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Abstract— This paper discusses a special type of multi-user
communication scenario, in which users’ utilities are linearly
impacted by their competitors’ actions. We explicitly characterize
the Nash equilibrium and Pareto boundary of the achievable
utility region. To improve the performance in the non-cooperative
scenarios, we investigate the properties of an alternative solution
concept named conjectural equilibrium, in which individual users
compensate for their lack of information by forming internal
beliefs about their competitors. The global convergence of the
best response and Jacobi update dynamics that achieve various
conjectural equilibria are analyzed. It is shown that the Pareto
boundaries of the investigated linearly coupled games can be
sustained as stable conjectural equilibria if the belief functions
are properly initialized. The investigated models apply to a
variety of realistic applications encountered in the multiple access
design, including wireless random access and flow control.

I. INTRODUCTION

Game theory provides a formal framework for studying the
interactions of strategic agents. Recently, there has been a
surge in research activities that employ game theory to model
and analyze a wide range of application scenarios in modern
communication networks [1]- [4]. In communication networks,
any action taken by a single user usually affects the utilities
of the other users sharing the same resources. Depending on
the characteristics of different applications, numerous game-
theoretical models and solution concepts have been proposed
to describe the multi-user interactions and optimize the users’
decisions in communication networks. Roughly speaking, the
existing multi-user research can be categorized into two types,
non-cooperative games and cooperative games. Various game
theoretic solutions were developed to characterize the resulting
performance of the multi-user interaction, including the Nash
Equilibrium (NE) and the Pareto-optimality [18].

Non-cooperative approaches generally assume that the par-
ticipating users simply choose actions to selfishly maximize
their individual utility functions. It is well-known that if
devices operate in a non-cooperative manner, this will gen-
erally limit their performance as well as that of the whole
system, because the available resources are not always ef-
ficiently exploited due to the conflicts of interest occurring
among users [5]. Most non-cooperative approaches are devoted
to investigating the existence and properties of the NE. In
particular, several non-cooperative game models, such as S-
modular games, congestion games, and potential games, have
been extensively applied in various communication scenarios
[6]- [9]. The price of anarchy, a measure of how good the
system performance is when users play selfishly and reach the
NE instead of playing to achieve the social optimum, has also
been addressed in several communication network applications

[10] [11].
On the other hand, cooperative approaches in commu-

nication theory usually focus on studying how users can
jointly improve their performance when they cooperate. For
example, the users may optimize a common objective function,
which represents the Pareto-optimal social welfare allocation
rule based on which the system-wide resource allocation is
performed [12] [13]. A profile of actions is Pareto-optimal if
there is no other profile of actions that makes every player
at least as well off and at least one player strictly better
off. Allocation rules, e.g. network utility maximization, can
provide reasonable allocation outcomes by considering the
trade-off between fairness and efficiency. Most cooperative
approaches focus on studying how to efficiently find the
optimum joint policy. It is worth mentioning that information
exchanges among users is generally required to enable users
to coordinate in order to achieve and sustain Pareto-efficient
outcomes.

In this paper, we present a game model for a particular
type of non-cooperative multi-user communication scenario.
We name it linearly coupled communication games, because
users’ utilities are linearly impacted by their competitors’
actions. In particular, the main contributions of this paper are
as follows. First, based on the assumptions that we make about
the properties of users’ utility, we characterize the inherent
structures of the utility functions for the linearly coupled
games. Furthermore, based on the derived utility forms, we
explicitly quantify the NE and Pareto boundary for the linearly
coupled communication games. The price of anarchy incurred
by the selfish users playing the Nash strategy is quantified. In
addition, to improve the performance in the non-cooperative
scenarios, we investigate an alternative solution: conjectural
equilibrium (CE). Using this approach, individual users are
modeled as belief-forming agents that develop internal beliefs
about their competitors and behave optimally with respect to
their individual beliefs. Necessary and sufficient conditions
that guarantee the convergence of different dynamic update
mechanisms, including the best response and Jacobi update,
are addressed. We prove that these adjustment processes based
on conjectures and non-cooperative individual optimization
can be globally driven to Pareto-optimality in the linearly
coupled games without the need of real-time coordination
information exchange among agents.

