
Optimality and Improvement of Dynamic Voltage Scaling
Algorithms for Multimedia Applications

Zhen Cao, Brian Foo, Lei He and Mihaela van der Schaar

Electronic Engineering Department, UCLA
Los Angeles, CA 90095

ABSTRACT *

The time-varying workload for multimedia applications poses a
great challenge for the efficient performance of dynamic voltage
scaling (DVS) algorithms. While many DVS algorithms have
been proposed for real-time applications, there does not yet exist a
systematic method for evaluating the optimality of such DVS
algorithms. In this paper, we propose an offline linear
programming (LP) method to determine the minimum energy
consumption for processing multimedia tasks under stringent
delay deadlines. Based on this lower bound, we evaluate the
efficiency of various existing DVS algorithms. Furthermore, we
modify the LP formulation to construct an online robust
sequential linear programming DVS algorithm for real-time
multimedia processing. Simulation results from decoding over a
wide range of video sequences shows that on average, our online
algorithm consumes less than 1% more energy than the optimal
lower bound while dropping only 0.1% of all scheduled decoding
jobs, while the existing best algorithm consumes roughly 3%
more energy at the same miss rate.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems

General Terms
Algorithms, Performance

Keywords
Multimedia, Dynamic Voltage Scaling, Power Management

1. INTRODUCTION
 Due to the popularity of streaming multimedia applications on
mobile and pervasive computing devices, computationally
intensive multimedia applications must often be processed by
energy-limited systems. Dynamic voltage scaling (DVS)-enabled
processors are particularly attractive for such devices, since they
can adapt their voltage level and associated clock frequency in
real time to save energy while handling time-varying workloads
and display deadlines [1][2]. In general, a DVS-enabled processor

* This work was partially supported by NSF CCR-0306682. Address
comments to lhe@ee.ucla.edu.

can conserve energy by reducing its voltage level; however,
decreasing the voltage level will also slow the processor clock
speed, thereby increasing the processing time, and hence the
overall delay [2]. DVS algorithms therefore attempt to find a
dynamic balance between the operating level (i.e. power and
frequency) of the processor, and the quality-of-service for
multimedia applications in terms of meeting stringent delay
deadlines.
 A wide variety of DVS algorithms have been proposed for
delay-sensitive applications [3-8]. Some DVS algorithms perform
optimization myopically over only one or two tasks, such that the
processor power level is determined on the fly to meet imminent
(soft) deadlines while considering either the worst case execution
time (WCET), or the average case execution time (ACET) [4][6].
While such approaches have very low computational complexity,
their performance is limited in that future tasks with imminent
deadlines may require extremely high processing power to finish
in time after the completion of the current task. On the other hand,
more robust DVS algorithms schedule power based on multiple
task deadlines [3], or using feedback control [5][7]. Nevertheless,
such approaches can be highly suboptimal when jobs have highly
time-varying workloads that cannot be accurately predicted by
simple models. In [7], a combined leakage and DVS scheduling
algorithm, based on earliest-deadline-first scheduling (EDF), is
proposed for hard real-time systems. In [8], a queuing model-
based DVS approach is proposed for video decoding, where
different video frames and sequence types are classified into
different sets of complexity distributions. Based on the encoding
parameters, the delay for processing each frame can be
analytically approximated for different processor operating levels,
thus enabling the system to adapt the processor voltage in real-
time and achieving the best reported energy savings. However,
due to the online nature of most DVS algorithms, it is difficult to
prove how far these algorithms are from the optimal power
scheduling scheme without an optimal solution.

 Moreover, leakage current in CMOS circuits today contributes
a significant portion to the total power consumption, and is
expected to increase five-fold with each generation [9]. Hence,
technologies such as power gating are used to switch off unused
resources to reduce leakage power when the workload is light.
Under such conditions, zero power and frequency of sleeping
mode should be considered in a DVS algorithm and it is possible
that the power-frequency function for processors will no longer be
convex. In this case, existing works [4][5][8] that attempt to
minimize idle periods under the assumption of a convex power-
frequency function will be no longer effective. Hence, a pervasive
algorithm which is adaptive for both convex and non-convex
power-frequency functions is needed for the DVS problem.
 The contribution of this paper is as follows: first, we analyze
the optimality of DVS algorithms by deriving an operational

