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Data-Driven Stream Mining Systems
for Computer Vision
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Abstract In this chapter, we discuss the state of the art and future challenges in
adaptive streammining systems for computer vision. Adaptive streammining in this
context involves the extraction of knowledge from image and video streams in
real-time, and from sources that are possibly distributed and heterogeneous. With
advances in sensor and digital processing technologies, we are able to deploy net-
works involving large numbers of cameras that acquire increasing volumes of image
data for diverse applications in monitoring and surveillance. However, to exploit the
potential of such extensive networks for image acquisition, important challengesmust
be addressed in efficient communication and analysis of such data under constraints
on power consumption, communication bandwidth, and end-to-end latency. We dis-
cuss these challenges in this chapter, and we also discuss important directions for
research in addressing such challenges using dynamic, data-driven methodologies.

12.1 Introduction

In this chapter, we address challenges involving the development of algorithms,
models, and designmethods for distributed and adaptive real-time knowledge extrac-
tion of information from high volume image streams. We focus on an important
emerging class of “big data” systems called adaptive stream mining (ASM) systems,
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and discuss the state-of-the-art and challenges in design and implementation of
effective ASM systems for embedded computer vision. ASM systems can be viewed
as real-time data mining systems that operate on streams of data and are constructed
as topologies (directed graphs) of classifiers, where parameters associated with the
topologies and constituent classifiers may be manipulated dynamically based on
changes in data characteristics, operational constraints, and other relevant run-time
considerations.

Intended applications of ASM systems for embedded computer vision are very
diverse, ranging from medical services, to dynamic management of vehicular traf-
fic, to real-time detection of events in home-based health-care, to many kinds of
surveillance and environmental monitoring applications. Each of these applications
requires a topology of classifiers (such as a chain or “pipeline” configuration) that
analyzes streaming data (which dynamically changes over time) from a set of raw
data sources to extract valuable information in real time.

The need for adaptivity in ASM systems is inherent in almost all practical
knowledge extraction application areas as data characteristics and operating con-
ditions often exhibit uncertain or time-varying behavior. Accurate assessment,
understanding, and optimization of ASM systems generally requires extensive
experimentation of how algorithms for data classification and classifier adaptation
interact with the characteristics of input data, and how scheduling and buffer man-
agement for such algorithms should be performed to satisfy real-time constraints
subject to given resource constraints.

Decomposing applications as topologies of distributed processing operators has
merits that transcend the scalability, reliability, and performance objectives of
large-scale, real-time stream mining systems [1, 11, 18, 27]. Specifically, many
stream classification and mining applications implement topologies (ensembles such
as trees or cascades) of low-complexity binary classifiers to jointly accomplish the
task of complex classification [24]. Such a structure enables the successive identifi-
cation of multiple attributes in the data, and also provides significant advantages in
terms of reduced resource consumption through appropriate dynamic data filtering,
based on the incrementally identified attributes.

It has been shown that using a tree of binary classifiers can achieve better
performance compared to other techniques such as support vectormachines or SVMs
(e.g., see [10]), rule-based techniques, and neural nets for some applications [6, 11,
19, 26, 28, 31, 42]. Furthermore, using classifiers operating in series with the same
model (boosting [31]) or classifiers operating in parallel with multiple models (bag-
ging [19]) has resulted in improved classification performance.

12.2 ASM System Example

Consider the surveillance application depicted in Fig. 12.1. A straightforward
approach to dealing with this application requires the cameras to acquire the images
on a continuous basis with the highest resolution, and send them to a central process-
ing unit that is responsible for analyzing the images with complex data analytics.
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Fig. 12.1 An example of an ASM system for surveillance

Unfortunately, this approach is infeasible because it requires large communication
bandwidths and energy consumption, and long transmission and processing delays.
A feasible approach involves classifiers—localized in the same processing node of
a camera—that are in charge of preprocessing the images. Based on the results
of such preprocessing, the classifiers decide: (1) at which rate to acquire images,
(2) whether or not to discard a specific image, and (3) in case the image is not
discarded, the node to which the image must be sent for further processing and the
resolution at which the imagemust be transmitted. Then the results of image process-
ing can be exploited to trigger actions that modify the environment under observation
(e.g., some roads are opened or closed) and even the streammining system itself (e.g.,
additional cameras are turned on).