The rest of this paper is organized as follows. Section II
defines the linearly coupled communication games. For the
investigated game models, Section III explicitly computes the
NE and Pareto boundary of the achievable utility region and
quantifies the price of anarchy. Section IV introduces the CE



and investigates its properties under both the best response and
Jacobi update dynamics. Conclusions are drawn in Section V.
Due to space limitations, the formal proofs are omitted; for
these proofs, the reader is referred to [26].

II. GAME MODEL

In this section, we first provide a general game-theoretic
formulation of the multi-user interaction in communication
systems. Following the proposed definition, we define the
linearly coupled communication games and provide concrete
examples of the investigated game model.

A. Linearly Coupled Communication Games

The multi-user game in various communication scenarios
can be formally defined as a tuple Γ = 〈N ,A, u,S, s〉. In
particular, N = {1, 2, . . . , N} is the set of communication
devices, which are the rational decision-makers in the system.
Define A to be the joint action space A = ×n∈NAn, with
An being the action set available for user n. As opposed to
the traditional strategic game definition [18], we introduce two
new elements S and s into the game formulation. Specifically,
S is the state space S = ×n∈NSn, where Sn ⊆ R+ is the
part of the state relevant to user n. The state is defined to
capture the effects of the multi-user coupling such that each
user’s utility solely depends on its own state and action. In
other words, the utility function u = ×n∈Nun is a mapping
from the individual users’ state space and action space to real
numbers, un : Sn×An →R. The state determination function
s = ×n∈N sn maps joint actions to states for each component
sn : A → Sn. To capture the performance tradeoff, the
utility region is defined as U = {(u1(a), . . . , uN (a))| ∃ a =
(a1, a2, . . . , aN ) ∈ A}.

Definition 1: A multi-user interaction is considered a lin-
early coupled communication game if the action set An ⊆ R+

is convex and the utility function un satisfies:

un(a) = aβn
n · sn(a), (1)

in which βn > 0. In particular, the basic assumptions about
sn(a) include:

A1: sn(a) is non-negative;
A2: Denote s′nm(a) = ∂sn(a)

∂am
and s′′nm(a) = ∂2sn(a)

∂a2
m

. sn(a)
is strictly linear decreasing in am,∀m 6= n, i.e. s′nm(a) < 0
and s′′nm(a) = 0; sn(a) is non-increasing and linear in an, i.e.
s′nn(a) ≤ 0 and s′′nn(a) = 0.

A3: sn(a)
s′nm(a) is an affine function, ∀n ∈ N \ {m}.

A4: s′nm(a)
sn(a) = s′km(a)

sk(a) ,∀n, k ∈ N \ {m}; s′mm(a)
sm(a) = 0 or

s′nm(a)
sn(a) , ∀n 6= m.

Assumptions A1 and A2 indicate that increasing am for any
m 6= n within the domain of sn(a) will linearly decrease user
n’s utility. Assumptions A3 and A4 imply that a user’s action
has proportionally the same impact over the other users’ utility.
In [26], we investigate the structure of the utility functions that
satisfy assumptions A1-A4 and find that there are two basic
types of linearly coupled games satisfying the assumptions
A1-A4.

