result and passes the extracted foreground 
through the image pointer produced on its output. The core back-
ground subtraction operation applied by this actor is carried out by 
the OpenCV function called BackgroundSubtractorMOG2, which 
applies a Gaussian mixture model (GMM) [21], [22].

Figure 2. 
Block diagram of the design flow in LDspectral.

Figure 3. 
Block diagram of band subset processing in the background subtraction 
system.
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The foreground filter actor in Figure 3 is designed to remove 
noise from the output of the background subtraction actor. In the 
foreground filter actor, we use two morphological operations—
erosion and dilation—through their respective implementations 
in OpenCV. Intuitively, the erosion function helps to remove ob-
jects in the foreground that are smaller than the filter size (a pa-
rameter of the erosion function), and dilation helps to more com-
pletely identify boundaries of detected objects. Erosion may lead 
to distortion in object boundaries; dilation is applied after erosion 
as a corrective operation to address this potential for distortion.

The foreground binarization actor takes the output of the fore-
ground filter, and converts it into a binary form, where each pixel is 
classified as being either a foreground or background pixel. This con-
version is performed by applying a threshold, and classifying pixels 
as foreground whenever the corresponding pixel values exceed the 
threshold. The specific threshold that is employed is determined em-
pirically (off-line) in an effort to enhance classification accuracy. The 
resulting binary image is then processed by the foreground output 
actor to store the classification results for each image as a separate file 
in a given output directory. The files generated in this output directory 
are indexed so that they can easily be matched up with their corre-
sponding input frames from the given multispectral data set.

We performed experiments applying LDspectral with the back-
ground subtraction subsystem shown in Figure 3. These experi-
ments were performed using a laptop computer equipped with an 
AMD A8-4500M CPU, 4GB RAM, and the Ubuntu 14.04 LTS 
operating system. Results from these experiments are discussed in 
the following section.

EXPERIMENTS

In our experiments involving BSS in conjunction with background 
subtraction, we applied the novel data set for multispectral back-
ground subtraction that was published recently by Benezeth et al. 
[1]. From this data set, we experimented with multispectral vid-
eo input that contains 1102 images, where each image contains 
separate components in 7 different spectral bands. Among these 
7 bands, 6 are in the visible spectrum and the remaining one is in 
the near-infrared spectrum. We divided this set of images into 735 
images (approximately 2/3) for training and 367 images for testing.

Here, the training phase is applied to optimize the performance 
of each two-band subset. Given a band subset {bs1, bs2}, training is 
used to optimize the relative weightings for these bands when they 
are fused in the image combination actor described previously. 
More specifically, suppose that x1 and x2 are two corresponding 
pixel values [pixel values at the same image coordinates (a, b)] 
in bands bs1 and bs2, respectively, and let y denote the pixel value 
at coordinates (a, b) in the output of the image combination actor. 
Then y is derived by

( )1 21 ,y x xα α= × + − ×  (1)

where α (0 ≤ α ≤ 1) is a parameter of the image combination ac-
tor that is used to control the relative weightings of the two input 
bands. We refer to this parameter α as the pairwise band combina-
tion (PBC) parameter.

Based on this formulation of pixel-level fusion for a two-band 
subset, our training phase is used to optimize the image combina-
tion parameter α. This training process is carried out for each dis-
tinct pair {bs1, bs2} of bands to yield a corresponding PBC param-
eter value A(s1, s2) that controls the relative weighting of pixels 
when combining bands bs1 and bs2.

For each distinct pair {bs1, bs2} of bands, the training phase 
involves performing an exhaustive search across α ∈{0, 0.1, 
0.2, …, 1}, and then selecting a value for the PBC (with ties 
broken arbitrarily) that leads to the highest average accuracy for 
the background subtraction subsystem of Figure 3. This select-
ed value is then used in the testing phase to assess the accuracy 
produced by using the band subset {bs1, bs2} for background 
subtraction.

The measure of accuracy employed in these experiments is the 
harmonic mean performance measure of background subtraction 
accuracy, which is motivated, for example, in [1]. This measure 
is defined as

2measure
recall precisionF
recall precision

×= ×
+

 (2)

Here, precision and recall are defined by

,  and ,c c

f g

n nprecision recall
n n

= =  (3)

where nc is the number of correctly classified foreground pixels, 
nf is the number of pixels classified as foreground, and ng is the 
number of foreground pixels in the ground truth.

Table 1 and Table 2 show experimental results using the off-
line analysis capabilities of LDspectral to evaluate processing 
trade-offs among different one- and two-band combinations (i.e., 
where the set of selected bands is restricted to contain only one or 
two elements). Table 1 shows the background subtraction accuracy 
that is experimentally observed for different one- and two-band 
combinations, while Table 2 shows the processing times for dif-
ferent combinations. In each of these tables, the diagonal entries 
give the results for single-band processing, while each entry at row 
a and column b when a ≠ b gives the results from joint processing 
of the bands indexed by a and b. In each of these tables, elements 
below the diagonal are not shown since they are symmetric with 
respect to the diagonal. As mentioned above, we employ 1102 im-
ages in each of these experiments. These 1102 images form the 
complete set of images from the employed multispectral data set 
[1] that have ground truth available as part of the data set.