12.3 Challenges in ASM System Design

Key challenges in distributed real-time streammining systems arise from the need to
cope effectively with system overload due to large data volumes and limited system
resources. There is a large computational cost incurred by each classifier (propor-
tional to the data rate) that limits the rate at which the application can handle input
video. Commonly used approaches to dealing with this problem in resource con-
strained stream mining are based on load-shedding, where algorithms determine
when, where, what, and howmuch data to discard given the observed data character-
istics, e.g. burst, desired Quality of Service (QoS) requirements [4, 5, 37–41], data
value or delay constraints [12, 15].
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An alternate approach to resource-constrained stream mining involves cons-
tructing topologies of classifiers based on hierarchical semantic concepts, and allow-
ing individual classifiers in the topology to operate at different performance levels
given the resources allocated to them. The performance level is determined by a clas-
sifier operating point that corresponds to the selected trade-off between probability
of detection pD and probability of false alarm pF. Here, the probability of detection
is defined as pD = ptp + ptn, where ptp and ptn denote, respectively, the probability
of a true positive, and the probability of a true negative.

This approach is illustrated in Fig. 12.2, where the curve on the right side shows a
profile of the classifier accuracy in terms of the detection error trade-off (DET)—i.e.,
the trade-off of pD versus pF. Examples of operating points include decision thresh-
olds for likelihood ratio tests or SVM normalized scores. Hence, instead of deciding
on what fraction of the data to process, as in load-shedding approaches, such an
approach determines how the available data should be processed given the underly-
ing resource allocation. A solution based on this approach for configuring filtering
applications that employ binary classifier chains has been proposed [14, 16–18].

Nevertheless, general binary tree topologies go significantly beyond linearly
cascaded classifiers by providing greater flexibility in data processing, while also
posing different challenges in terms of resource-constrained configuration. Specif-
ically, while excess load can be easily handled within the optimization framework
for a binary classifier chain, using a single operating point for each classifier in a
tree generates two output streams with a total sum output rate that is fixed. Hence,
it may not be possible to simultaneously meet tight processing resource constraints
for downstream classifiers along both output edges when using only one operating
point.

12.4 Dynamic, Data-Driven ASM Systems

Building on the conceptual framework of dynamically reconfigurable topologies
of classifiers introduced in Sects. 12.1 and12.3, an important direction for further
work on stream mining for computer vision systems is in the rigorous integration of
Dynamic Data Driven Applications Systems (DDDAS) into all aspects of processes
for design and implementation. A significant class of future challenges for embedded
computer vision therefore involves what may be referred to as DDDAS-enabled ASM
systems.

12.4.1 DDDAS-Enabled ASM Systems

DDDAS is a paradigm that rigorously integrates application system modeling,
instrumentation, and dynamic, feedback-driven adaptation of model and instrumen-
tation parameters based on measured data characteristics [13]. DDDAS methods are
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Fig. 12.2 An illustration of an adaptive and scalable classifier

highly relevant to design and implementation of ASM systems because they enable
techniques for exploiting characteristics of the currently arriving set of image streams
as well as characteristics of the overall operating environment to dynamically opti-
mize critical trade-offs among key execution metrics, including power consumption,
communication bandwidth, knowledge extraction accuracy, and end-to-end latency.

In ASM systems for embedded computer vision, DDDAS can be employed, for
example, at network edges to systematically filter out image features that are not rel-
evant to the current operational scenario or to adjust the resolution or frequency
of captured images based on the type of object or amount of motion detected.
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Such preprocessing at the network edges can help to reduce communication with
a back-end server, and to improve overall system accuracy under communication
and computation constraints. DDDAS techniques can also be employed at the server
side. An example of such an application would be to dynamically determine the set
of cameras at the network edges that should be active at a given time—e.g., to opti-
mize trade-offs among energy efficiency, communication bandwidth requirements,
and accuracy for the current image analysis scenario. In Sect. 12.5, we provide a
detailed case study ofDDDASmethods applied to a relevant application in embedded
computer vision.