In Type I games, user k’s action linearly decreases all the
users’ states but itself. The utility functions take the form

un(a) = aβn
n ·

∏

m6=n

(µm − τmam). (2)

For example, in the random access networks [15], the action
of a node is to select its transmission probability and a node n
will attempt transmission of a packet with transmit probability
pn. The action set available to node n is An = [0, 1] for all
n ∈ N . In this case, the utility function is defined as

un(p) = pn ·
∏

m6=n

(1− pm). (3)

In Type II games, all the users share the same state function
and their utility functions are given by

un(a) = aβn
n · (µ−

N∑
m=1

τmam). (4)

For example, in flow control [16], N Poisson streams of
packets are serviced by a single exponential server with
departure rate µ and each class can adjust its throughput rn.
The utility function is defined as the weighted ratio of the
throughput over the average experienced delay:

un(r) = rβn
n · (µ−

N∑
m=1

rm), (5)

in which βn > 0 is interpreted as the weighting factor.
Specifically, we can see that the state determination functions
are sn(p) =

∏
m∈N\{n}(1 − pm) in (3) and sn(r) = µ −∑N

m=1 rm in (5).
For linearly coupled communication games, we want to

compare the performance attained by different game-theoretic
solution concepts. On one hand, it is well-known that NE
is generally inefficient [17], but it may not require explicit
message exchanges, while Pareto-optimality can usually be
achieved by exchanging explicit coordination messages among
the participating users. On the other hand, in several recent
works [14] [15], we have applied an alternative solution in
different communication scenarios to improve the system per-
formance in non-cooperative settings, namely the conjectural
equilibrium [20]. The following sections aim to compare the
solutions of NE, Pareto boundary, and CE in terms of the
payoffs and informational requirements in the linearly coupled
multi-user interaction satisfying the assumptions A1-A4. A
brief summary of the properties of Type I games will be
provided in Section IV-E. For the details about various game-
theoretic solutions for Type I games, we refer the readers to
[15]. The rest of this paper will focus on Type II games.

III. COMPUTATION OF THE NASH EQUILIBRIUM AND
PARETO BOUNDARY IN TYPE II GAMES

Definition 2: A profile a of actions is a Nash equilibrium of
Γ if un(an,a−n) ≥ un(a′n,a−n) for all a′n ∈ An and n ∈ N .



At NE of the Type II games, we have ∂un(a)
∂an

= 0, ∀n ∈ N .
It is equivalent to solving the following linear equations

(1 + βn)τnan + βn

∑

m6=n

τmam = βnµ,∀n ∈ N . (6)

The closed-form solution has been addressed in [21] for τn =
1,∀n ∈ N . For the general case, we can verify that the NE is

aNE
n =

βnµ

τn(1 +
∑N

m=1 βm)
,∀n ∈ N . (7)

Since log(·) is concave and log[un(a)] is a composition of
affine functions [19], un(a) is log-concave in a and the log-
utility region logU is convex. Therefore, we can characterize
the Pareto boundary of the utility region as a set of a optimiz-
ing the following weighted proportional fairness objective:

max
a

N∑
n=1

ωn log[un(a)], (8)

for all possible sets of {ωn} satisfying ωn ≥ 0 and∑N
n=1 ωn = 1. Its optimal solution is given by

aPB
n =

ωnβnµ

τn(1 +
∑N

m=1 ωmβm)
,∀n ∈ N . (9)

Based on Equations (7) and (9), we can see that, due to the
lack of coordination, the NE in Type II games is always strictly
Pareto inefficient. In the next section, we will investigate
how the non-cooperative CE solution can improve the system
performance for Type II games.

IV. CONJECTURAL EQUILIBRIUM FOR THE LINEARLY
COUPLED GAMES

A. Definitions

In game-theoretic analysis, conclusions about the reached
equilibria are based on assumptions about what knowledge
the players possess. For example, the standard NE strategy
assumes that every player believes that the other players’
actions will not change at NE. Therefore, it chooses to
myopically maximize its immediate payoff [18]. Therefore,
the players operating at equilibrium can be viewed as decision
makers behaving optimally with respect to their beliefs about
the strategies of other players.

