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Abstract
Choosing optimal (or at least better) policies is
an important problem in domains from medicine
to education to finance and many others. One
approach to this problem is through controlled ex-
periments/trials - but controlled experiments are
expensive. Hence it is important to choose the
best policies on the basis of observational data.
This presents two difficult challenges: (i) miss-
ing counterfactuals, and (ii) selection bias. This
paper presents theoretical bounds on estimation
errors of counterfactuals from observational data
by making connections to domain adaptation the-
ory. It also presents a principled way of choosing
optimal policies using domain adversarial neu-
ral networks. This illustrates the effectiveness
of domain adversarial training together with vari-
ous features of our algorithm on a semi-synthetic
breast cancer dataset.

1. Introduction
The choice of a particular policy or plan of action involves
consideration of the costs and benefits of the policy/plan
under consideration and also of alternative policies/plans
that might be undertaken. Examples abound; to mention
just a few: Which course of treatment will lead to the most
rapid recovery? Which mode of advertisement will lead
to the most orders? Which investment strategy will lead
to the greatest returns? Obtaining information about the
costs and benefits of alternative plans that might have been
undertaken is a counterfactual exercise. One possible way
to estimate the counterfactual information is by conducting
controlled experiments. However, controlled experiments
are expensive, involve small samples, and are frequently
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not available. It is therefore important to make decisions
entirely on the basis of observational data in which the ac-
tions/decisions taken in the data have been selected by an
existing logging policy. Because the existing logging policy
creates a selection bias, learning from observational studies
is a challenging problem. This paper presents theoretical
bounds on estimation errors for the evaluation of a new pol-
icy from observational data and a principled algorithm to
learn the optimal policy. The methods and algorithms we
develop are widely applicable (perhaps with some modifica-
tions) to an enormous range of settings, from healthcare to
education to recommender systems to finance to smart cities.
(See (Athey & Imbens, 2015), (Hoiles & van der Schaar,
2016) and (Bottou et al., 2013), for just a few examples.)

As we have noted, our algorithm applies in many settings.
In the medical context, features are the information included
in electronic health records, actions are choices of different
treatments, and outcomes are the success of treatment. In
the financial context, features are the aspects of the macroe-
conomic environment, actions are the choices of different
investment decisions and outcomes are the revenues made
by the investment decisions. In the recommender system
context, features are the information about the user, the ac-
tions are choices of items, and outcomes are binary values
indicating whether the user purchased the item or not.

Our theoretical results show that true policy outcome is
at least as good as the policy outcome estimated from the
observational data minus the product of the number of
actions with the H-divergence between the observational
and randomized data. Our theoretical bounds are different
than ones derived in (Swaminathan & Joachims, 2015a)
because ours do not require the propensity scores to be
known. We use our theory to develop algorithm to learn
balanced representations for each instance such that they are
indistinguishable between the randomized and observational
distribution and also predictive of the decision problem at
hand. We present experiments on a semi-synthetic breast
cancer.

2. Related Work
Roughly speaking, work on counterfactual learning from
observational data falls into two categories: estimation of
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Literature Propensities known Objective Actions Solution
(Shalit et al., 2017) no ITE estimation 2 Balancing representations

(Alaa & van der Schaar, 2017) no ITE estimation 2 Risk based empirical Bayes
(Beygelzimer & Langford, 2009) yes policy optimization > 2 Rejection sampling

(Swaminathan & Joachims, 2015a;b) yes policy optimization > 2 IPS reweighing
Ours no policy optimization > 2 Balancing representations

Table 1. Comparison with the related literature

Individualized Treatment Effect (ITE) (Johansson et al.,
2016; Shalit et al., 2017; Alaa & van der Schaar, 2017) and
Policy Optimization (Swaminathan & Joachims, 2015a;b).
The work on ITE’s aims to estimate the expected difference
between outcomes for treated and control patients, given the
feature vector; this work focuses on settings with only two
actions (treat/don’t treat) - and notes that the approaches
derived do not generalize well to settings with more than
two actions. The work on policy optimization aims to find a
policy that maximizes the expected outcome (minimizes the
risk). The policy optimization objective is somewhat easier
than ITE objective in the sense that one can turn the ITE
to action recommendations but not the other way around.
In many applications, there are much more than 2 actions;
one is more interested in learning a good action rather than
learning outcomes of each action for each instance.