Use of DDDAS design techniques involves tightly integrated feedback from
instrumentation. Use of DDDAS design techniques also involves application of
dynamic parameters that are adapted based on such feedback, and that also control
how subsequent rounds of instrumentation are performed. Figure12.3 illustrates an
abstract view of DDDAS as it relates to the class of streammining systems addressed
in this chapter.

Key challenges in integrating DDDAS principles into stream mining systems
include the following.

• Development of abstract models for stream mining systems that can compactly
and accurately represent the underlying design space of topological and classifier
configurations. For this purpose, signal-processing-oriented dataflow models of
computation are a promising starting point [8, 35].

• Development of methods to steer parameters of image stream acquisition (e.g.,
to select specific subsets of cameras or frame rates and resolutions for activated
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Fig. 12.3 An illustration of the LiD4E design tool and its application to DDDAS-enabled, multi-
media, stream mining system design

cameras) based on the currently active regions of the streammining design spaces,
as estimated, for example, with the help of the abstract models described above.

• Development ofmethods to dynamically optimize themapping ofASM topologies
onto the targeted hardware platforms based on current configurations for the
topologies, and their constituent classifiers. This mapping process may be espe-
cially challenging due to dynamics in stream mining topology characteristics,
resource constraints on the target platforms or severe application requirements in
terms of the volume of image data that needs to be processed, real-time constraints,
etc.

Lightweight Dataflow for Dynamic Data-Driven Application Systems Environment
(LiD4E) is a recently-developed design tool to help in the investigation of these chal-
lenges and other aspects of DDDAS-enabled stream mining systems. We discuss
LiD4E next, in Sect. 12.4.2.

12.4.2 LiD4E

In this section, we provide an overview of LiD4E, which is a design environment that
has been developed to facilitate experimentation with methods for DDDAS-enabled
ASM system design, with emphasis on multimedia ASM systems [35].
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A key feature of LiD4E is the provision for signal processing pipelines (i.e.,
chains of signal processing modules, such as classifiers, digital filters and transform
operators) that can be data-dependent and dynamically changing. LiD4E employs
hierarchical core functional dataflow (HCFDF) semantics as the specific form of
dynamic dataflow [35]. HCFDF and the core functional dataflow (CFDF) model [29]
that it extends belong to the class of signal-processing-oriented dataflow models
of computation described in Sect. 12.4.1. HCFDF can be viewed as a hierarchical
extension of CFDF. Through its emphasis on supporting structured, application-level
dynamic dataflow modeling, HCFDF provides a formal, model-based framework
through which stream mining applications can be designed and analyzed precisely
in terms of integrated principles of DDDAS and dataflow.

InHCFDF graphs, actors are specified in terms of sets of processingmodes, where
each mode has static dataflow rates—i.e., each mode produces and consumes a fixed
number of data values (tokens) on each actor port. However, different modes of the
same actor can have different dataflow rates, and the actor mode can change from one
actor execution (firing) to the next, thereby allowing for dynamic dataflow behavior
(dynamic rates). Additionally, HCFDF allows dataflow graphs to be hierarchically
embedded (nested) within actors of higher level HCFDF graphs, thereby allowing
complex systems to be constructed and analyzed in a scalable manner. The design
rules prescribed for hierarchical composition in HCFDF graphs ensure that actors
at each level in a design hierarchy conform to the semantics of HCFDF or some
restricted subset of HCFDF semantics, such as cyclo-static dataflow or synchronous
dataflow (SDF) [9, 23]. For further details on HCFDF semantics, we refer the reader
to [35].

