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Abstract—In this paper, we study the online learning problem
involving rested and restless bandits, in both a centralized and a de-
centralized setting. In a centralized setting, the system consists of a
single player/user and a set of finite-state discrete-time Markov
chains (arms) with unknown state spaces (rewards) and statistics.
The objective of the player is to decide in each step which of
the arms to play over a sequence of trials so as to maximize its
long-term reward. In a decentralized setting, multiple uncoordi-
nated players each makes its own decision on which arm to play
in a step, and if two or more players select the same arm simul-
taneously, a collision results and none of the players selecting that
arm gets a reward. The objective of each player again is to max-
imize its long-term reward. We first show that logarithmic regret
algorithms exist both for the centralized rested and restless bandit
problems. For the decentralized setting, we propose an algorithm
with logarithmic regret with respect to the optimal centralized arm
allocation. Numerical results and extensive discussion are also pro-
vided to highlight insights obtained from this study.

Index Terms—Exploration–exploitation tradeoff, multiarmed
bandits, online learning, opportunistic spectrum access (OSA),
regret, restless bandits.

I. INTRODUCTION

I N this paper, we study the online learning problem in-
volving rested and restless bandits in both a centralized and

a decentralized setting. In the centralized setting, the system
consists of a single player/user and a set of finite-state
discrete-time Markov chains (also referred to as arms) with
unknown state spaces and statistics. At each time step, the
player can play , , arms. Each arm played generates
a reward depending on the state the arm is in when played.
The state of an arm is only observed when it is played, and
otherwise unknown to the player. The objective of the player
is to decide for each step which of the arms to play over
a sequence of trials so as to maximize its long-term reward.
To do so, it must use all its past actions and observations to
essentially learn the quality of each arm (e.g., their expected
rewards). In the decentralized setting, multiple uncoordinated
players each makes its own decision on which arm to play in
a step, and if two or more players select the same arm simul-
taneously, a collision results and none of the players selecting
that arm gets a reward. The objective of each player again is
to maximize its long-term reward. We consider two cases, one
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with rested arms where the state of a Markov chain stays frozen
unless it is played, the other with restless arms where the state
of a Markov chain may continue to evolve (accordingly to a
possibly different law) regardless of the player’s actions.
The aforementioned problem is motivated by the following

opportunistic spectrum access (OSA) problem. A (secondary)
user has access to a set of channels, each of time-varying con-
dition as a result of random fading and/or certain primary users’
activities. The condition of a channel is assumed to evolve as
a Markov chain. At each time step, the secondary user (simply
referred to as the user for the rest of this paper for there is no
ambiguity) senses or probes of the channels to find out
their condition, and is allowed to use the channels in a way con-
sistent with their conditions. For instance, good channel condi-
tions result in higher data rates or lower power for the user and
so on. In some cases, channel conditions are simply character-
ized as being available and unavailable, and the user is allowed
to use all channels sensed to be available. This is modeled as
a reward collected by the user, the reward being a function of
the state of the channel or the Markov chain. The decentralized,
multiplayer version of the aforementioned problem is also easily
understood: here, multiple users compete for the set of chan-
nels, and simultaneous access to the same channel results in a
collision and reduced rewards. In this case, not only do the users
have to find channels with good conditions, but must also try to
avoid collision in order to maximize their rewards.
The restless bandit model is particularly relevant to this ap-

plication because the state of each Markov chain evolves in-
dependently of the action of the user. The restless nature of
the Markov chains follows naturally from the fact that channel
conditions are governed by external factors like random fading,
shadowing, and primary user activity. In the remainder of this
paper, a channel will also be referred to as an arm, the user as
player, and probing a channel as playing or selecting an arm.
Within this context, the user’s performance is typically mea-

sured by the notion of regret. In the centralized case, it is de-
fined as the difference between the expected reward that can be
gained by an “infeasible” or ideal policy, i.e., a policy that re-
quires either a priori knowledge of some or all statistics of the
arms or hindsight information, and the expected reward of the
user’s policy. In the decentralized case, the difference is calcu-
lated with respect to the centralized policy with the aforemen-
tioned properties. The most commonly used infeasible policy is
the best single-action policy that is optimal among all policies
that continue to play the same arm. An ideal policy could play
for instance the arm that has the highest expected reward (which
requires statistical information but not hindsight). This type of
regret is sometimes also referred to as the weak regret, see, e.g.,
work by Auer et al. [1]. In this paper, we will only focus on this
definition of regret. Discussion on possibly stronger regret mea-
sures is given in Section IX.
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This problem is a typical example of the tradeoff between
exploration and exploitation. On the one hand, the player needs
to sufficiently explore all arms so as to discover with accuracy
the set of best arms and avoid getting stuck playing an inferior
one erroneously believed to be in the set of best arms. On the
other hand, the player needs to avoid spending too much time
sampling the arms and collecting statistics and not playing the
best arms often enough to get a high return.
In most prior work on the class of (centralized) bandit prob-

lems, originally proposed by Robbins [2], the rewards are as-
sumed to be independently drawn from a fixed (but unknown)
distribution. It is worth noting that with this i.i.d. assumption on
the reward process, whether an arm is rested or restless is incon-
sequential for the following reasons. Since the rewards are inde-
pendently drawn each time, whether an unselected arm remains
still or continues to change does not affect the reward the arm
produces the next time it is played whenever that may be. This
is clearly not the case with Markovian rewards. In the rested
case, since the state is frozen when an arm is not played, the
state in which we next observe the arm is independent of how
much time elapses before we play the arm again. In the rest-
less case, the state of an arm continues to evolve; thus, the state
in which we next observe it is now dependent on the amount
of time that elapses between two plays of the same arm. This
makes the problem significantly more difficult.
In this paper, we first study the centralized rested bandit

problem with Markovian rewards. Specifically, we show that
a player using the UCB1 algorithm [3] achieves logarithmic
regret for rested bandits. We then use the key difference be-
tween rested and restless bandits to construct a regenerative
cycle algorithm (RCA) that produces logarithmic regret for the
restless bandit problem with a single play or multiple plays.
The construction of this algorithm allows us to use the proof of
the rested problem as a natural stepping stone, and simplifies
the presentation of the main conceptual idea. We then consider
the decentralized multiplayer restless bandit problem, where
there are uncoordinated players, each selects a single arm
at every time step. We prove that a multiplayer extension to
RCA leads to polylogarithmic regret with respect to the optimal
centralized allocation for this problem.
The remainder of this paper is organized as follows. Related

work is discussed in Section II. In Section III, we present the
problem formulation. In Section IV, we introduce and analyze
the rested bandit problem with a single play and multiple plays.
In Sections V and VI, we analyze the restless bandit problem
with a single play and multiple plays, respectively, by utilizing
regenerative cycles. We consider the decentralized multiplayer
restless bandit problem and analyze its regret in Section VII.
In Section VIII, we numerically examine the performance
of our algorithms in the case of an OSA problem with the
Gilbert–Elliot channel model. In Section IX, we discuss pos-
sible improvements and compare our algorithm to existing
literature. Section X concludes this paper.

