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ABSTRACT *

The time-varying workload for multimedia applications poses a 
great challenge for the efficient performance of dynamic voltage 
scaling (DVS) algorithms. While many DVS algorithms have 
been proposed for real-time applications, there does not yet exist a 
systematic method for evaluating the optimality of such DVS 
algorithms. In this paper, we propose an offline linear 
programming (LP) method to determine the minimum energy 
consumption for processing multimedia tasks under stringent 
delay deadlines. Based on this lower bound, we evaluate the 
efficiency of various existing DVS algorithms. Furthermore, we 
modify the LP formulation to construct an online robust 
sequential linear programming DVS algorithm for real-time 
multimedia processing. Simulation results from decoding over a 
wide range of video sequences shows that on average, our online 
algorithm consumes less than 1% more energy than the optimal 
lower bound while dropping only 0.1% of all scheduled decoding 
jobs, while the existing best algorithm consumes roughly 3% 
more energy at the same miss rate.  

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems

General Terms  
Algorithms, Performance 

Keywords  
Multimedia, Dynamic Voltage Scaling, Power Management 

1. INTRODUCTION 
    Due to the popularity of streaming multimedia applications on 
mobile and pervasive computing devices, computationally 
intensive multimedia applications must often be processed by 
energy-limited systems. Dynamic voltage scaling (DVS)-enabled 
processors are particularly attractive for such devices, since they 
can adapt their voltage level and associated clock frequency in 
real time to save energy while handling time-varying workloads 
and display deadlines [1][2]. In general, a DVS-enabled processor 
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can conserve energy by reducing its voltage level; however, 
decreasing the voltage level will also slow the processor clock 
speed, thereby increasing the processing time, and hence the 
overall delay [2]. DVS algorithms therefore attempt to find a 
dynamic balance between the operating level (i.e. power and 
frequency) of the processor, and the quality-of-service for 
multimedia applications in terms of meeting stringent delay 
deadlines. 
    A wide variety of DVS algorithms have been proposed for 
delay-sensitive applications [3-8]. Some DVS algorithms perform 
optimization myopically over only one or two tasks, such that the 
processor power level is determined on the fly to meet imminent 
(soft) deadlines while considering either the worst case execution 
time (WCET), or the average case execution time (ACET) [4][6]. 
While such approaches have very low computational complexity, 
their performance is limited in that future tasks with imminent 
deadlines may require extremely high processing power to finish 
in time after the completion of the current task. On the other hand, 
more robust DVS algorithms schedule power based on multiple 
task deadlines [3], or using feedback control [5][7]. Nevertheless, 
such approaches can be highly suboptimal when jobs have highly 
time-varying workloads that cannot be accurately predicted by 
simple models. In [7], a combined leakage and DVS scheduling 
algorithm, based on earliest-deadline-first scheduling (EDF), is 
proposed for hard real-time systems. In [8], a queuing model-
based DVS approach is proposed for video decoding, where 
different video frames and sequence types are classified into 
different sets of complexity distributions. Based on the encoding 
parameters, the delay for processing each frame can be 
analytically approximated for different processor operating levels, 
thus enabling the system to adapt the processor voltage in real-
time and achieving the best reported energy savings. However, 
due to the online nature of most DVS algorithms, it is difficult to 
prove how far these algorithms are from the optimal power 
scheduling scheme without an optimal solution.  

    Moreover, leakage current in CMOS circuits today contributes 
a significant portion to the total power consumption, and is 
expected to increase five-fold with each generation [9]. Hence, 
technologies such as power gating are used to switch off unused 
resources to reduce leakage power when the workload is light. 
Under such conditions, zero power and frequency of sleeping 
mode should be considered in a DVS algorithm and it is possible 
that the power-frequency function for processors will no longer be 
convex. In this case, existing works [4][5][8] that attempt to 
minimize idle periods under the assumption of a convex power-
frequency function will be no longer effective. Hence, a pervasive 
algorithm which is adaptive for both convex and non-convex 
power-frequency functions is needed for the DVS problem. 
    The contribution of this paper is as follows: first, we analyze 
the optimality of DVS algorithms by deriving an operational 