As demonstrated in [35], HCFDF modeling enables run-time adaptation of signal
processing topologies, including dataflow graphs that are constructed using arbitrary
combinations of classifiers, filters, and transform units. Through the inclusion of
a special HCFDF design component called an adaptive classification module, the
designer can invoke multiple operating modes at run-time, and selection of such
operating modes can be driven based on system feedback—e.g., based on instru-
mentation that monitors data characteristics, and guides selection based on desired
trade-offs among performance, accuracy, and energy consumption.

Figure12.3 provides an illustration of the LiD4E design tool and its application
to DDDAS-enabled, multimedia, stream mining system design. For more details on
LiD4E, we refer the reader to [35]. Extensions of the design principles in LiD4E to
handle multi-mode stream mining systems are discussed in [34].

12.5 Case Study: Learning Based on Multi-armed Bandits

In this section, we present a case study in data-driven ASM techniques that are
relevant for the emerging class of a ASM-enabled, embedded computer vision sys-
tems introduced in Sect. 12.1 through Sect. 12.4. The methods presented in the case
study can be viewed as representative of the kinds of advances that are needed to
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address the challenges in providing robust, efficient, and integrated stream mining
solutions for next-generation embedded computer vision systems.

The methods discussed in this section were originally presented in [2]. In this
section, we provide a concise summary of the developments in [2] in the context of
ASM systems for embedded computer vision. For full details on these methods, we
refer the reader to [2].

12.5.1 Overview

In most video-based object or face recognition services on mobile devices, each
device captures and transmits video frames over a wireless channel to a remote
computing service (a.k.a. the “cloud”) that performs the heavy-duty video feature
extraction and recognition tasks for a large number of mobile devices. The major
challenges of such scenarios stem from the highly-varying contention levels in the
wireless local area network (WLAN), as well as the variation in the task-scheduling
congestion in the cloud.

In order for each device to maximize its object or face recognition rate under
such contention and congestion variability, a systematic learning framework based
on multi-armed bandits has been developed [2]. Unlike well-known reinforce-
ment learning techniques that exhibit very slow convergence rates when operating
in highly-dynamic environments, this bandit-based, systematic learning approach
quickly approaches the optimal transmission and processing-complexity policies
based on feedback on the experienced dynamics (contention and congestion levels).
The case study presented in this section centers on this bandit-based, systematic
learning approach.

Many of the envisaged applications and services for wearable sensors, smart-
phones, tablets or portable computers in the next ten years will involve analysis of
video streams for event, action, object or user recognition [21, 32]. In this process,
they experience time-varying channel conditions, traffic loads and processing con-
straints at the remote cloud-computing servers where the data analysis takes place.
Examples of early commercial services in this domain include Google Goggles,
Google Glass, Facebook automatic face tagging [7], and Microsoft’s Photo Gallery
face recognition.

12.5.2 Application Example

Figure12.4 presents an example of such deployments. Video content producers
include several types of sensors, mobile phones, as well as other low-end portable
devices, that capture, encode (typically via a hardware-supported MPEG/ITU-T
codec) and transmit video streams to a remote computing server for recognition
or authentication purposes. A group of M devices in the same WLAN comprises a
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Fig. 12.4 Illustration of object or face recognition via adaptive wireless video transport to a remote
computing server

wireless cluster. A server running openstack or Hadoop (or a similar runtime envi-
ronment suitable for cloud computing) [25] is used for analyzing visual data from
numerous wireless clusters, as well as other computing tasks unrelated to object or
face recognition.

Each device can adapt the encoding bitrate, as well as the number of frames
to produce (with the ensemble of N such settings comprising the set A =
{a1, a2, . . . , aN }), in order to alleviate the impact of contention in the WLAN. At
the same time, the visual analysis performed in the cloud can be adapted to scale
the required processing time to alleviate the impact of task scheduling congestion
in the cloud [25, 30], with the sets of contention and congestion levels represented
by the discrete sets T and G , respectively. In return, each device receives from the
cloud a label that describes the recognized object or face (e.g., the object or person’s
name), or simply a message that the object or person could not be recognized. In
addition, each device or wireless cluster can also receive feedback on the experi-
enced WLAN medium access control (MAC) layer contention and the cloud task
scheduling congestion conditions.