II. RELATED WORK

In the following, we briefly summarize the most relevant re-
sults in the literature. Lai and Robbins in [4] model rewards as
single-parameter univariate densities and give a lower bound on

the regret and construct policies that achieve this lower bound
which are called asymptotically efficient policies. This result is
extended by Anantharam et al. in [5] to the case of playing more
than one arm at a time. Using a similar approach, Anantharam
et al. in [6] develop index policies that are asymptotically effi-
cient for arms with rewards driven by finite, irreducible, ape-
riodic, and rested Markov chains with identical state spaces
and single-parameter families of stochastic transition matrices.
Agrawal in [7] considers sample mean based index policies for
the i.i.d. model that achieve regret, where is the total
number of plays. Auer et al. in [3] also propose sample mean
based index policies for i.i.d. rewards with bounded support;
these are derived from [7], but are simpler than those in [7] and
are not restricted to a specific family of distributions. These poli-
cies achieve logarithmic regret uniformly over time rather than
asymptotically in time, but in general have bigger constant than
that in [4]. In [8], an index policy, KL-UCB, which is uniformly
better than UCB [3], and its variants is proposed. Moreover, it is
shown to be asymptotically optimal for Bernoulli rewards. An
extension of the multiarmed bandit problem to linear optimiza-
tion is considered in [9]. In [10], we show that the index policy
in [3] is order optimal for Markovian rewards drawn from rested
arms but not restricted to single-parameter families, under some
assumptions on the transition probabilities. Later, we prove a
logarithmic weak regret bound for the restless bandit problem in
[11]. Parallel to the work presented here, in [12], an algorithm
is constructed that achieves logarithmic regret for the restless
bandit problem. The mechanism behind this algorithm, how-
ever, is quite different from ours; this difference is discussed
in more detail in Section IX.
Work in decentralized multiplayer setting includes [13]–[15],

which all consider the i.i.d. reward case, and where players se-
lecting the same arms experience collision according to a cer-
tain collision model. Specifically, in [13] and [14], a logarithmic
lower bound on the regret is derived, and algorithms with loga-
rithmic regret are proposed. This is done through a time-division
fair sharing scheme in [13], while in [14], players randomize
to settle to orthogonal arms. In [15], the authors prove a loga-
rithmic regret bound for a combinatorial bandit problem.
It is also worthmentioning another class of multiarmed bandit

problems in which the statistics of the arms are known a priori
and the state is observed perfectly; these are thus optimization
problems rather than learning problems. The rested case is con-
sidered by Gittins [16] and the optimal policy is proved to be an
index policy that at each time plays the arm with highest Git-
tins’ index. Whittle introduced the restless version of the bandit
problem in [17]. The restless bandit problem does not have a
known general solution though special cases may be solved. For
instance, a myopic policy is shown to be optimal when channels
are identical and bursty in [18] for an OSA problem formulated
as a restless bandit problem with each channel modeled as a
two-state Markov chain (the Gilbert–Elliot model).

III. PROBLEM FORMULATION AND PRELIMINARIES

Consider arms (or channels) indexed by the set
. The th arm is modeled as a discrete-time,

irreducible, and aperiodic Markov chain with a finite state space
. There is a stationary and positive reward associated with
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each state of each arm. Let denote the reward obtained from
state of arm , ; this reward is in general different for
different states. Let denote the transi-
tion probability matrix of the th arm, and
the stationary distribution of .
We assume the arms (the Markov chains) are mutually inde-

pendent. In subsequent sections, we will consider the rested and
the restless cases separately. As mentioned in Section I, the state
of a rested arm changes according to only when it is played
and remains frozen otherwise. By contrast, the state of a restless
arm changes according to regardless of the user’s actions. All
the assumptions in this section apply to both types of arms. We
note that the rested model is a special case of the restless model,
but our development under the restless model follows the rested
model.1

Let denote the adjoint of on where

and denotes the multiplicative symmetrization of
. We will assume that the ’s are such that ’s are irre-

ducible. To give a sense of how weak or strong this assump-
tion is, we first note that this is a weaker condition than as-
suming the Markov chains to be reversible. In addition, we note
that one condition that guarantees the ’s are irreducible is

. This assumption thus holds naturally
for our main motivating application, as it is possible for channel
condition to remain the same over a single time step (especially
if the unit is sufficiently small). It also holds for a very large
class of Markov chains and applications in general. Consider,
for instance, a queuing system scenario where an arm denotes a
server and the Markov chain models its queue length, in which
it is possible for the queue length to remain the same over one
time unit.
The mean reward of arm , denoted by , is the expected

reward of arm under its stationary distribution

(1)

Consistent with the discrete-time Markov chain model, we
will assume that the player’s actions occur in discrete time steps.
Time is indexed by .We will also frequently refer
to the time interval as time slot . In the centralized
model, the player plays of the arms at each time step.
Throughout the analysis, wewill make the additional assump-

tion that the mean reward of arm is strictly greater than the
mean reward of arm , i.e., we have

. For rested arms, this assumption
simplifies the presentation and is not necessary, i.e., results will
hold for . However, for restless arms, the strict in-
equality between and is needed because otherwise

1In general, a restless arm may be given by two transition probability ma-
trices: an active one and a passive one . The first describes the state
evolution when it is played and the second the state evolution when it is not
played. When an arm models channel variation, and are, in general, as-
sumed to be the same as the channel variation is uncontrolled. In the context of
online learning, we shall see that the selection of is irrelevant; indeed, the
arm does not even have to be Markovian when it is in the passive mode. More
is discussed in Section IX.

there can be a large number of arm switchings between the th
and the th arms (possibly more than logarithmic). Strict
inequality will prevent this from happening. We note that this
assumption is not in general restrictive; in our motivating appli-
cation, distinct channel conditions typically mean different data
rates. Possible relaxation of this condition is given in Section IX.
We will refer to the set of arms as the -best

arms and say that each arm in this set is optimal while referring
to the set as the -worst arms and
say that each arm in this set is suboptimal.
For a policy , we define its regret as the difference

between the expected total reward that can be obtained by only
playing the -best arms and the expected total reward obtained
by policy up to time . Let denote the set of arms
selected by policy at , be an arm selected
by policy at , and be the state of arm

at time . Then, we have

(2)

The objective is to examine how the regret behaves as
a function of for a given policy and to construct a policy
whose regret is order-optimal, through appropriate bounding.
As we will show and as is commonly done, the key to bounding

is to bound the expected number of plays of any subop-
timal arm. Let be the number of times arm is played
by policy at the end of time , and be the sample
mean of the rewards observed from the first plays of arm
. When the policy used is clear from the context, we will sup-
press the superscript from the aforementioned expressions.
The following result is due to Lezaud [19] that bounds the

probability of a large deviation from the stationary distribution.

Lemma 1 [Theorem 3.3 From [19]]: Consider a finite-state,
irreducible Markov chain with state space , matrix
of transition probabilities , an initial distribution , and sta-
tionary distribution . Let . Let

be the multiplicative symmetrization of where is
the adjoint of on . Let , where is the
second largest eigenvalue of the matrix . will be referred
to as the eigenvalue gap of . Let be such that

, and . If is
irreducible, then for any positive integer and all

The following notations are frequently used throughout
this paper: , ,

, , ,
, ,

where is the eigenvalue gap (the difference between 1
and the second largest eigenvalue) of the multiplicative sym-
metrization of the transition probability matrix of the th arm,
and , where is the mean hitting
time of state given the initial state for arm for .
The following is a condition we will need on arms for most

of the results in this paper.
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Fig. 1. Pseudocode for the UCB algorithm.