To avoid detrimental Nash strategy and encourage coop-
eration, the conjecture-based model has been introduced in
[20] to enable non-cooperative players to build belief models
about how their competitors’ reactions vary in response to their
own action changes. Specifically, each player has some belief
about the state that would result from performing its available
actions. The belief function s̃n is defined to be s̃n : An → Sn

such that s̃n(an) represents the state that player n believes
it would result in if it selects action an . Notice that the
beliefs are not expressed in terms of other players’ actions
and preferences, and the multi-user coupling in these beliefs is
captured indirectly by individual players forming conjectures
of the effects of their own actions. By deploying such a
behavior model, players will no longer adopt myopic behaviors

that do not forecast s̃n, but rather they will form beliefs s̃n(an)
about how their actions an will influence the aggregate effects
s̃n incurred by their competitors’ responses and, based on
these beliefs, they will choose the action an ∈ An if it believes
that this action will maximize its utility. The steady state of
such a play among belief-forming agents can be characterized
as a conjectural equilibria.

Definition 3: In the game Γ, a configuration of belief
functions (s̃∗1, . . . , s̃

∗
N ) and a joint action a∗ = (a∗1, . . . , a

∗
N )

constitute a conjectural equilibrium, if for each n ∈ N ,

s̃∗n(a∗n) = sn(a∗1, . . . , a
∗
N ) and a∗n = arg max

an∈An

un(s̃∗n(an), an).
From the definition, we can see that, at CE, all players’

expectations based on their beliefs are realized and each agent
behaves optimally according to its expectation. In other words,
agents’ beliefs are consistent with the outcome of the play and
they use “conjectured best responses” in their individual op-
timization program. The key challenges are how to configure
the belief functions such that cooperation can be sustained in
such a non-cooperative setting and how to design the evolution
rules such that the communication system can dynamically
converge to a CE having satisfactory performance.

B. Linear Beliefs

As discussed before, the belief functions need to be defined
in order to investigate the existence of CE. To define the belief
functions, we need to express agent n’s expected state s̃n as
a function of its own action an. The simplest approach is to
design linear belief models for each user, i.e. player n’s belief
function takes the form

s̃n(an) = s̄n − λn(an − ān), (10)

for n ∈ N . The values of s̄n and ān are specific states and
actions, called reference points and λn is a positive scalar. In
other words, user n assumes that other players will observe its
deviation from its reference point ān and the aggregate state
deviates from the reference point s̄n by a quantity proportional
to the deviation of an − ān. How to configure s̄n, ān, and
λn will be addressed in the rest of this paper. We focus
on the linear belief represented in (10), because this simple
belief form is sufficient to drive the resulting non-cooperative
equilibrium to the Pareto boundary.

The goal of user n is to maximize its expected utility aβn
n ·

s̃n(an) taking into account the conjectures that it has made
about the other users. Therefore, the optimization a user needs
to solve becomes:

max
an∈An

aβn
n ·

[
s̄n − λn(an − ān)

]
. (11)

For λk > 0, user n believes that increasing an will further
reduce its conjectured state s̄n. The optimal solution of (11)
is given by

a∗n =
βn(s̄n + λnān)

λn(1 + βn)
. (12)

The following theorem indicates that forming simple linear
beliefs in (10) can cause all the operating points in the
achievable utility region to be CE.



Theorem 1: For Type II games, all the positive operating
points in the utility region U are essentially CE.

Theorem 1 establishes the existence of CE, i.e. for a partic-
ular a∗ ∈ A, how to choose the parameters {s̄n, ān, λn}N

n=1

such that a∗ is a CE. However, it neither tells us how these
CE can be achieved and sustained in the dynamic setting nor
clarifies how different belief configurations can lead to various
CE.

We consider the dynamic scenarios in which users revise
their reference points based on their past local observations
over time. Let st

n, at
n, s̃t

n, s̄t
n, āt

n be user n’s state, action, belief
function, and reference points at stage t, in which st

n = µ −∑N
m=1 τmat

m. We propose a simple rule for individual users to
update their reference points. At stage t, user n sets its s̄t

n and
āt

n to be st−1
n and at−1

n . In other words, user n’s conjectured
utility function at stage t is

ut
n(s̃t

n(an), an) = aβn
n ·

[
µ−

N∑
m=1

τmat−1
m − λn(an − at−1

n )
]
.