The work on ITE estimation that is most closely related
to ours focuses on learning balanced representations (Jo-
hansson et al., 2016; Shalit et al., 2017). These papers
develop neural network algorithms to minimize the mean
squared error between predictions and actual outcomes in
the observational data and also the discrepancy between
the representations of the factual and counterfactual data.
As these papers note, there is no principled approach to
extend them to more than two treatments. Other recent
works in ITE estimation include tree-based methods (Hill,
2011; Athey & Imbens, 2015; Wager & Athey, 2015) and
Gaussian processes (Alaa & van der Schaar, 2017). The
last is perhaps the most successful, but the computational
complexity is O(n3) (where n is the number of instances)
so it is not easy to apply to large observational studies.

In the policy optimization literature, the work most closely
related to ours is (Swaminathan & Joachims, 2015a;b) where
they develop the Counterfactual Risk Minimization (CRM)
principle. The objective of the CRM principle is to mini-
mize both the estimated mean and variance of the Inverse
Propensity Score (IPS) instances; to do so the authors pro-
pose the POEM algorithm. Our work differs from POEM
in several ways: (i) POEM minimizes an objective over
the class of linear policies; we allow for arbitrary policies,
(ii) POEM requires the propensity scores to be available in
the data; our algorithm addresses the selection bias without
using propensity scores, (iii) POEM addresses selection bias

by re-weighting each instance with the inverse propensities;
our algorithm addresses the selection bias by learning repre-
sentations. Another related paper on policy optimization is
(Beygelzimer & Langford, 2009) which requires the propen-
sity scores to be known and addresses the selection bias via
rejection sampling. (For a more detailed comparison see
Table 1.)

The off-policy evaluation methods include IPS estima-
tor (Rosenbaum & Rubin, 1983; Strehl et al., 2010), self
normalizing estimator (Swaminathan & Joachims, 2015b),
direct estimation, doubly robust estimator (Dudı́k et al.,
2011; Jiang & Li, 2016) and matching based methods (Hill
& Reiter, 2006). The IPS and self-normalizing estimators
address the selection bias by re-weighting each instance
by their inverse propensities. The doubly robust estima-
tion techniques combine the direct and IPS methods and
generate more robust counterfactual estimates. Propensity
Score Matching (PSM) replaces the missing counterfactual
outcomes of the instance by the outcome of an instance with
the closest propensity score.

Our theoretical bounds have strong connection with the do-
main adaptation bounds given in (Ben-David et al., 2007;
Blitzer et al., 2008). In particular, we show that the expected
policy outcome is bounded below by the estimate of the pol-
icy outcome from the observational data minus the product
of the number of actions with the H-divergence between
the observational and randomized data. Our algorithm is
based on domain adaptation as in (Ganin et al., 2016). Other
domain adaptation techniques include (Zhang et al., 2013;
Daumé III, 2009).

3. Problem Setup
In this Section, we describe our formal model.

3.1. Observational Data

We denote byA the set of k actions, byX the s-dimensional
space of features and by Y ⊆ R the space of outcomes. We
assume that an outcome can be identified with a real number
and normalize so that outcomes lie in the interval [0, 1]. In
some cases, the outcome will be either 1 or 0 (success or
failure); in other cases the outcome may be interpreted as
the probability of success or failure. We follow the poten-
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tial outcome model described in the Rubin-Neyman causal
model (Rubin, 2005); that is, for each instance x ∈ X , there
are k-potential outcomes: Y (0), Y (1), . . . , Y (k−1) ∈ Y , cor-
responding to the k different actions. The fundamental
problem in this setting is that only the outcome of the ac-
tion actually performed is recorded in the data: Y = Y T .
(This is called bandit feedback in the machine learning liter-
ature (Swaminathan & Joachims, 2015a).) In our work, we
focus on the setting in which the action assignment is not in-
dependent of the feature vector, i.e., A 6⊥⊥ X; that is, action
assignments are not random. This dependence is modeled
by the conditional distribution γ(a, x) = P (A = a|X = x),
also known as the propensity score.