Thus, the “reward” for each device is the recognition result at each time step.
Given that each wireless access point and the cloud computing infrastructure serve
many more requests than the ones from a given cluster of devices (as illustrated in
Fig. 12.4), we can safely assume that for each device, the wireless contention and
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cloud congestion levels are both independent of the actions taken by the devices
within their clusters. This makes each device independent, since the decisions made
by other devices do not affect the reward.

12.5.3 Relation to Prior Work

Each mobile device of Fig. 12.4 seeks to maximize its own expected recognition
rate at the minimum possible cost in terms of utilized wireless resources (i.e., MAC
superframe transmission opportunities used). To this end, several approaches have
been proposed that are based on reinforcement learning [36], such asQ-learning [30].
In these, the goal is to learn the state-value function, which provides a measure of the
expected long-term performance (utility). However, they incur large memory over-
heads for storing the state-value function, and they are slow to adapt to new or dynam-
ically changing environments. A better approach is to intermittently explore and
exploit when needed, in order to capture such changes. Index policies formulti-armed
bandit (MAB) problems, contextual bandits [22, 33], or epsilon-decreasing algo-
rithms [3] can be used for this task. However, all existing bandit frameworks do not
take into consideration the contention and congestion conditions as contexts in the
application under consideration.

12.5.4 Learning Based on Multi-user Bandits

Motivated by the lack of efficient methods that fully capture the problems related to
online learning in multi-user wireless networks and cloud computing systems with
uncertain and highly-varying resource provisioning, an online systematic learning
theory based on multi-user contextual bandits has been developed. This learning
theory can be viewed as a natural extension of the basic MAB framework. Analytic
estimates have been derived to compare its efficiency against the complete knowledge
(or “oracle”) benchmark in which the expected reward of every choice is known by
the learner. Unlike Q-learning [36] and other learning-based methods, it is proven
that the regret bound—the loss incurred by the algorithm against the best possible
decision that assumes full knowledge of contention and congestion conditions—is
logarithmic if users do not collaborate and each would like to maximize the user’s
own utility. Finally, the contextual bandit framework discussed here is general, and
can be used for learning in various kinds of wireless embedded computer vision
applications that involve offloading of selected processing tasks. Henceforth in this
chapter, we refer to the contextual bandit framework by the abbreviation CBF.
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Table 12.1 Average attempts (with the oracle bound given in parentheses) to obtain a recognition
rate of 0.9 with 2D-PCA

Method Iteration

T = 50 T = 100 T = 250 T = 1,000

CBF 3.3 (1.7) 3.1 (1.6) 2.4 (1.5) 1.9 (1.5)

CBF no context 3.1 (1.7) 2.8 (1.6) 2.6 (1.6) 2.4 (1.6)

Q-learning 3.5 (1.7) 2.8 (1.6) 2.7 (1.5) 2.2 (1.5)

12.5.5 Numerical Results

The CBF has been evaluated by simulation. The simulation environment comprises
four mobile devices connected via an IEEE 802.11 WLAN to a cloud-computing
server. Videos of human faces are produced by random images of persons taken
from the extended Yale Face Database B (39 cropped faces of human subjects under
varying illumination) [20]. Each video comprises 34 images from the same person,
and is compressed to a wide range of bitrates via the H.264/AVC codec (x264 codec,
crf ∈ {4, 14, 24, 34, 44, 51}). The 2D PCA algorithm [43] is used at the cloud side
for face recognition from each decoded video (with the required training done offline
as per the 2D PCA setup [43]). More than 80% of the video frames have to match to
the same person in the database to declare a given video as “recognized”. There is a
time window set for recognition, which limits the number of frames received by the
cloud under varying WLAN contention levels (delay is increased under contention
due to the backoff and retransmissions of IEEE 802.11 WLANs). Similarly, because
of randomly varying congestion in the cloud, only a limited number of the received
video frames is actually used by 2D PCA, thereby affecting the recognition rate.