lower bound for energy consumption, subject to processing all 
jobs before their delay deadlines (i.e. zero miss rate). We propose 
a linear programming (LP) DVS solution to obtain the optimal 
offline scheduling solution for both convex and non-convex 
power-frequency functions. Unlike the integer programming 
formulation presented in [11] for temperature-aware DVS 
scheduling, we consider the negligible voltage-switch overhead 
(compared to the high multimedia job complexities) to enable 
switching at any time during a job, and we show that this can be 
converted to a low complexity LP problem. Based on the 
workload traces collected during execution time, we solve the 
offline LP problem to obtain the lower energy bound for DVS 
algorithms. A thorough investigation of video decoding results 
(where many video sequences are decoded at many different bit 
rates) shows that, under the same zero miss rate, laEDF [3] 
consumes approximately 15% more energy than the optimal 
solution, and the queuing based algorithm in [8] consumes 
approximately 4% more than the optimal solution. 
    Based on the proposed LP formulation and accurate multimedia 
complexity modeling, we propose an online robust sequential 
linear programming approach to DVS, namely SLP/r, which 
significantly outperforms existing DVS solutions. Experimental 
results from real-time video decoding (where workloads are 
highly time-varying) indicate that SLP/r consumes less than 1% 
more energy than the optimal DVS solution while dropping only 
0.1% of all scheduled decoding jobs, while the best existing 
algorithm (the queuing-based algorithm 2 in [8]) consumes 
roughly 3% more energy than SLP/r at the same miss rate. 
Importantly, SLP/r has only a small increase in complexity, and 
its relative complexity scales down when supporting increasingly 
computationally intensive future multimedia applications. 
    While we have used video decoding as an example in this paper 
for motivation and simulation, both the offline LP and online 
SLP/r approaches are applicable for the DVS problem concerning 
other delay-sensitive real-time applications with time-varying 
workloads. 
    The rest of this paper is organized as follows: Section 2 
provides background on multimedia complexity and power 
modeling. Section 3 formally states the real-time DVS problem. 
Sections 4 and 5 present the optimal offline LP solution and the 
online SLP/r algorithm, respectively. Section 6 presents 
experimental results to validate our work. Section 7 concludes our 
work. 

2. BACKGROUND AND MODELING 

2.1 Multimedia Complexity 
    State-of-the-art coders often encode nearby video frames 
jointly to reduce the video transmission bit-rate. However, this 
leads to complicated group-of-pictures (GOP) structures, where 
some video frames require the reconstruction of many 
intermediate frames in order to be decoded, while other video 
frames require very few intermediate frames, resulting in very 
high workload variations between adjacent decoding jobs (Figure 
1). Different sequences also exhibit different amounts of decoding 
complexity. 
    To mitigate the detrimental effects of highly time-varying 
workloads on DVS algorithms, in this work, we adopt the 
application-aware model for the video coding complexity 
described in [8] for the online algorithm proposed in this paper. In 
our work, a job class corresponds to a particular GOP frame type 

of a sequence type (e.g. we consider eight job classes for a GOP 
structure of eight decoding jobs). To model the (decoding) 
complexity within each class of jobs, offline training is used to 
obtain workload distributions of each class of jobs, as shown in 
Figure 2. These distributions enable us to collect important 
information about the complexity, such as the mean and variance 
for each class of jobs. As will be shown later, such information 
can be used by our proposed online DVS algorithm to achieve a 
tradeoff between energy consumption and quality-of-service.  
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Figure 1 Comparison of various decoding jobs for video 
sequences Stefan and Coastguard.

    Finally, note that the complexity of each video decoding job 
(which consists of at most 2 video frames each) is on the order of 
a billion cycles. Hence, overheads associated with voltage switch, 
which are on the order of less than one hundred clock cycles [12], 
are negligible compared to the processing complexity of 
multimedia tasks. Hence, as long as the DVS algorithm requires 
no more than a few voltage switches during a single job, we can 
ignore the voltage switching overhead. 

Figure 2 The workload variance within the same types of 
decoding jobs. 

2.2   Dynamic and Leakage Power 
    In our work, we adopt the power model proposed in [10] and 
used in [9][11] for real-time applications. The dynamic power is: 

2
d ddP CV F= (2.1)

where C is the effective switching capacitance. We chose the 
leakage power model from [10], which includes the subthreshold 
and the reverse bias leakage power. For a given supply voltage 
Vdd, the leakage power Ps and subthreshold leakage current Isub

are:  

( )s g dd sub bs jP L V I V I= + (2.2)

4 5
3

dd bsK V K V
subI K e e= (2.3)

where C, Vbs, Lg, Ij, K3, K4 and K5 are constants for the 70nm node 
technology given in [10]. The clock frequency F and threshold 
voltage Vth are:  



( ) ( )a
dd th dF V V L K= (2.4)

1 1 2th th dd bsV V KV K V= (2.5)

where a, Vth1, K1, K2, Ld, K and Vbs=-0.7V are given for the 70nm 
node technology in [9]. Note that the algorithms proposed in this 
paper apply to any power model, whether the power-frequency 
function is convex or not. In general, the processor consumes both 
dynamic and leakage power for a given Vdd level, and consumes 
no power when the Vdd level is zero, i.e. in the power gating or 
sleep mode. 