In this paper, we make the following common assumptions:

• Unconfoundedness: Potential outcomes
(Y (0), Y (1), . . . , Y (k−1)) are independent of the
action assignment given the features, that is
(Y (0), Y (1), . . . , Y (k−1)) ⊥⊥ A|X .

• Overlap: For each instance x ∈ X and each action
a ∈ A, there is a non-zero probability that a patient
with feature x received the action a: 0 < γ(a, x) < 1
for all a, x.

These assumptions are sufficient to identify the optimal
policy from the data (Imbens & Wooldridge, 2009; Pearl,
2017).

We are given a data set

Dn = {(xi, ai, yi)}ni=1

where each instance i is generated by the following stochas-
tic process:

• Each feature-action pair is drawn according to a fixed
but unknown distribution DS , i.e, (xi, ai) ∼ DS .

• Potential outcomes conditional on features are
drawn with respect to a distribution P; that is,
(Y

(0)
i , Y

(1)
i , . . . , Y

(k−1)
i ) ∼ P(·|X = xi, A = ai).

• Only the outcome of the action actually performed is
recorded in the data, that is, yi = Y

(ai)
i .

We denote the marginal distribution on the features by D;
i.e., D(x) =

∑
a∈ADS(x, a).

3.2. Definition of Policy Outcome

A policy is a mapping h from features to actions. In this pa-
per, we are interested in learning a policy h that maximizes
the policy outcome, defined as:

V (h) = Ex∼D
[
E
[
Y (h(X))|X = x

]]
.

We denote by ma(x) = E
[
Y (a)|X = x

]
the expected out-

come of action a on an instance with feature x. Based on
these definitions, we can re-write the policy outcome of h
as V (h) = Ex∼D

[
mh(x)(x)

]
. Estimating V (h) from the

data is a challenging task because the counterfactuals are
missing and there is a selection bias.

4. Counterfactual Estimation Bounds
In this section, we provide a criterion that we will use to
learn a policy h∗ the maximizes the outcome. We handle
the selection bias in our dataset by mapping the features to
representations are relevant to policy outcomes and are less
biased. Let Φ : X → Z denote a representation function
which maps the features to representations. The representa-
tion function induces a distribution over representations Z
(denoted by DΦ) and ma as follows:

PDΦ(B) = PD(Φ−1(B)),

mΦ
a (z) = Ex∼D[ma(x)|Φ(x) = z],

for any B ⊂ Z such that Φ−1(B) is D-measurable. That
is, the probability of of an event B according to DΦ is the
probability of the inverse image of the event B according
to D. Our learning setting is defined by our choice of the
representation function and hypothesis classH = {h : Z →
A} of (deterministic) policies.

We now connect our problem to domain adaptation. Recall
that DS is the source distribution that generated feature-
action samples in our observational data. Define the target
distribution DT by DT (x, a) = (1/k)D(x). Note that DS
represents an observational study in which the actions are
not randomized, while DT represents a clinical study in
which actions are randomized. Let DΦ

S and DΦ
T denote the

source and target distributions induced by the representation
function Φ over the space Z × A, respectively. Let DΦ

denote the marginal distribution over the representations
and write V Φ(h) for the induced policy outcome of h, that
is, V Φ(h) = Ez∼DΦ

[
mΦ
h(z)(z)

]
.