Condition 1: All arms are finite-state, irreducible, aperiodic
Markov chains whose transition probability matrices have ir-
reducible multiplicative symmetrizations and

.
In the next few sections, we present algorithms for the rested

and restless bandit problems with a single play and multiple
plays, respectively, and analyze their regret.

IV. ANALYSIS OF THE RESTED BANDIT PROBLEM

In this section, we show that there exists an algorithm that
achieves logarithmic regret uniformly over time for the rested
bandit problem. We will start with the single-play scenario,
where the player selects a single arm at each time step, thus

. The algorithm we consider is called the upper confi-
dence bound (UCB), which is a slight modification of UCB1
from [3] with an unspecified exploration constant instead of
fixing it at 2. The idea of modifying the exploration constant is
also used in [20] under a very different setting where the idea is
to exploit variance estimation in a multiarmed bandit problem.
Throughout our discussion, we will consider a horizon of
time slots.
As shown in Fig. 1, UCB selects the arm with the highest

index at each time step and updates the indices according to the
rewards observed. The index given on line 4 of Fig. 1 depends
on the sample mean reward and an exploration term which re-
flects the relative uncertainty about the sample mean of an arm.
We call in the exploration term the exploration constant. The
exploration term grows logarithmically when the arm is not
played in order to guarantee that sufficient samples are taken
from each arm to approximate the mean reward.
To upper bound the regret of the aforementioned algorithm

logarithmically, we proceed as follows.We begin by relating the
regret to the expected number of plays of the arms and then show
that each suboptimal arm is played at most logarithmically in
expectation. These steps are illustrated in the following lemmas.

Lemma 2: Assume that all arms are finite-state, irreducible,
aperiodic, rested Markov chains. Then, using UCB, we have

(3)

where is a constant that depends on the state spaces,
rewards, and transition probabilities but not on time.

Proof: see Appendix A.

Lemma 3: Assume Condition 1 holds and all arms are rested.
Under UCB with , for any subop-
timal arm , we have

Proof: see Appendix B.

Theorem 1: Assume Condition 1 holds and all arms are
rested. With constant , the regret
of UCB is upper bounded by

where .
Proof:

(4)

(5)

where (4) follows from Lemma 4 and (5) follows from
Lemma 5.

The aforementioned theorem says that provided that satis-
fies the stated sufficient condition, UCB results in logarithmic
regret for the rested problem. This sufficient condition does re-
quire certain knowledge on the underlying Markov chains. This
requirement may be removed if the value of is adapted over
time. More is discussed in Section IX.
We next extend the aforementioned results to the case where

the player selects arms at each time step. The multiple-play
extension to UCB1, referred to as UCB-M below, is straight-
forward: initially, each arm is played times in the first
slots ( arms in each slot, in arbitrary order); subsequently, at
each time slot, the algorithm plays of the arms with the
highest current indices. For simplicity of presentation, we will
view a single player playing multiple arms at each time as mul-
tiple coordinated players each playing a single arm at each time.
In other words, we consider players indexed by ,
each playing a single arm at a time. Since in this case infor-
mation is centralized, collision is completely avoided among
the players, i.e., at each time step an arm will be played by at
most one player. Under this presentation, let be the total
number of times (slots) player played arm up to the end of
slot .
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Proofs of the following lemmas are not given since they are
similar to the proofs of the lemmas presented earlier in this sec-
tion.

Lemma 4: Assume that all arms are finite-state, irreducible,
aperiodic, rested Markov chains. Then, using UCB-M, we have

where is a constant that depends on the state spaces,
rewards, and transition probabilities but not on time.
Lemma 5: Assume Condition 1 holds and all arms are rested.

Under UCB-Mwith , for any sub-
optimal arm , we have

Theorem 2: Assume Condition 1 holds and all arms are
rested. With constant , the regret
of UCB-M is upper bounded by

where .
Proof:

Thus

(6)

(7)

where (6) follows from Lemma 4 and (7) follows from
Lemma 5.

V. RESTLESS BANDIT PROBLEM: SINGLE PLAY

In this and the next section, we study the restless bandit
problem, in the single-play and the multiple-play cases, re-
spectively. While the multiple-play case is more general, the
analysis in the single-play case is more intuitive to illustrate
with less cumbersome notations.
We construct an algorithm called the regenerative cycle al-

gorithm, and prove that this algorithm guarantees logarithmic
regret uniformly over time under the same mild assumptions on
the state transition probabilities as in the rested case. In the fol-
lowing, we first present the key conceptual idea behind RCA,
followed by a more detailed pseudocode.We then prove the log-
arithmic regret result.
As the name suggests, RCA operates in regenerative cycles.

In essence, RCA uses the observations from sample paths within
regenerative cycles to estimate the sample mean of an arm in the
form of an index similar to that used in UCB while discarding
the rest of the observations (only for the computation of the
index; they contribute to the total reward). Note that the rewards
from the discarded observations are collected but are not used
to make decisions. The reason behind such a construction has
to do with the restless nature of the arms. Since each arm con-
tinues to evolve according to the Markov chain regardless of the
user’s action, the probability distribution of the reward we get
by playing an arm is a function of the amount of time that has
elapsed since the last time we played the same arm. Since the
arms are not played continuously, the sequence of observations
from an arm which is not played consecutively does not cor-
respond to a discrete-time homogeneous Markov chain. While
this certainly does not affect our ability to collect rewards, it be-
comes hard to analyze the estimated quality (the index) of an
arm calculated based on rewards collected this way.
However, if instead of the actual sample path of observations

from an arm, we limit ourselves to a sample path constructed
(or rather stitched together) using only the observations from
regenerative cycles, then this sample path essentially has the
same statistics as the original Markov chain due to the renewal
property and one can now use the sample mean of the rewards
from the regenerative sample paths to approximate the mean
reward under stationary distribution.
Under RCA, the player maintains a block structure; a block

consists of a certain number of slots. Within a block, a player
plays the same arm continuously till a certain prespecified state
(say ) is observed. Upon this observation, the arm enters a
regenerative cycle and the player continues to play the same
arm till state is observed for the second time, which denotes
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Fig. 2. Example realization of RCA.

Fig. 3. Block structure of RCA.

the end of the block. For the purpose of index computation and
subsequent analysis, each block is further broken into three sub-
blocks (SBs). SB1 consists of all time slots from the beginning
of the block to right before the first visit to ; SB2 includes
all time slots from the first visit to up to but excluding the
second visit to state ; SB3 consists of a single time slot with
the second visit to . Fig. 2 shows an example sample path of
the operation of RCA.
The key to the RCA algorithm is for each arm to single out

only observations within SB2’s in each block and virtually as-
semble them. Throughout our discussion, we will consider a
horizon of time slots. A list of notations used is summarized
as follows.
1) : the state that determines the regenerative cycles for arm

.
2) : the arm played in the th block.
3) : the number of completed blocks up to time .
4) : the time at the end of the last completed block (see
Fig. 3).

5) : the total number of blocks within the first completed
blocks in which arm is played.

6) : the vector of observed states from SB1 of the th
block in which arm is played; this vector is empty if the
first observed state is .

7) : the vector of observed states from SB2 of the th
block in which arm is played;

8) : the vector of observed states from the th
block in which arm is played. Thus, we have

.
9) : time at the end of block .
10) : the number of time slots that lie within an SB2 of

any completed block up to and including block .
11) : the number of time slots arm is played during

SB2’s when the number of time steps that lie within an SB2
is .