3. PROBLEM STATEMENT 
    For our real-time deadline-driven multimedia DVS problem, 
we are given a sequence of decoding jobs. For each job (which 
can be one frame or a pair of frames depending on the GOP 
structure), we are given its complexity, arrival time and display 
deadline. Because we are performing real-time media 
transmission and decoding, the arrival time can be influenced by 
the variance of the network bandwidth. On the other hand, a 
voltage/frequency configurable system can switch the frequency 
of its processor by dynamically adapting its voltage level. Hence, 
we have a set of active operating levels with frequencies and 
corresponding powers (sum of leakage power and dynamic 
power). Furthermore, if power gating is enabled, such that the 
processor can be shut down to save leakage power, we have an 
additional operating level for sleep mode. 
    The goal of a DVS algorithm is to find a scheduling solution, 
which consists of the time and the operating voltage for each 
switch, to minimize total energy consumption. The constraint is 
that the decoder can only start decoding a job after it arrives, and 
each job should be finished before its display deadline.  
    Given M decoding jobs, let C = {C1,…,CM} , T = {T1,…,TM}, D
= {D1,…,DM} be the complexity, arrival time and display 
deadline of jobs, respectively; let F = {F0,…,Fk}, P = {P0,…,Pk}
(F0 and P0 for sleeping mode) be associated clock frequencies and 
powers for K voltage levels, respectively; let S = {Ts, Vs, N} be 
the scheduling solution, where N is the number of voltage 
switches, Ts={t0,…,tN, t0=0} and Vs={v0,…,vN} is the time and 
voltage level for each switch. When the precise complexity of 
each job is known, the constraints for the problem are given by 
deterministic Ci and Ti. However, when uncertainties exist in the 
workload, Ci and Ti can be viewed as stochastic variables and 
DVS scheduling algorithms cannot guarantee that all jobs will be 
decoded before their deadlines. Hence, in the stochastic case, the 
hard deadline constraint can be replaced with the constraint of 
keeping the miss rate for jobs within a tolerable range. 

Figure 3 DVS problem formulation 

    We further illustrate the DVS problem in Figure 3. Here, the 
step function U(t) is the accumulated complexity (i.e., total 
complexity in terms of clock circles) of decoding jobs transmitted 
since time zero, and the widths of the steps are transmission times 
of jobs over network. Another step function L(t) indicates the total 
complexity that needs to be processed by time t in order to meet 
display deadlines. I.e., 
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    Since the decoder cannot start decoding a job before it is 
completely received from network, and it must finish the job 
before its deadline, a valid DVS solution is a piecewise linear 
curve between U(t) and L(t). The slope of each piece indicates the 
associated clock frequency of the selected voltage level and a 
corresponding power is associated with each frequency.  
    The arrival time intervals can vary between each job. As shown 
in Figure 3, the transmission time for job 3 is larger than others. 
This can often occur when the network bandwidth is time-varying, 
which is common in wireless networks. 

4. OPTIMAL OFFLINE SOLUTION 
    In this section, we show that the deadline-driven multimedia 
DVS problem can be mapped into a LP problem, which can be 
efficiently solved. Furthermore, if we know the precise 
complexity and arrival time of each decoding job, we can obtain 
the optimal scheduling solution. 
    We define a transition point as the time when a new job arrives 
(i.e. any Ti), or when a job deadline is reached (i.e. any Di). We 
also define an adaptation interval as the time period between two 
adjacent transition points. The adaptation intervals for sample U(t)
and L(t) curves are marked in dotted lines in Figure 4. We now 
prove an important result for voltage scheduling. 

Figure 4 Adaptation intervals 

Theorem 1.  Within a single adaptation interval (i.e. when U(t)
and L(t) are constant), an arbitrary ordering of any feasible 
voltage schedule is feasible and consumes the same amount of 
energy. 