(13)
Since we have defined the users’ utility function at stage t,
upon specifying the rule of how user n updates its action at

n

based on its utility function ut
n(s̃t

n(an), an), the trajectory of
the entire dynamic process is determined. The remainder of
this paper will investigate the dynamic properties of the best
response and Jacobi update mechanisms and the performance
trade-off among the competing users at the resulting steady-
state CE. In particular, for fixed {λn}N

n=1, Section IV-C derives
necessary and sufficient conditions for the convergence of the
best response and the Jacobi update dynamics. Section IV-D
quantitatively describes the limiting CE for given {λn}N

n=1 and
investigates how the parameters {λn}N

n=1 should be properly
chosen such that Pareto efficiency can be achieved.

C. Dynamic Algorithms

1) Best Response: In the best response algorithm, each user
updates its action using the best response that maximizes its
conjectured utility function in (13). Therefore, at stage t, user
n chooses its action according to

at
n = Bn(at−1) :=
βn(µ−∑

m∈N\{n} τmat−1
m )

λn(1 + βn)
+

βn(λn − τn)at−1
n

λn(1 + βn)
. (14)

We are interested in characterizing the convergence of the
update mechanism defined by (14) when using various λn to
initialize the belief function s̃n.

To analyze the convergence of the best response dynamics,
we consider the Jacobian matrix of the self-mapping function
in (14). Let Jik denote the element at row i and column k of
the Jacobian matrix J. The elements of the Jacobian matrix
JBR of (14) are defined as:

JBR
ik =

∂at
i

∂at−1
k

=

{
βk(λk−τk)
λk(1+βk) , if i = k,

− βiτk

λi(1+βi)
, if i 6= k.

(15)

By analyzing the eigenvalues of JBR, the following theorem
gives a necessary and sufficient condition under which the best
response dynamics defined in (14) converges.

Theorem 2: For Type II games, a necessary and sufficient
condition for the best response dynamics to converge is

N∑
n=1

τnβn

λn(1 + 2βn)
< 1. (16)

Remark 1: Theorem 2 generalizes the necessary and suffi-
cient condition derived in [21], where users are assumed to be
symmetric, i.e. τn = 1,∀n and they adopt the Nash strategy by
choosing λn = τn,∀n. Due to lack of symmetry, the derivation
in [21] is not readily applicable to analyze the convergence of
the best response dynamics. The proof of Theorem 2 instead
directly characterizes the eigenvalues of the Jacobian matrix,
and hence, provides a more general convergence analysis of
the dynamic algorithms that allow users to update their actions
based on their independent linear conjectures.

Remark 2: In Type II games, a locally stable CE is also
globally convergent, which is purely due to the property of its
utility functions specified in (4). From (15), we can see that
all the elements in JBR are independent of the joint play at−1.
This is in contrast with Type I games considered in [15], where
local stability of a CE may not imply its global convergence
and the best response dynamics may only converge if the
operating point is close enough to the steady-state equilibrium.

2) Jacobi Update: We consider another alternative strat-
egy update mechanism called Jacobi update [22]. In Jacobi
update, every user adjusts its action gradually towards the
best response strategy. At stage t, user n chooses its action
according to

at
n = Jn(at−1) := at−1

n + ε
[
Bn(at−1)− at−1

n

]
, (17)

in which the stepsize ε > 0 and Bn(at−1) is defined in (14).
The following theorem establishes the convergence property
of the Jacobi update dynamics.

Theorem 3: In Type II games, for given {τn, βn, λn}N
n=1,

the Jacobi update dynamics converges if the stepsize ε is
sufficiently small.