12) : the number of time slots arm is played by the end
of time t.

The block structure along with some of the aforementioned
definitions are presented in Fig. 3. RCA computes and updates

the value of an index for each arm at the end of block
based on the total reward obtained from arm during all SB2’s
as follows:

(8)

where is a constant, and

denotes the sample mean of the reward collected during SB2. It
is also worth noting that under RCA, rewards are also collected
during SB1’s and SB3’s. However, the computation of the in-
dices only relies on SB2. The pseudocode of RCA is given in
Fig. 4.
Proving the existence of a logarithmic upper bound on the re-

gret for restless arms is a nontrivial task since the blocks may
be arbitrarily long and the frequency of arm selection depends
on the length of the blocks. In the analysis that follows, we first
show that the expected number of blocks in which a suboptimal
arm is played is at most logarithmic. By the regenerative prop-
erty of the arms, all the observations from SB2’s of an arm can
be combined together and viewed as a sequence of continuous
observations from a rested arm. Therefore, we can use a large
deviation result to bound the expected number of times the index
of a suboptimal arm exceeds the index of an optimal arm. Using
this result, we show that the expected number of blocks in which
a suboptimal arm is played is at most logarithmic in time. We
then relate the expected number of blocks in which a suboptimal
arm is played to the expected number of time slots in which a
suboptimal arm is played using the positive recurrence prop-
erty of the arms. Finally, we show that the regret due to arm
switching is at most logarithmic, and the regret from the last,
incomplete block is finite due to the positive recurrence prop-
erty of the arms.
In the following, we first bound the expected number of plays

from a suboptimal arm.
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Fig. 4. Pseudocode of RCA.

Lemma 6: Assume Condition 1 holds and all arms are rest-
less. Under RCAwith a constant ,
we have

where

Proof: See Appendix C.

We now state the main result of this section.

Theorem 3: Assume Condition 1 holds and all arms are rest-
less. With constant , the regret of
RCA is upper bounded by

where

Proof: See Appendix D.

Theorem 3 suggests that given minimal information about
the arms such as an upper bound for , the
player can guarantee logarithmic regret by choosing an in
RCA that satisfies the stated condition. As in the rested case,
this requirement on can be completely removed if the value
of is adapted over time; more is discussed in Section IX.
We conjecture that the order optimality of RCA holds when it

is used with any index policy that is order optimal for the rested
bandit problem. Because of the use of regenerative cycles in
RCA, the observations used to calculate the indices can be in
effect treated as coming from rested arms. Thus, an approach
similar to the one used in the proof of Theorem 3 can be used to
prove order optimality of combinations of RCA and other index
policies. We comment more on this in Section IX.

VI. RESTLESS BANDIT PROBLEM: MULTIPLE PLAYS

In this section we extend the results of the previous section to
the case of multiple plays. The multiple-play extension to the re-
generative cycle algorithm will be referred to as the RCA-M. As
in the rested case, even though our basic model is one of single
player with multiple plays, our description is in the equivalent
form of multiple coordinated players each with a single play.
As in RCA, RCA-M maintains the same block structure,

where a player plays the same arm till it completes a re-
generative cycle. Since arms are played (by players)
simultaneously in each slot, different blocks overlap in time.
Multiple blocks may or may not start or end at the same time.
In our following analysis, blocks will be ordered; they are
ordered according to their start time. If multiple blocks start
at the same time, then the ordering among them is randomly
chosen. Fig. 5 shows an example sample path of the operation
of RCA-M. The block structure of two players and the ordering
of the blocks are shown.
The pseudocode of RCA-M is given in Fig. 6. The analysis

is similar to that in Section V, with careful accounting of the
expected number of blocks in which a suboptimal arm is played.
The details can be found in the proof of Theorem 3.

Theorem 4: Assume Condition 1 holds and all arms are rest-
less. With constant , the regret of
RCA-M is upper bounded by
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Fig. 5. Example realization of RCA-M with for a period of slots.

where

Proof: See Appendix E.

VII. DECENTRALIZED MULTIPLAYER RESTLESS BANDIT

In this section, we analyze the decentralized multiplayer rest-
less bandit problem. In this case, there are uncoordinated
players. Each player must choose a single arm to play at each
time step. A player is able to observe the state of the arm it se-
lects, but if two or more players select the same arm simultane-
ously, then a collision results and no player involved receives
any reward. Compared to the centralized restless bandit with
multiple plays studied in Section VI, which was described from
the point of view of multiple coordinated players, the key differ-
ence here is the possibility of collision which reduces a player’s
reward. Note however that a player’s ability to observe state in-
formation remains unchanged from the previous case.
Within the context of our motivating application, this

problem models a decentralized multiuser dynamic spectrum
access scenario, where multiple users compete for a common
set of channels. Each user performs channel sensing and data
transmission tasks in each time slot. Sensing is done at the
beginning of a slot; the user observes the quality of a selected
channel. This is followed by data transmission in the same
channel. The user receives feedback at the end of the slot (e.g.,
in the form of an acknowledgment) on whether the transmission
is successful. If more than one user selects the same channel in
the same slot, then a collision occurs and none of the users gets
any reward.

Fig. 6. Pseudocode of RCA-M.

The algorithm we construct and analyze in this section is
a decentralized extension to RCA-M and will be referred to
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as the decentralized regenerative cycle algorithm or DRCA.
This algorithm works similarly as RCA-M, using the same
block structure. However, since players are uncoordinated,
each player keeps its own locally computed indices for all
arms, and they may vary from player to player. As earlier, a
player continues to play the same arm till it completes a block,
upon which it updates the indices for the arms using state
observations from SB2’s. Within this completed block, it may
experience collision in any of the time slots; for these slots, it
does not receive any reward. At the end of a block, if the player
did not experience a collision in the last slot of the block, it
continues to play the arm with the same rank in the next block
after the index update. If it did experience a collision, then the
player updates the indices for the arms, and then randomly
selects an arm within the top arms, based on the indices it
currently has for all the arms, to play in the next block.
We see that compared to RCA-M, the main difference in

DRCA is the randomization upon completion of a block. This
is because if all players choose the arm with the highest index,
then collision will be high even if players do not have exactly
the same local indices; this in turn leads to large regret. Let-
ting a player randomize among its highest-ranked arms can
help alleviate this problem, and aims to eventually orthogo-
nalize the users in their choice of arms. This is the same idea
used in [14]. The difference is that in [14], the randomization is
done each time a collision occurs under an i.i.d. reward model,
whereas in our case, the randomization is done at the end of a
completed block and is therefore less frequent as block lengths
are random. The reason for this is because with the Markovian
reward model, index updates can only be done after a regenera-
tive cycle; switching before a block is completed will waste the
state observations made within that incomplete block.
In the remainder of this section, we show that using the afore-

mentioned algorithm, the regret summed over all players with
respect to the optimal centralized (coordinated) solution, where
players always play the -best arms, is polylogarithmic in

time. Our analysis follows a similar approach as in [14], adapted
to blocks rather than time slots and with a number of technical
differences. In particular, the proof of Lemma 9 is significantly
different because a single block of some player may collide with
multiple blocks of other players; thus, we need to consider the
actions of players jointly.
Let be the sample mean of the rewards inferred from

state observations (not the actual rewards received since in this
case reward is zero when there is collision) by player during
its th block in which it plays arm . Without loss of generality,
in this section, we assume that . Let

be the number of blocks in which arm is played by
at the end of its th block. Let be the number of ’s com-
pleted blocks up to time . Then, the index of arm computed
(and perceived) by player at the end of its th completed block
is given by

(9)

The difference between the index given in (8) and (9) is that
the exploration term in (9) depends on the number of blocks

completed by a player, while in (8) it depends on the number of
time steps spent in SB2’s of a player.
Let be the number of slots involving collisions in the
optimal arms in the first slots, and let denote the

number of slots player plays arm up to time . Then, from
Proposition 1 in [14], we have

(10)

This result relates the regret to the amount of loss due to colli-
sion in the optimal arms, and the plays in the suboptimal arms.