Proof: Suppose we have a voltage time allocation of each 
voltage level in this interval. Then, the total energy consumption 
is the sum of each allocated time slot multiplies the corresponding 
power. Similarly, the total complexity consumption is the sum of 
each allocated time slot multiplies the corresponding frequency. 
Then, if the time allocation is fixed, the energy and complexity 
consumptions are both fixed. Since the voltage scheduling 



solution is valid and U(t) and L(t) are stable within this interval, 
the piecewise linear solution curve will not break the bound in 
spite of the ordering. As an example in Figure 5, the complexity 
consumption of sequence 2,0,1,3,4 and 0,1,2,3,4 (the numbers 
refer to the slopes) with the same time allocation  is the same.   

Figure 5 Different voltage scheduling orderings 

   Theorem 1 is the key idea to map the DVS problem into a 
tractable LP problem. Rather than finding the precise times for 
voltage switch, which would create an intractable integer linear 
programming (ILP) problem as in [11], we instead solve the 
percentage of time that the processor is operating at each voltage 
level within each adaptation interval. The LP problem can be 
formulated as follows: 

Problem Formulation 1: label the transition points as an 
ordered set I = {I0,…,IL}, where I0=0 and IL = Tend, i.e. we have a 
total of L adaptation intervals. For these L intervals, we have 
voltage level allocation vectors given by A = {A1,…,AL}, where 
Ai={Ai0,…,AiK} and Aij is the allocation of voltage level j in 
adaptation interval i. Then, the DVS problem is: 

1
1 0

min  ( ( ))
N K

ij j i i
i j

E A P I I
= =

= (4.1)

such that 

0
0 1,   0   1

K

ij ij
j

A for j K and A
=

= (4.2)

    1
1 0

( ) ( ( )) ( ),  1
n K

n j ij i i n
i j

L I F A I I U I n L
= =

     (4.3)

Here, the unknown is the voltage level allocation vectors given by 
A. The constraint shown in (4.3) is the valid DVS solution 
between U(t) or L(t) which are defined in (3.3) and (3.4).  
    One can easily prove that the problem defined in (4.1) to (4.2) 
is a linear programming problem. Hence, with this formulation, 
solving this LP problem leads to the optimal solution for offline 
DVS problem. Note that this formulation is pervasive: the 
operating voltages can take on any set of discrete values, and 
there is no requirement for the power-frequency model (no need 
for a convex power-frequency function). Furthermore, this 
formulation is also applicable to other delay-sensitive DVS 
problems of real-time applications. 
    In our formulation, we have made the assumption that the 
values of U(t) and L(t) are precisely known, which means that we 
know the exact complexity and arrival time for each decoding job. 
This information can be obtained from the trace of the video 
decoding task. This approach can be used to determine the 
operational lower bound for energy consumption, as well as 
whether the utilized online DVS algorithm operates close to the 
optimal scheme. 

5. EFFECTIVE ONLINE ALGORITHM 
    For online multimedia applications, where jobs are received 
through a network, we often do not know the precise complexity 
and arrival times of each decoding job. Nevertheless, the idea of 
mapping DVS into a linear programming problem in section 4 can 
still be used for online DVS. We solve the stochastic online DVS 
problem by sequentially solving robust linear program (rLP). We 
label our algorithm SLP/r.  
    The main idea of SLP/r is: we predict the stochastic complexity 
of decoding jobs in a future time window by using the means and 
variances of jobs, and solve an rLP problem to obtain the 
scheduling solution for the predicted decoding jobs in the window. 
After completing a decoding job (or several decoding jobs), we 
move the window forward based on the current time, adjust the 
predictions in the future window, and repeat the rLP based on 
possibly new statistics.  

5.1 Consideration of Stochastic Complexity 
The prediction of future decoding job complexities (in the 

sliding window) is crucial to our real-time DVS solution. In real 
time video transmission, this can be accomplished by having the 
encoder send complexity specifications, such as the mean and 
variance of each job class for each video scene, prior to 
transmitting the corresponding frames [8].  