Remark 3: For any {τn, βn, λn}N
n=1 > 0, the Jacobi update

mechanism globally converges to a CE as long as the stepsize
is set to be a small enough positive number. In other words,
the small stepsize in the Jacobi update can compensate for
the instability of the best response dynamics even though the
necessary and sufficient condition in (16) is not satisfied.

D. Stability of the Pareto Boundary

In order to understand how to properly choose the param-
eters {λn}N

n=1 such that it leads to efficient outcomes, we
need to explicitly describe the steady-state CE in terms of the
parameters {λn}N

n=1 of the belief functions. Denote the joint
action profile at CE as (a∗1, . . . , a

∗
N ). From Equation (14), we

know that

(λn + βnτn)a∗n +
∑

m∈N\{n}
βnτma∗m = βnµ,∀n ∈ N . (18)



The solutions of the above linear equations are

aCE
n =

βnµ

λn(1 +
∑N

m=1
τmβm

λm
)
,∀n ∈ N . (19)

Based on the closed-form expression of the CE, the following
theorem indicates the stability of the Pareto boundary in Type
II games.

Theorem 4: For Type II games, all the operating points on
the Pareto boundary are globally convergent CE under the best
response dynamics if and only if

∑N

n=1

τn

λn
= 1. (20)

Remark 4: To achieve Pareto-optimality in the non-
cooperative scenarios, users need to choose the belief param-
eters {λn}N

n=1 to be greater than or equal to the parameters
{τn}N

n=1 in the utility function {un}N
n=1 and the summation

of τn

λn
should be equal to 1. Define user n’s conservativeness

as τn

λn
, which reflects the ratio between the immediate per-

formance degradation −τn∆an in the actual utility function
and the long-term effect −λn∆an in the conjectured utility
function if user n increases its action by ∆an. The condition
in Equation (20) indicates that, to achieve efficient outcomes,
the non-collaborative users need to jointly maintain moderate
conservativeness by considering the multi-user coupling and
appropriately choosing {λn}N

n=1. By “moderate”, we mean
that users are neither too aggressive, i.e. λn → τn and∑N

n=1
τn

λn
→ N , nor too conservative, i.e. λn → +∞ and∑N

n=1
τn

λn
→ 0. If more than one user plays the Nash strategy

and choose λn = τn, Equation (20) does not hold and the
resulting operating point is not Pareto-optimal. Therefore,
myopic selfish behavior is detrimental.

Using Jensen’s inequality, we can verify that∑N
n=1 ωn log un(aCE)

un(aP B)
≤ 0 and

∑N
n=1 ωn log un(aCE)

un(aP B)
= 0

if and only if ωn = τn

λn
,∀n. Therefore, if a CE is Pareto

efficient, user n’s conservativeness τn/λn corresponds to
the weight assigned to user n in the weighted proportional
fairness defined in (8).

As an illustrative example, we simulate a three-user system
with parameters β = [1.5 1 0.5], τ = [3 4 5], µ = 10, ωn =
1
3 ,∀n. In this case, the joint actions and the corresponding
utilities at NE and Pareto boundary are summarized in Table
I. Fig. 1 shows the trajectory of the action updates under both
best response and Jacobi update dynamics, in which a0

n = 0.5,
λn = τn

ωn
,∀n, and ε = 0.5. The best response update converges

to the Pareto-optimal operating point in around 8 iterations and
the Jacobi update experiences a smoother trajectory and the
same equilibrium is attained after more iterations.

E. Discussions

1) Comparison between Type I and Type II games: As
mentioned before, the properties of Type I games have been
investigated in the context of wireless random access [15].
Table II summarizes some similarities and differences between
both types of games. First, the two algorithms exhibit different
properties under the best response dynamics. In Type I games,

TABLE I
ACTIONS AND PAYOFFS AT NE AND PARETO BOUNDARY.