Lemma 7: Under DRCA, for any player and any suboptimal
arm , we have

Proof: See Appendix F.

The next lemma shows that provided all players have the cor-
rect ordering of arms, the expected number of blocks needed to
reach an orthogonal configuration by randomization at the end
of blocks is finite.

Lemma 8: Given all players have the correct ordering of the
arms and do not change this ordering anymore, the expected
number of blocks needed summed over all players to reach an
orthogonal configuration is bounded above by

Proof: The proof is similar to the proof of Lemma 2 in [14],
by performing randomization at the end of each block instead of
at every time step.

Let be the number of completed blocks up to , in
which at least one of the top estimated ranks of the arms at
some player is wrong. Let be the step transition proba-
bility from state to of arm . Since all arms are ergodic, there
exists such that , for all .
We now bound the expectation of .

Lemma 9: Under DRCA, we have

where is the minimum integer such that

for all , , and

.
Proof: See Appendix G.

Next, we show that the expected number of collisions in the
optimal arms is at most in time. Let be the number
of completed blocks in which some collision occurred in the
optimal arms up to time .
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Lemma 10: Under DRCA, we have

Proof: See Appendix H.

Combining all the aforementioned lemmas and using the fact
that the expected block length is finite, we have the following
result.

Theorem 5: When all players use DRCA, we have

where

Proof: Since the expected length of each block is
at most and the expected number of time steps
between current time and the time of the last com-
pleted block is at most the expected block length, we
have and

. The result follows from
substituting these into (10) and using results of Lemmas 7 and
10.

It is worth mentioning that our proof of the polylogarithmic
regret upper bound in this section is based on the regenerative
cycles but does not rely on a large deviation bound for Markov
chains as we have done in the previous sections. The main idea
is that the sample mean rewards observed within regenerative
cycles with the same regenerative state form an i.i.d. random
process; our results are easier to prove by exploiting the i.i.d.
structure. The same method can be used in the previous sections
as well by choosing a constant regenerative state for each arm.
Moreover, under this method, we no longer need the assump-
tion that for any . Indeed, with this
method, the same results can be derived for arbitrary non-Mar-
kovian discrete-time renewal processes with finite mean cycle
time and bounded rewards. However, we note that the previous
method based on the large deviation bound for Markov chains is
still of importance because it works when the regenerative states
are adapted over time. In this case, the cycles are no longer i.i.d.
and the expected average reward in a cycle is not necessarily
the mean reward of an arm. We give applications where there is
a need to change the regenerative state of an arm over time in
Section IX.

TABLE I
TRANSITION PROBABILITIES OF ALL CHANNELS

VIII. EXAMPLES IN OSA USING THE GILBERT–ELLIOT
CHANNEL MODEL

In this section, we give numerical results for the algorithms
we proposed under the Gilbert–Elliot channel model in which
each channel has two states, good and bad (or 1, 0, respectively).
For any channel , the rewards are given by , .
We consider four OSA scenarios, denoted S1–S4, each con-
sisting of ten channels with different state transition probabil-
ities. The state transition probabilities and mean rewards of the
channels in each scenario are given in Tables I and II, respec-
tively. The four scenarios are intended to capture the following
differences. In S1, channels are bursty with mean rewards not
close to each other; in S2, channels are nonbursty with mean
rewards not close to each other; in S3, there are bursty and non-
bursty channels with mean rewards not close to each other; and
in S4, there are bursty and nonbursty channels with mean re-
wards close to each other. All simulations are done for a time
horizon , and averaged over 100 random runs. Initial
states of the channels are drawn from their stationary distribu-
tions. For each algorithm that requires a regenerative state, the
regenerative state of an arm for a player is set to be the first state
the player observes from that arm, and is kept fixed throughout
a single run.
We first compute the normalized regret values, i.e., the re-

gret per play , for RCA-M. In Figs. 7, 9, 11, and 13,
we observe the normalized regret of RCA-M for the minimum
values of such that the logarithmic regret bound holds. How-
ever, comparing with Figs. 8, 10, 12, and 14, we see that the nor-
malized regret is smaller for . Therefore, it appears that
the condition on we have for the logarithmic bound, while
sufficient, may not be necessary.
We next compute the regret of UCB with single play under

the OSA model. We note that our theoretical regret bound for
UCB is for rested channels but the numerical results are given
for a special case of restless channels. Results in Fig. 15 show
that when , for S1, S3, and S4, UCB has negative re-
gret, which means that it performs better than the best single
action policy, while for S2, it has a positive regret, which is also
greater than the regret of RCA with single play under S2 with

. In Fig. 16, we see the regret of UCB for larger values
of . As expected, the regret of UCB increases with due to
the increase in explorations. However, comparing the regret of
UCB with that of RCA under the same value of , we see that
UCB outperforms RCA for all scenarios considered here. These
results imply that although there is no theoretical bounds for the
regret of UCB, its performance is comparable to RCA under the
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TABLE II
MEAN REWARDS OF ALL CHANNELS

Fig. 7. Normalized regret of RCA-M: S1, .

Fig. 8. Normalized regret of RCA-M: S1, .

presented setting. This is because 1) RCA has a smaller update
rate due to the random length of the regenerative cycles; thus, it
takes longer to use the latest observations in arm selection, and
2) even though there is no guarantee that UCB produces accu-
rate estimates on the mean rewards, the simple structure of the
problem helps UCB keep track of the shorter term (not the sta-
tionary) quality of each arm.
We also compute the regret of RCA with the index given in

(9), where the exploration term is the ratio of the number of
completed blocks to the number of completed blocks of arm

Fig. 9. Normalized regret of RCA-M: S2, .

Fig. 10. Normalized regret of RCA-M: S2, .

up to . This approach reduces the problem to an i.i.d. one, where
the average reward in each block can be seen as a random reward
drawn from an i.i.d. arm. We can then exploit the well-known
result for the i.i.d. problem [3] which says that setting is
enough to get a logarithmic regret bound. The regret for single
play under different scenarios is given in Fig. 17. Comparing
them with their counterparts using RCA with an such that the
logarithmic regret bound holds, we observe that the modified
index results in better performance. This is because is smaller,
and the exploration is more balanced in a way that the growth
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Fig. 11. Normalized regret of RCA-M: S3, .

Fig. 12. Normalized regret of RCA-M: S3, .

of the exploration term does not depend on the randomness of
the block lengths.
Finally, we present the regret of DRCA with two users in

Fig. 18. The results are similar to that of RCA with the index
given in (9), but with a larger regret due to collisions.