Using only the mean of each job class for prediction may lead 
to a high miss rate. To reduce the probability of misses, we 
incorporate the variance of each job class with mean to estimate 
the bounded “worst case” complexity in a probabilistic manner. 
Due to the central limit theorem, when uncertainties accumulate 
over many jobs (See Figure 2 for workload distribution 
examples.), the total workload tends toward a Gaussian 
distribution. In this case, the mean and variance for each job class 
can explicitly determine the miss rate probability under different 
adjustments of U(t) and L(t). The adjustments are based on a 
confidence level  to adjust the new bounds. Note that for jobs far 
into the future of a prediction window, the accumulated variance 
over many jobs may be large. Hence, a scaled coefficient 
(possibly 0, such that only the mean is considered) can be used to 
guarantee feasibility. Using a small coefficient for jobs far into 
the future does not necessarily increase the miss rate, since the 
rLP solution will only determine the DVS schedule for imminent 
jobs, after which the rLP is solved again for the future jobs based 
on the decoding results. 
    The rLP problem for a given prediction window is as follows:  

Problem Formulation 2:
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Where is the display interval, W is the prediction window size. 

Adaptation intervals I, U(t) and L(t)  are defined as follows 
(detailed description is in section 5.2): 

0{ ,..., },W iI I I I i= = (5.4)
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Where W0 is the current adaptation interval and iC is stochastic 
complexity of job i based on [8]. Specifically we have: 

0 0 0W j W j j W jC v+ + ++ (5.7)

max(0, ( 1)/ ),1
j

R j R j W= + (5.8)

where i and vi is the mean and variance of stochastic complexity 
of job i, is the confidence level set by the user and R is a 
constant. (5.8) indicates that, j is linearly scaled between and 0 
over time. Note that a tradeoff between miss rate and energy 
consumption could be achieved by tuning . For example, 
increasing  will make the bounds tighter and lead to more energy 
consumption but a lower miss rate.  
    One can easily show that the problem defined by equations (5.1) 
to (5.8) is an rLP problem. Note that with stochastic complexity 
model, the proposed online algorithm applies to other real-time 
applications although we only use video decoding as an example 
in this paper. 
    After we finish decoding one job, we need to adjust U(t) and 
L(t) dynamically. The idea is shown in Figure 6. The gray area 
indicates the variance part of prediction, the dotted line indicates 
the adaptation intervals and the dotted area indicates the bound 
adjustments. Figure 6(a) shows the solution from robust linear 
programming using mean and variance of each job class as a 
prediction. The real complexity of each job is shown in Figure 
6(b). In this particular case, we used three adaptation intervals to 
finish decoding job No.1. As our granularity for recalculating the 
solution is one adaptation interval, we may consume more 
complexity than that of the specific job. As shown in Figure 6(b), 
after finishing job No.1, we also finished job No.2 and part of job 
No.3. Hence, we need to adjust the prediction dynamically to give 
more accurate prediction. As shown in Figure 6(c), the dotted area 
indicates that part of job No.3 is already finished in the previous 
interval, and when we move the window forward, we need to 
adjust U(t) and L(t) accordingly.  

5.2 Extension to Variable Communication 
    For SLP/r, another problem is that we need to deal with 
variance of network bandwidth, because we do not know the 
exact arrival time of each job. The idea is that we assume that a 
network buffer at the decoding side collects packets and 
dispatches jobs to the decoder according to the display frame rate. 
We fix the dispatch time as  display intervals before the display 
deadline of the job. This means that we predict adaptation 
intervals using only display intervals. In this fashion, we can 
reduce the number of adaptation intervals (hence the size of the 

rLP problem). In this case, the adaptation intervals I, U(t) and L(t)
are defined as (5.4) to (5.6). If a job arrives before our scheduling 
solution (i.e. the real U(t) is higher than the complexity 
consumption line), we just switch voltages as guided by rLP. 
Sometimes, a job may arrive very late due to insufficient 
bandwidth of network, which may occur in unreliable wireless 
networks. In this case, if a job arrives too late to be processed, 
power gating can be used to shut down the processor until a new 
job arrives, based on which U(t) and L(t) are adjusted for the next 
rLP.

6. SIMULATIONS AND RESULTS 

6.1 Experimental Setup 
    For experiments, we adopted the power and frequency model 
for the 70nm technique node in [9][11]. We considered discrete 
voltage levels Vdd between 0.6V and 1.0V with voltage step sizes 
of 0.1V. The clock frequencies and power for different Vdd levels 
are presented in Table 1. 