For the remainder of the theoretical analysis, suppose that
the representation function Φ is fixed. The missing counter-
factual outcomes can be addressed by importance sampling.
Let V Φ

S (h) and V Φ
T (h) denote the expected policy outcome

with respect to distributions DS and DT , respectively. They
are given by

V Φ
S (h) = E(z,a)∼DΦ

S

[
mΦ
a (z)1(h(z) = a)

1/k

]
,

V Φ
T (h) = E(z,a)∼DΦ

T

[
mΦ
a (z)1(h(z) = a)

1/k

]
.

where 1(·) is an indicator function if the statement is true
and 0 otherwise . We can only estimate VS(h) from the
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observational data. First, we’ll connect V Φ
T (h) with V Φ(h),

and provide some theoretical bounds based on the distance
between source and target distribution.

Proposition 1. Let Φ be a fixed representation function.
Then: V Φ

T (h) = V Φ(h).

Proof. It follows that

V Φ
T (h) = Ez∼DΦ

[∑
a∈A

1/k
mΦ
a (z)1(h(z) = a)

1/k

]
= Ez∼DΦ

[
mΦ
h(z)(z)

]
= V Φ(h).

We can not create a Monte-Carlo estimator for V Φ
T (h) since

we don’t have samples from the target distribution - we
only have samples from the source distribution. Hence,
we’ll use domain adaptation theory to bound the difference
between V Φ

S (h) and V Φ
T (h) in terms of H-divergence. In

order to do that, we first need to introduce a distance metric
between distributions. For any policy h ∈ H, let Ih denote
the characteristic set that contains all representation-action
pairs that is mapped to label a under function h, i.e., Ih =
{(z, a) : h(z) = a}.
Definition 1. Suppose D, D′ be probability distributions
over Z ×A such that every characteristic set Ih of h ∈ H
is measurable with respect to both distributions. Then, the
H -divergence between distributions D and D′ is

dH(D,D′) = sup
h∈H

∣∣∣P(z,a)∼D(Ih)− P(z,a)∼D′ (Ih)
∣∣∣ .

TheH-divergence measures the difference between the be-
havior of policies inH when examples are drawn from D,
D′; this plays an important role in theoretical bounds. In
the next lemma, we establish a bound on the difference
between V Φ

S (h) and V Φ
T (h) based on theH-divergence be-

tween source and target.

Lemma 1. Let h ∈ H and let Φ be a representation func-
tion. Then

V Φ(h) ≥ V Φ
S (h)− kdH(DΦ

T ,DΦ
S )

Proof. The proof is similar to (Ben-David et al., 2007;
Blitzer et al., 2008). The following inequality holds:

V Φ
S (h) = E(z,a)∼DΦ

S

[
ma(z)

1/k
1(h(z) = a)

]
≤ E(z,a)∼DΦ

T

[
ma(z)

1/k
1(h(z) = a)

]
+ k

∣∣∣P(z,a)∼DΦ
T

(Ih)− P(z,a)∼DΦ
S

(Ih)
∣∣∣

≤ V Φ(h) + kdH(DΦ
S ,DΦ

T )

where the first inequality holds because ma(z)
1/k ≤ k for all

pairs (z, a) and outcomes lie in the interval [0, 1].

Lemma 1 shows that the true policy outcome is at least
as good as the policy outcome in the observational data
minus the product of the number of actions times the H-
divergence between the observational and randomized data.
(So, if the divergence is small, a policy that is found to be
good with respect to the observational data is guaranteed
to be a good policy with respect to the true distribution.)
We create a Monte Carlo estimator V Φ

S (h) for the policy
outcome in source data and then use the lower bound we
have just established to find the best action recommendation
policy.

Definition 2. Let Φ be a representation function such that
Φ(xi) = zi. The Monte-Carlo estimator for the policy
outcome in source data is given by:

V̂ Φ
S (h) =

1

n

n∑
i=1

yi1(h(zi) = ai)

1/K
.