IX. DISCUSSION

In this section, we discuss how the performance of RCA-M,
its special case RCA, and extension DRCAmay be improved (in
terms of the constants and not in order), and possible relaxation
and extensions.

A. Applicability and Performance Improvement

We note that the same logarithmic bound derived in this paper
holds for the general restless bandit problem independent of the
state transition law of an arm when it is not played. Indeed, the
state transitions of an arm when it is not played can even be
adversarial. This is because the reward to the player from an arm
is determined only by the active transition probability matrix
and the first state after a discontinuity in playing the arm. Since

Fig. 13. Normalized regret of RCA-M: S4, .

Fig. 14. Normalized regret RCA-M: S4, .

Fig. 15. Regret of UCB, .

the number of plays from any suboptimal arm is logarithmic
and the expected hitting time of any state is finite, the regret is
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Fig. 16. Regret of UCB, .

Fig. 17. Regret of RCA with modified index.

Fig. 18. Regret of DRCA with two users.

at most logarithmic independent of the first observed state of a
block.

The regenerative state for an arm under RCA is chosen based
on the random initial observation. It is worth noting that the se-
lection of the regenerative state in each block in general can
be arbitrary: within the same SB2, we can start and end in dif-
ferent states. As long as we guarantee that two successive SB2’s
end and start with the same state, we will have a continuous
sample path for which our analysis in Section V holds.
It is possible that RCA may happen upon a state with long

recurrence time which results in long SB1 and SB2 subblocks.
Consider now the following modification: RCA records all ob-
servations from all arms. Let be the total number of ob-
servations from arm up to time that are excluded from the
computation of the index of arm when the regenerative state
is . Recall that the index of an arm is computed based on ob-
servations from regenerative cycles; this implies that is
the total number of slots in SB1’s when the regenerative state is
. Let be the time at the end of the th block. If the arm to be
played in the th block is , then the regenerative state is set to

. The idea behind this modifi-
cation is to estimate the state with the smallest recurrence time
and choose the regenerative cycles according to this state. With
this modification, the number of observations that does not con-
tribute to the index computation and the probability of choosing
a suboptimal arm can be minimized over time.

B. Universality of the Block Structure

We note that any index policy used under the i.i.d. re-
ward model can be used in the restless bandit problem with
a Markovian reward model by exploiting the regenerative
cycles. This is because the normalized rewards collected in
each regenerative cycle of the same arm can be seen as i.i.d.
samples from that arm whose expectation is equal to the mean
reward of that arm. Thus, any upper bound for the expected
number of times an arm is played in an i.i.d. problem will hold
for the expected number of blocks an arm is played for the
restless bandit problem under the block structure proposed in
RCA. Specifically, we have shown via numerical results in
Section VIII that if RCA is used with the index given in (9),
logarithmic regret is achieved assuming that the regenerative
state for each arm is kept fixed and the rewards are in the unit
interval . We do not provide a technical analysis here since
the details are included in the analysis of the i.i.d. model [3]
and our analysis of RCA. Instead, we illustrate the generality of
the block structure by using the KL-UCB algorithm proposed
in [8] for i.i.d. rewards inside our block structure. KL-UCB
is shown to outperform most of the other index policies for
i.i.d. rewards including UCB. For simplicity, we only consider
single play, i.e., .

Lemma 11: Assume that Condition 1 holds and
. Then, using KL-UCB in the regenerative block

under RCA, we have for any suboptimal arm

where
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Proof: The normalized reward during a block (sum of the
rewards collected during an SB2 divided by the length of the
SB2) forms an i.i.d. process with support in . Thus, the
result follows from [8, Th. 2].

We see as earlier, bounding the expected number of blocks a
suboptimal arm is played is a key step in bounding the regret.
The main result is given in the following theorem.

Theorem 6: Assume that Condition 1 holds and
. Then, using KL-UCB in the regenerative block

under RCA, we have

where

Proof: The result follows from Lemma 11 and using steps
similar to the proof of Theorem 3.

C. Extension to Random State Rewards

So far we considered the case where each state cor-
responds to a deterministic reward . An interesting extension
is to consider the case where each state has a random
reward with a fixed i.i.d. distribution. That is, after observing
the state , a player receives reward which is drawn from a
probability distribution . In our application context, this may
correspond to a situation where the player/user observes the re-
ceived SNRwhich gives the probability of correct reception, but
not the actual bit error rate. When the distribution (or its expec-
tation) is known to the player, the player
can use the expectation of the distribution of each state instead
of the actual observed rewards to update the indices. In doing
so, logarithmic regret will be achieved by using RCA.
A more complex case is when the reward distribution of each

state is unknown to the player but has a bounded support. Then,
to estimate the quality of each arm, playing logarithmic number
of blocks from each arm may not be sufficient because there
may be cases where the number of samples from some state of
a sufficiently sampled arm may not be enough to accurately es-
timate the quality of that state. This may result in an inaccurate
estimate of the expected reward received during a regenerative
cycle. To avoid this, we can use arbitrary regenerative states dis-
cussed in Section IX-A, and modify RCA as follows: at the end
of each block in which arm is played, we record the least sam-
pled state of arm up to that point. Whenever arm is played
in a block, the state is then used as the regenerative state to
terminate that block. This guarantees that is sampled at least
once during that block. Of course, to preserve the regenerative
property, the player needs to set the first state of its next SB2
to in the next block it plays arm . This way fairness between
the states of each arm is guaranteed. By logarithmically playing
each arm, the player can guarantee logarithmic number of sam-
ples taken from each state; thus, the sample mean estimate of
the expected reward of each state will be accurate. Then, the

player can use the sample mean of the rewards for each state in
calculating the index with RCA to obtain good performance. In
order to have theoretical results, we will need to use two large
deviation bounds: one for the sample mean estimates of the re-
wards of each state of each arm, and the other for bounding the
deviation of the index from the expected reward of an arm. The
detailed analysis is omitted for brevity.

D. Relaxation of Certain Conditions

As observed in Section VIII, the condition on , while suffi-
cient, does not appear necessary for the logarithmic regret bound
to hold. Indeed, our examples will show that smaller regret can
be achieved by setting . Note that this condition on
originates from the large deviation bound by Lezaud given in
Lemma 1. If we use an alternative bound, e.g., the large devi-
ation bound in [10], then will be suf-
ficient, and our theoretical results will hold for smaller , pro-
vided that and the arms are reversible Markov
chains.
We further note that even if no information is available on

the underlying Markov chains to derive this sufficient condi-
tion on , regret is achievable by letting grow
slowly with time where is any increasing sequence. Such
approach has been used in other settings and algorithms (see,
e.g., [12] and [14]).
We have noted earlier that the strict inequality

is required for the restless multiarmed bandit problem because
in order to have logarithmic regret, we can have no more than
a logarithmic number of discontinuities from the optimal arms.
When , the rankings of the indices of arms
and can oscillate indefinitely resulting in a large number
of discontinuities. In the following, we briefly discuss how to
resolve this issue if indeed . Consider adding a
threshold to the algorithm such that a new arm will be selected
instead of an arm currently being played only if the index of that
arm is at least larger than the index of the currently played arm
which has the smallest index among all currently played arms.
Then, given that is sufficiently small (with respect to the differ-
ences of mean rewards), indefinite switching between the th
and the th arms can be avoided. However, further analysis
is needed to verify that this approach will result in logarithmic
regret.