Table 1. Frequency and power for different Vdd levels 
Vdd (V) 0.6 0.7 0.8 0.9 1.0 

Frequency (GHz) 0.79 1.27 1.81 2.42 3.09 

Dynamic Power (10-5W) 0.12 0.27 0.50 0.84 1.33 

Leakage Power (10-5W) 0.21 0.29 0.40 0.54 0.72 

Total Power (10-5W) 0.33 0.56 0.90 1.38 2.05 
    We combined 10 video sequences into a long sequence, which 
was then decoded. We measured the complexity for each 
decoding job in terms of clock cycles and used the measurement 
for offline scheduling. We also tuned the stochastic model using 
the measurement for the proposed online algorithm SLP/r.  
    Furthermore, we generated more data based on Monte Carlo 
method to present a more general simulation. The experiment 
observation was almost the same as the result from real data. 
Hence, we only present the result from the real data here. 
    To simulate a real-time video decoding environment with 
sequences that have a frame rate of 30Hz, we fix the hard display 
deadlines. We assume that the (soft) frame arrivals from the 
network follow norm distribution as in [13] to simulate a wireless 
network, and we applied the same generated arrival times of jobs 
for all algorithms in our experiments. For all algorithms, we 
calculate energy with the same power model considering leakage 
power. Since the absolute value of energy is not important, we 
report normalized energy with respect to energy consumed by the 
optimal solution. 

6.2 Optimality Study 
    In our experiment, we revised power models of laEDF [3] and 
queuing based algorithms [8] to consider leakage power. Also we 
revised these algorithms to consider sleep mode for a fair 
comparison.

Figure 6 Dynamic adjust of prediction for rLP 



    For queuing based algorithms 1 and 2 in [8], we selected 
algorithm 2 for comparison as it outperforms algorithm 1 
experimentally. We tuned the parameters to obtain different trade 
off points for energy and miss rate. For the queuing based 
algorithm, we tuned the delay sensitivity parameter , and for 
laEDF, we used different WCETs. The result is shown in Figure 7. 
The energy achieved by the optimal offline LP solution (e.g. the 
lower bound) is normalized to 1. Note that based on our 
formulation, the optimal solution always has zero miss rate. The 
result shows that for a zero miss rate, laEDF consumes 
approximately 15% more than the optimal and queuing based 
algorithm 2 consumes approximately 4% more than optimal. 

6.3 Effectiveness of SLP/r 
    We also compared the proposed online algorithm SLP/r with 
the optimal solution and existing DVS algorithms. For SLP/r, we 
tuned the confidence level to obtain different trade off points for 
energy and miss rate. The sliding window size of SLP/r is set to 
16 jobs (2 GOPs). 
    From Figure 7, one can see that SLP/r has only about 1% more 
energy consumption than the optimal solution while keeping the 
miss rate below 0.1%. The existing best algorithm (the queuing-
based algorithm 2 in [8]) consumes roughly 3% more energy than 
SLP/r under the same missing rates (0.1%), while laEDF 
consumes approximately 13% more than SLP/r. Compared with 
queuing based algorithm 2, SLP/r shrinks the gap between online 
algorithm and the optimal offline algorithm by nearly 75%. 

Figure 7 Energy and miss rate 

    The total runtime of SLP/r for the combined 512s long video 
sequence is 36s, which means that the overhead of the online 
scheduling algorithm is approximately 7% of the video decoding 
workload, which is acceptable. We expect this relative runtime 
overhead to decrease in the future with a more careful 
implementation. The associated energy overhead of scheduling 
will also decrease relatively to the more computationally intensive 
multimedia algorithms for higher resolution video decoding in the 
future. 

7. CONCLUSIONS AND FUTURE WORK 
    In this paper, we have analyzed the optimality of online DVS 
algorithms by formulating the optimal off-line DVS into a linear 

program (LP). We show that at a zero miss rate, existing works 
consume at least 4% more energy than the optimal. We have also 
developed an effective online DVS algorithm using robust 
sequential linear programming (SLP/r), which significantly 
outperforms existing online DVS solutions and is merely 
1% away from the optimal.  Furthermore, we plan to develop 
algorithms that are more efficient than SLP/r. For example, we 
can provide more precise prediction of the jobs by exploiting 
video sequence characteristics and coding parameters in state-of-
the-art coding algorithms. In this way, we can reduce the 
overhead by reducing the frequency of solving the LP problem, 
and increasing the performance of the scheduling solution. 
Preliminary results (refer to [14] for details) show that we can 
speed up the runtime to 8x compared with SLP/r while reducing 
energy consumption at the same miss rate. 
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