In order to provide uniform bounds on the Monte-Carlo
estimator for an infinitely large class of recommendation
functions, we need to first define a complexity term for a
class H. For ε > 0, a policy class H and integer n, the
growth function is defined as

N∞(ε,H, n) = sup
z∈Zn

N (ε,H(z), ‖ · ‖∞),

where H(z) = {(h(z1), . . . , h(zn)) : h ∈ H} ⊂ Rn, Zn

is the set of all possible n representations and for A ⊂ Rn
the number N (ε, A, ‖ · ‖∞) is the cardinality |A0| of the
smallest set A0 ⊆ A such that A is contained in the union
of ε-balls centered at points in A0 in the metric induced
by ‖ · ‖∞. (This is often called the covering number.) Set
M(n) = 10N∞(1/n,H, 2n). The following result pro-
vides an inequality between the estimated and true V Φ

S (h)
for all h ∈ H.

Lemma 2. (Maurer & Pontil, 2009) Fix δ ∈ (0, 1), n ≥ 16.
Then, with probability 1− δ, we have for all h ∈ H:

V Φ
S (h) ≥ V̂ Φ

S (h)−
√

18 ln(M(n)/δ)

n
− 15 ln(M(n)/δ)

n

In order to provide a data dependent bound on the esti-
mation error between V (h) and V̂S(h), we need to provide
data-dependent bounds on theH-divergence between source
and target distributions. However, we aren’t given samples
from the target data so we need to generate (random) tar-
get data. Let D̂Φ

S = {(Zi, Ai)}ni=1 denote the empirical
distribution of the source data. From the empirical source
distribution, we can generate target data by simply sam-
pling the actions uniformly, that is, D̂Φ

T = {(Zi, Ãi)}ni=1
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where Ãi ∼ Multinomial([1/K, . . . , 1/K]). Then, we
have D̂Φ

S ∼ DΦ
S and D̂Φ

T ∼ DΦ
T . Then, define the empirical

probability estimates of the characteristic functions as

P(z,a)∼D̂Φ
S

(Ih) =
1

n

n∑
i=1

1(h(Zi) = Ai),

P(z,a)∼D̂Φ
T

(Ih) =
1

n

n∑
i=1

1(h(Zi) = Ãi).

Then, one can compute empirical H-divergence between
two samples D̂Φ

S and D̂Φ
T by

dH(D̂Φ
T , D̂Φ

S ) = sup
h∈H

∣∣∣P(z,a)∼D̂Φ
T

(Ih)− P(z,a)∼D̂Φ
S

(Ih)
∣∣∣ .
(1)

In the next lemma, we provide estimation bounds between
the empiricalH-divergence and trueH-divergence.

Lemma 3. Fix δ ∈ (0, 1), n ≥ 16. Then, with probability
1− 2δ, we have for all h ∈ H:

dH(DΦ
T ,DΦ

S ) ≥ dH(D̂Φ
T , D̂Φ

S )

− 2

[√
18 ln(M(n)/δ)

n
− 15 ln(M(n)/δ)

n

]

Proof. Define β(δ, n) =
√

18 ln(M(n)/δ)
n − 15 ln(M(n)/δ)

n .

By (Maurer & Pontil, 2009), with probability 1−δ, we have
for each hypothesis h ∈ H,

P(z,a)∼DΦ
T

(Ih) ≥ P(z,a)∼D̂Φ
T

(Ih)− β(δ, n)

P(z,a)∼DΦ
S

(Ih) ≤ P(z,a)∼D̂Φ
S

(Ih) + β(δ, n)

Hence, by union bound, the following equation holds for all
h ∈ H with probability 1− 2δ:∣∣∣P(z,a)∼DΦ

T
(Ih)− P(z,a)∼DΦ

S
(Ih)

∣∣∣
≥
∣∣∣P(z,a)∼D̂Φ

T
(Ih)− P(z,a)∼D̂Φ

S
(Ih)− 2β(δ, n)

∣∣∣
The inequality still holds by taking supremum overH with
1− 2δ, that is,

dH(DΦ
T ,DΦ

S )

≥ sup
h∈H

∣∣∣P(z,a)∼D̂Φ
T

(Ih)− P(z,a)∼D̂Φ
S

(Ih)− 2β(δ, n)
∣∣∣

≥ dH(D̂Φ
T , D̂Φ

S )− 2β(δ, n).

where the last inequality follows from the triangle inequality.