User 1 User 2 User 3

aNE
i 1.25 0.625 0.25

uNE
i 3.4939 1.5625 1.25

aPB
i 0.833 0.417 0.167

uPB
i 3.8036 2.0833 2.0412
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Fig. 1. The trajectory of the best response and Jacobi update dynamics.

the stable CE may not be globally convergent. However, the
local stability of a CE implies its global convergence in Type II
games. Second, it is shown in [15] that any operating point that
is arbitrarily close to the Pareto boundary of the utility region
of Type I games is a stable CE. Similarly, the entire Pareto
boundary of Type II games is also stable. At last, different
relationships between the parameter selection and the achieved
utility at equilibrium have been observed for the two types
of games. In particular, in Type I games, user n’s utility un

is approximately proportional to the inverse of the parameter
λn in its belief function. In contrast, in Type II games, if
the CE is Pareto-optimal, the ratio τn/λn coincide with the
weight ωn assigned to user n in the proportional fairness
objective function. In other words, based on the definition of
proportional fairness [25], we know

N∑
n=1

τn(u′n − u∗n)
λnu∗n

≤ 0, (21)

in which (u′1, u
′
2, . . . , u

′
N ) is the users’ achieved utility associ-

ated with any other feasible joint action and (u∗1, u
∗
2, . . . , u

∗
N )

is the optimal achieved utility for problem (8) with ωn =
τn/λn and

∑N
n=1 ωn = 1.

2) Pricing Mechanism vs. Conjectural Equilibrium: In
order to achieve Pareto-optimality, information exchanges
among users is generally required in order to collaboratively
maximize the system efficiency. The existing cooperative
communication scenarios either assume that the information
about all the users is gathered by a trusted moderator (e.g.
access point, base station etc.), to which it is given the
authority to centrally divide the available resources among
the participating users, or, in the distributed setting, users



TABLE II
COMPARISON BETWEEN TYPE I AND TYPE II GAMES.

Games Best response dynamics Stability vs. efficiency Fairness vs. parameter selection
Type I local stability ⇐ global convergence stable at near-Pareto-optimal points un ∝ τn/λn

Type II local stability ⇔ global convergence stable at the Pareto boundary ωn = τn/λn at the Pareto boundary

exchange price signals (e.g. the Lagrange multipliers for the
dual problem) that reflect the “cost” for consuming per unit
constrained resources to maximize the social welfare and reach
Pareto-optimal allocations. As an important tool, the pricing
mechanism has been applied in the distributed optimization
of various communication networks [12]. However, we would
like to point out that, the pricing mechanism generally requires
repeated coordination information exchange among users in
order to determine the optimal actions and achieve the Pareto-
optimality. In contrast, for the linear coupled communication
games, since the specific structure of the utility function is
explored, the CE approach is able to calculate the Pareto
efficient operating point in a distributed manner, without
any real-time information exchange among users. In fact,
the underlying coordination is implicitly implemented when
the participating users initialize their belief parameters. Once
the belief parameters are properly initialized by the protocol
according to (20), using the proposed dynamic update algo-
rithms, individual users are able to achieve the Pareto-optimal
CE solely based on their local observations on their own states
and no message exchange is needed during the convergence
process. Therefore, the conjecture equilibrium approach is
an important alternative to the pricing-based approach in the
linearly coupled games.

V. CONCLUSION

We derive the structure of the utility functions in the
multi-user communication scenarios where a user’s action has
proportionally the same impact over other users’ utilities. The
performance gap between NE and Pareto boundary of the
utility region is quantified. To improve the performance in
non-cooperative cases, we investigate a CE approach which
endows users with simple linear beliefs which enables them
to select an equilibrium outcome that is efficient without the
need of explicit message exchanges. The properties of the
CE under both the best response and Jacobi dynamic update
mechanisms are characterized. We show that the entire Pareto
boundary in linearly coupled games is globally convergent CE
which can be achieved by both studied dynamic algorithms
without the need of real-time message passing. A potential
future direction is to see how to extend the CE approach to
the general linearly coupled games that are compositions of
the basic two types and certain particular non-linearly coupled
multi-user communication scenarios.
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