Table12.1 presents the average number of retries performed per recognition action
by the CBF method (with and without using the cloud congestion information as
context) in order to achieve a recognition rate of 90%. Results are also presented in
the following ways.

• An optimal solution that selects the transmission setting yielding the highest
expected recognition rate [2]. This solution is defined as the oracle solution, since
it assumes that all conditions for each case are precisely known beforehand.

• Q-learning [36, 44], as discussed in Sects. 12.5.3 and12.5.4.

The results indicate that after 250 recognition attempts (each attempt comprises
the retries listed), the CBF method approaches the oracle bound, and for the same
recognition rate, incurs less retries per attempt in comparison to Q-learning.
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12.5.6 Summary

In this section, we have examined in some detail a concrete case study of emerging
methods for data-driven, ASM system design targeted to embedded computer vision.
In particular, we have discussed a contextual bandit framework (CBF) for learning
contention and congestion conditions in object or face recognition viawirelessmobile
streaming and cloud-based processing. Analytic results show that the CBF frame-
work converges to the value of the oracle solution (i.e., the solution that assumes
full knowledge of congestion and contention conditions). Simulations within a
cloud-based face recognition system demonstrate that the CBF approach outper-
forms Q-learning, as it quickly adjusts to contention and congestion conditions. For
more details on the CBF approach, we refer the reader to [2].

12.6 Future Directions in Stream Mining Systems
for Computer Vision

Most existing solutions for designing and configuring computer vision and
stream-mining systems based on the extracted visual data offload their processing to
the cloud and assume that the underlying characteristics (e.g., visual characteristics)
are either known, or that simple-yet-accurate models of these characteristics can
be built. However, in practice, this knowledge is not available and models of such
computer vision applications or the associated processing mechanisms are very dif-
ficult to build and calibrate for specific environments, since these characteristics are
dynamically varying over time. Hence, despite applying optimization, these solu-
tions tend to result in highly sub-optimal performance since the models they use
for the experienced dynamics are not accurate. Hence, reinforcement learning (i.e.,
learning how to act based on past experience) becomes a vital component in all such
systems. Some of the best-performing online reinforcement learning algorithms are
Q-learning and structural-based reinforcement learning. In these, the goal is to learn
the state-value function, which provides a measure of the expected long-term per-
formance (utility) when it is acting optimally in a dynamic environment. It has been
proven that online learning algorithms converge to optimal solutions when all the
possible system states are visited infinitely often [36].

However, these methods have to learn the state-value function at every possible
state. As a result, they incur large memory overheads for storing the state-value
function and they are typically slow to adapt to new or dynamically changing
environments (i.e., they exhibit a slow convergence rate), especially when the state
space is large—as in the considered wireless transmission and recognition prob-
lem of Sect. 12.5. These memory and speed-of-learning deficiencies are alleviated
in structural-based learning solutions. Despite this, a key limitation still remains:
all these schemes provide only asymptotic bounds for the learning performance—no
speed-of-learning guarantees are provided. Nevertheless, in most computer vision
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and recognition systems, users are interested in both short-term performance and
long-term performance.

12.7 Conclusion

In this chapter, we have introduced the emerging area of adaptive stream mining
systems for embedded computer vision, and we have discussed important research
challenges in this area.We have emphasized key challenges in integratingmethods of
Dynamic Data Driven Applications Systems (DDDAS) rigorously in the design and
implementation process for the targeted class of embedded computer vision systems.
We have discussed the Lightweight Dataflow for Dynamic Data-Driven Application
Systems Environment (LiD4E) as a recently-introduced design tool for experiment-
ing with DDDAS-enabled stream mining methods. As a concrete example of recent
advances in DDDAS-enabled adaptive stream mining, we have presented a case
study involving learning based on multi-armed bandits. As motivated in this chapter,
addressing the future challenges of adaptive stream mining systems for embedded
computer vision will require interdisciplinary advances in areas that includemachine
learning, DDDAS design methods, and distributed embedded systems.
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