Finally, by combining Lemmas 1,2 and 3, we obtain a data-
dependent bound on the counterfactual estimation error.

Theorem 1. Fix δ ∈ (0, 1), n ≥ 16. Let Φ be the represen-
tation function and letH be the set of policies. Then, with
probability at least 1− 3δ, we have for all h ∈ H:

V Φ(h) ≥ V̂ Φ
S (h)− kdH(D̂Φ

S , D̂Φ
T )

− 3k

[√
18 ln(M(n)/δ)

n
− 15 ln(M(n)/δ)

n

]
This result extends the result provided in (Shalit et al.,
2017) since their theoretical bounds are restricted to two-
action problems and extends the result in (Swaminathan &
Joachims, 2015a) since they require the propensity scores to
be known. The result provided in Theorem 1 is constructive
and motivates our optimization criteria.

Figure 1. Neural network model based on (Ganin et al., 2016)

5. Counterfactual Policy Optimization (CPO)
Theorem 1 motivates a general framework for designing pol-
icy learning from observational data with bandit feedback.
A learning algorithm following this criterion solves:

Φ̂, ĥ = arg max
Φ,h

V̂ Φ
S (h)− λdH(D̂Φ

S , D̂Φ
T ),

where λ > 0 is the trade-off parameter between the empir-
ical policy outcome in the source data and the empirical
H-divergence between the source and target distributions.
This optimization criterion seeks to find a representation
function where the source and the target domain are indistin-
guishable. Computing the empiricalH-divergence between
the source and target distributions is known to be NP-hard
(Ganin et al., 2016), but we can use recent developments in
domain adversarial neural networks to find a good approxi-
mation.
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Algorithm 1 Procedure: Generate− Batch

1: Input: Data: Dn, Batch size: m
2: Sample U = {u1, . . . , um} ⊂ N = {1, . . . , n}.
3: Set source set S = {(xui

, aui
, yui

, di = 0)}mi=1.
4: Sample V = {v1, . . . , vm} ⊂ N \ U .
5: Set T = ∅
6: for i = 1, . . . , m: do
7: Sample ãi ∼ Multinomial([1/K, . . . , 1/K]).
8: T = T ∪ {(xvi , ãi, di = 1)}.
9: end for

10: Output: S, T .

5.1. Domain Adversarial Neural Networks

In this paper, we follow the recent work in domain adversar-
ial training of neural networks (Ganin et al., 2016). For
this, we need samples from observed data - sometimes
referred to as source data (DS) - and unlabeled samples
from an ideal dataset - referred to as target data (DT ). As
mentioned, we don’t have samples from an ideal dataset.
Hence, we’ll first talk about batch sampling of source and
target from our dataset D. Given a batch size of m, we
randomly sample from D and set domain variable d = 0
indicating this is the source data. Then, we sample m addi-
tional samples excluding the samples from the source data
and randomly assign an action according to the distribution
Multinomial([1/k, . . . , 1/k]); finally, we set the domain
variable d = 1 indicating this is the target data. The batch
generation procedure is depicted in Algorithm 1.