E. Definition of Regret

We have used the weak regret measure throughout this paper,
which compares the learning strategy with the best single-ac-
tion strategy. When the statistics are known a priori, it is clear
that in general the best policy is not a single-action policy (in
principle, one can derive such a policy using dynamic program-
ming). Ideally, one could try to adopt a stronger regret mea-
sure with respect to this optimal policy. Under some condi-
tions on the structure of the optimal policy, we have proposed
a learning algorithm with logarithmic regret with respect to the
optimal policy in [21]. However, in general, such an optimal
policy is PSPACE-hard even to approximate in the restless case
(see, e.g., [17], [22]), which makes the comparison intractable,
except for some very limited cases when such a policy hap-
pens to be known (see, e.g., [18] and [23]) or special cases
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when approximation algorithms with guaranteed performance
are known (see, e.g., [24] and [25]).

F. Comparison With Similar Work

A recent work [12] considers the same restless multiarmed
bandit problem studied in this paper. They achieve logarithmic
regret by using exploration and exploitation blocks that grow
geometrically with time. The construction in [12] is very dif-
ferent from ours. The essence behind our approach RCA-M is to
reduce a restless bandit problem to a rested bandit problem; this
is done by sampling in a way to construct a continuous sample
path, which then allows us to use the same set of large deviation
bounds over this reconstructed, entire sample path. By contrast,
the method introduced in [12] applies large deviation bounds
to individual segments of the observed sample path (which is
not a continuous sample path representative of the underlying
Markov chain because the chain is restless); this necessitates
the need to precisely control the length and the number of these
segments, i.e., they must grow in length over time. Another dif-
ference is that under our scheme, the exploration and exploita-
tion are done simultaneously and implicitly through the use of
the index, whereas under the scheme in [12], the two are done
separately and explicitly through two different types of blocks.

X. CONCLUSION

In this paper, we considered the rested and restless bandit
problems with Markovian rewards and multiple plays in both
a centralized and a decentralized setting. We showed that a
simple extension to UCB1 produces logarithmic regret uni-
formly over time for the centralized rested bandit problem. We
then constructed an algorithm RCA-M that utilizes regenerative
cycles of a Markov chain to compute a sample mean based
index policy. The sampling approach reduces a restless bandit
problem to the rested version, and we showed that under mild
conditions on the state transition probabilities of the Markov
chains, this algorithm achieves logarithmic regret uniformly
over time for the centralized restless bandit problem. For the
decentralized multiplayer restless bandit problem, we intro-
duced the DRCA algorithm and proved that polylogarithmic
regret is achievable under the collision model where no player
gets a reward when there is more than one player using the
same arm. We numerically examined the performance of the
RCA in the case of an OSA problem with the Gilbert–Elliot
channel model and compared it with the naive UCB algorithm.
Finally, we discussed possible extensions and improvements.

APPENDIX A
PROOF OF LEMMA 2

We first state the following lemmawhichwill be used to prove
Lemma 2.

Lemma 12: [Lemma 2.1 From [6]]: Let be an irreducible
aperiodic Markov chain with a state space , transition proba-
bility matrix , an initial distribution that is nonzero in all states,
and a stationary distribution . Let be the

-field generated by random variables where
corresponds to the state of the chain at time . Let be a

-field independent of , the smallest -field con-
taining . Let be a stopping time with respect to the
increasing family of -fields . Define
such that

Then such that , we have

(11)

where is a constant that depends on .
Let be the state observed from the th play of arm .

We have

(12)

where

and (12) follows from Lemma 12 using the fact that is a
stopping time with respect to the -field generated by the arms
played up to time .

APPENDIX B
PROOF OF LEMMA 3

We first state and prove the following lemma which will be
used to prove Lemma 3.

Lemma 13: Assume Condition 1 holds and all arms are
rested. Let , . Under UCB
with constant , for any subop-
timal arm , we have

(13)

where and .
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Proof: First, we show that for any suboptimal arm , we
have that implies at least one of the following
holds:

(14)

(15)

(16)

This is because if none of the aforementioned holds, then we
must have

which contradicts .
If we choose , then

for , whichmeans (16) is false, and therefore at least one of
(14) and (15) is true with this choice of . Let .
Then, we have

Consider an initial distribution for the th arm. We have

where the first inequality follows from the Minkowski in-
equality. Let denote the number of times state of arm
is observed up to and including the th play of arm

(17)

Consider a sample path and the events

If , then

Thus, ; therefore, . Then, continuing from
(17)

(18)

(19)

where (18) follows from Lemma 1 by letting

and recalling (note is irreducible).
Similarly, we have
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(20)

(21)

where (20) again follows fromLemma 1. The result then follows
from combining (19) and (21)

(22)

Let be any positive integer and consider a suboptimal arm
. Then

(23)

Consider the event

For a sample path , we have . Therefore,
and

Therefore, continuing from (23)

Using Lemma 13 with , we have for any subop-
timal arm

(24)

APPENDIX C
PROOF OF LEMMA 6

We first state and prove the following lemma which will be
used to prove Lemma 6.

Lemma 14: Assume Condition 1 holds and all arms are
restless. Let , . Under
RCA with constant , for any sub-
optimal arm , we have

(25)

where and .
Proof: Note that all the quantities in computing the in-

dices in (25) comes from the intervals
. Since these intervals begin with state and end

with a return to (but excluding the return visit to ), by the
strong Markov property, the process at these stopping times has
the same distribution as the original process. Moreover, by con-
necting these intervals together, we form a continuous sample
path which can be viewed as a sample path generated by a
Markov chain with a transition matrix identical to the original
arm. Therefore, we can proceed in exactly the same way as the
proof of Lemma 13. If we choose ,
then for , and for any suboptimal arm

The result follows from letting and using
Lemma 13.

Let , and let be any positive integer. Then
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(26)

(27)

where as given in (8), . The inequality in
(27) follows from the fact that the outer sum in (27) is over time,
while the outer sum in (26) is over blocks and each block lasts
at least two time slots.
From this point on, we use Lemma 14 to get

for all suboptimal arms. Therefore

(28)

since almost surely.
The total number of plays of arm at the end of block

is equal to the total number of plays of arm during the regen-
erative cycles of visiting state plus the total number of plays
before entering the regenerative cycles plus one more play re-
sulting from the last play of the block which is state . This
gives

APPENDIX D
PROOF OF THEOREM 3

We first state the following lemmawhichwill be used to prove
Theorem 3.