From Table 1, we see that the accuracy provided by LDspec-
tral is significantly higher on average compared with the results 
presented in [1] for the same video data set. This demonstrates the 
effectiveness of LDspectral in optimizing the accuracy of back-
ground subtraction.

Experimentally derived data of the form shown in Table 1 and 
Table 2 can be used as the subset selection profiles to guide BSS, 
as illustrated in Figure 2. Additionally, the results in Table 2 define 
lower limits on how short the reconfiguration interval Tr can be.

Table 3 shows the optimized values for the PBC parameters 
that were derived through the training procedure for processing of 
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Table 2. 

Execution Times for Different Single- and Dual-Band Combinations.

Band 1 2 3 4 5 6 7

1 62.5 68.4 67.2 66.9 67.5 68.4 66.5

2 — 62.3 68.2 68.4 68.0 69.7 68.2

3 — — 62.8 67.4 66.9 68.5 66.9

4 — — — 63.1 67.4 69.0 66.8

5 — — — — 63.0 68.8 66.8

6 — — — — — 62.2 68.4

7 — — — — — — 63.4

NOTE: The results here are given in milliseconds. Each entry in the table represents the average time to perform background 
subtraction (including the entire processing chain shown in Figure 3 on a single input image).

Table 1. 

Accuracy Results for Different One- and Two-Band Combinations using LDspectral, and (in the last three rows) the 
Results from [1] with Three Different Algorithms

Band 1 2 3 4 5 6 7

1 0.934 0.940 0.944 0.945 0.943 0.943 0.933

2 — 0.931 0.942 0.936 0.942 0.937 0.930

3 — — 0.939 0.939 0.943 0.940 0.939

4 — — — 0.929 0.940 0.932 0.930

5 — — — — 0.942 0.938 0.937

6 — — — — — 0.919 0.925

7 — — — — — — 0.886

Mahalanobis 
distance

— — — — — — 0.689

Spectral angle — — — — — — 0.897

Spectral 
information 
divergence 
similarity

— — — — — — 0.896

Table 3. 

Derived Values for PBC Parameters (rounded to tenths)

Band 2 3 4 5 6 7

1 0.7 0.4 0.6 0.3 0.7 0.9

2 — 0.3 0.7 0.4 0.5 0.8

3 — — 0.9 0.5 0.7 0.9

4 — — — 0.4 0.5 0.9

5 — — — — 0.5 0.9

6 — — — — — 0.8
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two-band subsets. The rows and columns of Table 3 correspond, 
respectively, to x1 and x2 in (1). For example, when S consists of 
bands 2 and 3, we use α = 0.3, and when S consists of bands 1 and 
4, we use α = 0.6. The diversity of the values in this table demon-
strates the utility of optimizing the PBC parameter separately for 
each two-band subset rather than using a balanced weighting (α = 
0.5) or some other uniform PBC parameter setting for all subsets.

We also see from Table 3 that the optimized α values are rela-
tively high when x2 is taken to be band 7, which is the near-infrared 
band. This results in correspondingly low weightings given to band 
7. This trend matches intuitively with the data in Table 1, which 
shows that band 7 in isolation has significantly lower accuracy 
compared with all of the other one-band subsets.

Overall, the results in Table 1 and Table 2 help to motivate 
the utility of careful selection of band combinations as there is 
significant variation in accuracy among different pairs of bands. 
The results also help to quantify the trade-off—in terms of in-
creased execution time—when a single band is augmented with 
a second band to help increase background subtraction accuracy. 
For the implemented pixel-level fusion approach, this increase 
is found to be relatively low (within 13% in all cases). This is 
because increasing the number of bands increases the computa-
tional load for only a small subset of the actors in Figure 2 and 
Figure 3—in particular, the actors for band selection and image 
combination.

CONCLUSION

In this article, we have introduced a novel system design frame-
work for dynamic, data-driven processing of multispectral video 
streams using LD techniques. The framework is motivated by the 
need for efficient and accurate video processing in a wide vari-
ety of systems for air and ground environments. This framework, 
called LDspectral, is designed to incorporate selection of subsets 
of bands as a core, front-end step in the video processing process. 
This emphasis on BSS opens up a large design space for data-
driven adaptation that influences key metrics, including accuracy 
and computational efficiency. We have demonstrated a prototype 
implementation of LDspectral applied to a background subtraction 
application. Through experiments with this prototype on a relevant 
data set, we have demonstrated the utility of flexible, optimized 
BSS in the navigation of operational trade-offs for multispectral 
video processing systems.

The current version of LDspectral is developed for input 
streams in which the multispectral images are well aligned across 
the different bands. The band subset processing subsystem in LD-
spectral can readily be extended to incorporate image registration, 
which would be useful to extend the capabilities of the overall sys-
tem to handle images that are not aligned. Such extension together 
with the integrated optimization of associated operational trade-
offs is a useful direction for future work. 
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