Our algorithm consists of three blocks: representation, do-
main and policy blocks. In the representation block, we seek
to find a map Φ : X → Z combining two objectives: (i)
high predictive power on the outcomes, (ii) low predictive
power on the domain. Let Fr denote a parametric func-
tion that maps the patient features to representations, that
is, zi = Fr(xi; θr) where θr is the parameter vector of the
representation block. The representations are input to both
survival and policy blocks. Let Fp denote the mappings
from representation-action pair (zi, ai) to probabilities over
the actions q̂i = [q̂i,0, . . . , q̂i,K−1], i.e., q̂i = Fp(zi, ai; θp)
where θp is the parameter vector of the policy block. For an
instance with features xi and action ai, an element in output
of policy block q̂i,a is the probability of recommending ac-
tion a for subject i. The estimated policy outcome in source
data is then given by

V̂ Φ
S (h) =

1

n

n∑
i=1

yiqai
1/k

.

Although our theory applies only to deterministic policies,
we will allow for stochastic policies in order to make the op-
timization problem tractable. This is not optimal; however,
as we’ll show in our numerical results, this approach is still

able to achieve significant gains with respect to benchmark
algorithms. LetGd be a mapping from representation-action
pair (zi, ai) to probability of the instances generated from
target, i.e., p̂i = Gd(zi, ai; θd) where θd is the parameters
of the domain block.

Note that the last layer of the policy block is a softmax
operation, which has exponential terms. Instead of directly
maximizing V̂S(h), we use a modified cross-entropy loss to
make the optimization criteria more robust. The policy loss
is then

Lip(θr, θs) =
−yi log(qi,ai)

1/k

At the testing stage, we can then convert these probabilities
to action recommendations simply by recommending the
action with highest probability qi,a. We set the domain loss
to be the standard cross entropy loss between the estimated
domain probability pi and the actual domain probability di;
this is the standard classification loss used in the literature
and is given by

Lid(θr, θs) = di log(pi) + (1− di) log pi.

Our goal in this paper to find the saddle point that optimizes
the weighted sum of the survival and domain loss. This total
loss is given by

E(θr, θs, θd) =
∑
i∈S
Lis(θr, θs)

−λ

(∑
i∈S
Lid(θr, θd) +

∑
i∈T
Lid(θr, θd)

)
where λ > 0 is the trade-off between survival and domain
loss. The saddle point is(

θ̂r, θ̂s

)
= arg min

θr,θp
E(θr, θp, θ̂d),

θ̂d = arg max
θd
E(θ̂r, θ̂p, θd).

The training procedure of the Domain Adverse training of
Counterfactual POLicy training (DACPOL) is depicted in
Algorithm 2. The neural network architecture is depicted in
Figure 1.

For a test instance with covariates x∗, we compute the action
recommendations with the following procedure: We first
compute the representations by z∗ = Gr(x

∗; θr), then com-
pute the action probabilities q∗ = Fp(z

∗, θp). We finally
recommend the action with Â(x∗) = arg maxa∈A q

∗
a.

6. Numerical Results
In this section, we investigate two important features of our
algorithm on a semi-synthetic breast cancer dataset: the
performance improvement due to adversarial training and
the effect of the selection bias on the performance.
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Algorithm 2 Training Procedure: DACPOL

Input: Data: D, Batch size: m, Learning rate: µ
(S, T ) = Generate-Batch(D,m).
for until convergence do

Compute LSp (θr, θs) = 1
|S|
∑
i∈S Lip(θr, θs)

Compute LSd (θr, θd) = 1
|S|
∑
i∈S Lid(θr, θd)

Compute LTd (θr, θd) = 1
|T |
∑
i∈T Lid(θr, θd)

Compute Ld(θr, θd) = LSd (θr, θd) + LTd (θr, θd)

θr → θr − µ
(
∂LS

s (θr,θs)
∂θr

− λ∂Ld(θr,θd)
∂θr

)
θp ← θp − µ

∂LS
p (θr,θs)