Lemma 15: If is a positive recurrent homoge-
neous Markov chain with state space , stationary distribution
and is a stopping time that is finite almost surely for which

, then for all

Assume that the states which determine the regenerative
sample paths are given a priori by . We
denote the expectations with respect to RCA given as .
First, we rewrite the regret in the following form:

(29)

where for notational convenience, we have used

We can bound the first difference in (29) logarithmically using
Lemma 6, so it remains to bound and the last difference.
We have

(30)

where the inequality comes from counting only the rewards
obtained during the SB2s for all suboptimal arms. Applying
Lemma 15 to (30), we get

Rearrange terms and noting

(31)

where

Consider now . Since all suboptimal arms are played at
most logarithmically, the number of time steps in which the
best arm is not played is at most logarithmic. It follows that
the number of discontinuities between plays of the best arm is
at most logarithmic. Suppose we combine successive blocks in
which the best arm is played, and denote by the th com-
bined block. Let denote the total number of combined blocks
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up to block . Each thus consists of two SBs: that con-
tains the states visited from beginning of (empty if the first
state is ) to the state right before hitting , and SB that
contains the rest of (a random number of regenerative cy-
cles).
Since a block starts after discontinuity in playing the best

arm, is less than or equal to total number of completed
blocks in which the best arm is not played up to time . Thus

(32)

We rewrite in the following form:

(33)

(34)

(35)

(36)

(37)

where the last inequality is obtained by noting the difference
between (33) and (34) is zero by Lemma 15, using positivity
of rewards to lower bound (35) by 0, and (32) to upper bound
(36). Combining this with (28) and (31), we can thus obtain a
logarithmic upper bound on . Finally, we have

(38)

Therefore, we have obtained the stated logarithmic bound for
(29). Note that this bound does not depend on , and therefore
is also an upper bound for , completing the proof.

APPENDIX E
PROOF OF THEOREM 4

A list of notations used in the proof (in addition to the ones
used in Section V) is summarized as follows.
1) : the total number of times (slots) arm is played by
user up to the last completed block of arm up to time .

2) : the set of arms that are free to be selected by some
player upon its completion of the th block; these are arms

that are currently not being played by other players (during
time slot ), and the arms whose blocks are completed
at time .

Before proving Theorem 3, we state the following lemmas
which will be used to prove Theorem 3.

Lemma 16: Assume Condition 1 holds and all arms are
restless. Let , . Under
RCA-M with constant , for any
suboptimal arm and optimal arm , we have

where and .
Proof: Result is obtained by following steps similar to the

proof of Lemma 14.

Lemma 17: Assume Condition 1 holds and all
arms are restless. Under RCA-M with a constant

, we have

where

Proof: Let , and let be any positive
integer. Then

(39)

Consider any sample path and the following sets:

and
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If , then . Therefore,
and

Therefore, continuing from (39)

(40)

(41)

where , and we have assumed that the index
value of an arm remains the same between two updates.
The inequality in (41) follows from the facts that the second

outer sum in (41) is over time, while the second outer sum in
(40) is over blocks; each block lasts at least two time slots and
at most blocks can be completed in each time step. From this
point on, we use Lemma 14 to get

for all suboptimal arms. Therefore

(42)

since almost surely.
The total number of plays of arm at the end of block

is equal to the total number of plays of arm during the regen-
erative cycles of visiting state plus the total number of plays
before entering the regenerative cycles plus one more play re-
sulting from the last play of the block which is state . This
gives

Thus

(43)

Now, we give the proof of Theorem 3. Assume that the states
which determine the regenerative sample paths are given a
priori by . This is to simplify the analysis
by skipping the initialization stage of the algorithm and we
will show that this choice does not affect the regret bound. We
denote the expectations with respect to RCA-M given as .
First, we rewrite the regret in the following form:

(44)

(45)

where for notational convenience, we have used

We have

(46)
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Since we can bound (46), i.e., the difference in the brackets
in (44) logarithmically using Lemma 17, it remains to bound

and the difference in (45). We have

(47)

where the inequality comes from counting only the rewards ob-
tained during the SB2’s for all suboptimal arms and the last part
of the proof of Lemma 17. Applying Lemma 15 to (47), we get

Rearranging terms, we get

(48)

where

Consider now . Since all suboptimal arms are played
at most logarithmically, the total number of time slots in which
an optimal arm is not played is at most logarithmic. It follows
that the number of discontinuities between plays of any single
optimal arm is at most logarithmic. For any optimal arm

, we combine consecutive blocks in which arm is
played into a single combined block, and denote by the
th combined block of arm . Let denote the total number of
combined blocks for arm up to block . Each thus consists
of two SBs: that contains the states visited from the begin-
ning of (empty if the first state is ) to the state right before
hitting , and SB that contains the rest of (a random
number of regenerative cycles).

Since a combined block necessarily starts after certain
discontinuity in playing the th best arm, is less than or
equal to the total number of discontinuities of play of the th
best arm up to time . At the same time, the total number of
discontinuities of play of the th best arm up to time is less
than or equal to the total number of blocks in which suboptimal
arms are played up to time . Thus

(49)

We now rewrite in the following form:

(50)

(51)

(52)

(53)

(54)

where the last inequality is obtained by noting the difference
between (50) and (51) is zero by Lemma 15, using positivity of
rewards to lower bound (52) by 0, and (49) to upper bound (53).
Combining this with (42) and (48), we can obtain a logarithmic
upper bound on by the following steps:

We also have

(55)
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Finally, combining the aforementioned results as well as
Lemma 17, we get

Therefore, we have obtained the stated logarithmic bound for
(44). Note that this bound does not depend on , and therefore
is also an upper bound for , completing the proof.

APPENDIX F
PROOF OF LEMMA 7

Let be the arm selected by player in its th block.
Assume that player has completed the th block.

(56)

Then, proceeding from (56) the same way as in the proof of
Lemma 13, but using a Chernoff–Hoeffding bound for i.i.d.
process instead of the large deviation bound for a Markov chain,
for , we have

Thus, we have

APPENDIX G
PROOF OF LEMMA 9

The event that the index of any one of the optimal arms cal-
culated by player is in wrong order at th block of player
is included in the event

Let denote the set of blocks that player is in, during
the th block of player . The event that the index of any one of
the optimal arms calculated by player is in wrong order
during any interval at th block of player is included in the
event

The event that the index of any one of the optimal arms calcu-
lated by any player is in wrong order during any interval at th
block of player is included in the event

Let be the number of completed blocks of player up
to time in which there is at least one player who has a wrong
order for an index of some optimal arm during some part of a
block of player . Then

Using union bound, we have

(57)
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and

(58)

Proceeding from (57) the same way as in the proof of Lemma
7, we have

(59)
In (58), for each block of player , the second sum counts the

number of blocks of player which intersects with that block
of player . This is less than or equal to counting the number
of blocks of which intersects with a block of for blocks

of . We consider block of because
it may intersect with completed blocks of player up to .
Thus, we have

with probability 1. Taking the conditional expectation, we get

Using the aforementioned result and following the same ap-
proach as in (59), we have

(60)

The next step is to bound .
Let be the length of the th block of player . Clearly,
we have with probability 1. Therefore,

.
Note that the random variables
are independent due to Markov property but not necessarily
identically distributed since player might play different arms
at different blocks.
Let denote the step transition probability

from state to of arm . Since all arms are ergodic,
there exists such that , for all

. Let .
We define a geometric random variable with distribution

. It is easy to
see that . Consider
an i.i.d. set of random variables
where each has the same distribution as . Since

and are nonnegative random variables, we have

Finally

(61)

(62)

where , (61) follows from [26, eq. (4)], and (62)

follows from with probability 1. Using the
aforementioned results on (60), we get

(63)
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Using (59) and (63), we have

Thus, we have

(64)

APPENDIX H
PROOF OF LEMMA 10

Let be a block in which all players know the correct order of
the -best channels and be a block in which there exists
at least one player whose order of indices for -best channels
are different than the order of the mean rewards. We call such
an event a transition from a bad state to a good state. Then, by
Lemma 7, the expected number of blocks needed to settle to an
orthogonal configuration after block is bounded by . Since
the expected number of such transitions is , we have

.
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