θs

θd ← θd − µ∂Ld(θr,θd)
θd

end for

6.1. Dataset Description

The dataset includes 10, 000 records of breast cancer pa-
tients participating in the National Surgical Adjuvant Breast
and Bowel Project (NSABP); see (Yoon et al., 2016). Each
instance consists of the following information about the
patient: age, menopausal, race, estrogen receptor, proges-
terone receptor, human epidermal growth factor receptor
2 (HER2NEU), tumor stage, tumor grade, Positive Axil-
lary Lymph Node Count(PLNC), WHO score, surgery type,
Prior Chemotherapy, prior radiotherapy and histology. The
treatment is a choice among six chemotherapy regimens
of which only 5 of them are used: AC, ACT, CAF, CEF,
CMF. The outcomes for these regimens were derived based
on 32 references from PubMed Clinical Queries. The data
contains the feature vector x and all derived outcomes for
each treatment {Yt}t∈T .

6.2. Experimental Setup

We generate an artificially biased dataset Dn =
{(Xi, Ai, Yi)} by the following procedure: (i) we first
draw random weights W ∈ Rs×k with wj,a ∼ N (0, σI)
where σ > 0 is a parameter used to generate datasets
with different selection bias levels. We generate actions
in the data according to the logistic distribution A ∼
exp(xTwa)/(

∑
a∈A exp(xTwa)).

For the breast cancer data set, we generate a 56/24/20 split
of the data to train, validate and test our DACPOL. The hy-
perparameter list we used in our validation set is 10γ/2 with
γ ∈ [−4,−3,−2,−1, 0, 0.5, 0.75, 1, 1.5, 2, 3]. We gener-
ate 100 different datasets by following the procedure de-
scribed above and report the average and 95% confidence
levels.

The performance metric we use to evaluate our algorithm
in this paper is loss, which we define to be 1 − accuracy;
accuracy is defined as the fraction of test instances in which
the recommended and best action match. Note that we

can evaluate the accuracy metric since we have the ground
truth outcomes in the testing set, but of course the ground
truth outcomes are not used by any algorithm in the train-
ing and validation test. In our experiments, we use 1-1-2
representation/domain/outcome fully-connected layers. The
neural network is trained by back propagation via Adam
Optimizer (Kingma & Ba, 2014) with an initial learning rate
of .01. We begin with an initial learning rate µ and tradeoff
parameter λ and use iterative adaptive parameters to get our
result; along the way we decrease the learning rate µ and
increases the tradeoff parameter. This is standard proce-
dure in training domain adversarial neural networks (Ganin
et al., 2016). We implement DACPOL in the Tensorflow
environment.

6.3. Results

6.3.1. DOMAIN LOSS AND POLICY LOSS

The hyperparameter λ controls the domain loss in the train-
ing procedure. As λ increases, the domain loss in training
DACPOL increases; eventually source and target become
indistinguishable, the representations become balanced, and
the loss of DACPOL reaches a minimum. If we increase λ
beyond that point, the algorithm classifies the source as the
target and the target as the source, representations become
unbalanced, and the the loss of DACPOL increases again.
Figure 2 illustrates this effect for the breast cancer dataset.
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Figure 2. The effect of domain loss in DACPOL performance

6.3.2. THE EFFECT OF SELECTION BIAS IN DACPOL

In this subsection, we show the effect of the selection bias in
the performance of our algorithm by varying the parameter
σ in our data generation process: a larger value of σ creates
more biased data. Figure 3 shows two important points:
(i) as the selection bias increases, the loss of DACPOL
increases, (ii) as the selection bias increases, domain ad-
versarial training becomes more efficient, and hence the
improvement of DACPOL over DACPOL(0) increases.
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Figure 3. The effect of selection bias in DACPOL performance

7. Conclusion
This paper presented estimation bounds on the error between
actual and estimated policy outcomes from observational
data. Our theoretical results show that the estimation error
from observational data depends on the H-divergence be-
tween the observational and randomized data. This result
motivated the development of a domain adversarial neu-
ral network to learn an optimal policy from observational
data. We illustrated various features of our algorithm semi-
synthetic and real data. Future work includes multi-stage
actions, time-varying features etc.
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