lower bound for energy consumption, subject to processing all
jobs before their delay deadlines (i.e. zero miss rate). We propose
a linear programming (LP) DVS solution to obtain the optimal
offline scheduling solution for both convex and non-convex
power-frequency functions. Unlike the integer programming
formulation presented in [11] for temperature-aware DVS
scheduling, we consider the negligible voltage-switch overhead
(compared to the high multimedia job complexities) to enable
switching at any time during a job, and we show that this can be
converted to a low complexity LP problem. Based on the
workload traces collected during execution time, we solve the
offline LP problem to obtain the lower energy bound for DVS
algorithms. A thorough investigation of video decoding results
(where many video sequences are decoded at many different bit
rates) shows that, under the same zero miss rate, laEDF [3]
consumes approximately 15% more energy than the optimal
solution, and the queuing based algorithm in [8] consumes
approximately 4% more than the optimal solution.
 Based on the proposed LP formulation and accurate multimedia
complexity modeling, we propose an online robust sequential
linear programming approach to DVS, namely SLP/r, which
significantly outperforms existing DVS solutions. Experimental
results from real-time video decoding (where workloads are
highly time-varying) indicate that SLP/r consumes less than 1%
more energy than the optimal DVS solution while dropping only
0.1% of all scheduled decoding jobs, while the best existing
algorithm (the queuing-based algorithm 2 in [8]) consumes
roughly 3% more energy than SLP/r at the same miss rate.
Importantly, SLP/r has only a small increase in complexity, and
its relative complexity scales down when supporting increasingly
computationally intensive future multimedia applications.
 While we have used video decoding as an example in this paper
for motivation and simulation, both the offline LP and online
SLP/r approaches are applicable for the DVS problem concerning
other delay-sensitive real-time applications with time-varying
workloads.
 The rest of this paper is organized as follows: Section 2
provides background on multimedia complexity and power
modeling. Section 3 formally states the real-time DVS problem.
Sections 4 and 5 present the optimal offline LP solution and the
online SLP/r algorithm, respectively. Section 6 presents
experimental results to validate our work. Section 7 concludes our
work.

2. BACKGROUND AND MODELING

2.1 Multimedia Complexity
 State-of-the-art coders often encode nearby video frames
jointly to reduce the video transmission bit-rate. However, this
leads to complicated group-of-pictures (GOP) structures, where
some video frames require the reconstruction of many
intermediate frames in order to be decoded, while other video
frames require very few intermediate frames, resulting in very
high workload variations between adjacent decoding jobs (Figure
1). Different sequences also exhibit different amounts of decoding
complexity.
 To mitigate the detrimental effects of highly time-varying
workloads on DVS algorithms, in this work, we adopt the
application-aware model for the video coding complexity
described in [8] for the online algorithm proposed in this paper. In
our work, a job class corresponds to a particular GOP frame type

of a sequence type (e.g. we consider eight job classes for a GOP
structure of eight decoding jobs). To model the (decoding)
complexity within each class of jobs, offline training is used to
obtain workload distributions of each class of jobs, as shown in
Figure 2. These distributions enable us to collect important
information about the complexity, such as the mean and variance
for each class of jobs. As will be shown later, such information
can be used by our proposed online DVS algorithm to achieve a
tradeoff between energy consumption and quality-of-service.

1 2 3 4
0

1

2

3

4

5

6

7

8

9
x 10

9

Job #

C
om

pl
ex

ity
 (

in
 c

yc
le

s)

Comparison of complexity of job types

Stefan
Coastguard

Figure 1 Comparison of various decoding jobs for video
sequences Stefan and Coastguard.

 Finally, note that the complexity of each video decoding job
(which consists of at most 2 video frames each) is on the order of
a billion cycles. Hence, overheads associated with voltage switch,
which are on the order of less than one hundred clock cycles [12],
are negligible compared to the processing complexity of
multimedia tasks. Hence, as long as the DVS algorithm requires
no more than a few voltage switches during a single job, we can
ignore the voltage switching overhead.

Figure 2 The workload variance within the same types of
decoding jobs.

2.2 Dynamic and Leakage Power
 In our work, we adopt the power model proposed in [10] and
used in [9][11] for real-time applications. The dynamic power is:

2
d ddP CV F= (2.1)

where C is the effective switching capacitance. We chose the
leakage power model from [10], which includes the subthreshold
and the reverse bias leakage power. For a given supply voltage
Vdd, the leakage power Ps and subthreshold leakage current Isub

are:

()s g dd sub bs jP L V I V I= + (2.2)

4 5
3

dd bsK V K V
subI K e e= (2.3)

where C, Vbs, Lg, Ij, K3, K4 and K5 are constants for the 70nm node
technology given in [10]. The clock frequency F and threshold
voltage Vth are:

() ()a
dd th dF V V L K= (2.4)

1 1 2th th dd bsV V KV K V= (2.5)

where a, Vth1, K1, K2, Ld, K and Vbs=-0.7V are given for the 70nm
node technology in [9]. Note that the algorithms proposed in this
paper apply to any power model, whether the power-frequency
function is convex or not. In general, the processor consumes both
dynamic and leakage power for a given Vdd level, and consumes
no power when the Vdd level is zero, i.e. in the power gating or
sleep mode.

3. PROBLEM STATEMENT
 For our real-time deadline-driven multimedia DVS problem,
we are given a sequence of decoding jobs. For each job (which
can be one frame or a pair of frames depending on the GOP
structure), we are given its complexity, arrival time and display
deadline. Because we are performing real-time media
transmission and decoding, the arrival time can be influenced by
the variance of the network bandwidth. On the other hand, a
voltage/frequency configurable system can switch the frequency
of its processor by dynamically adapting its voltage level. Hence,
we have a set of active operating levels with frequencies and
corresponding powers (sum of leakage power and dynamic
power). Furthermore, if power gating is enabled, such that the
processor can be shut down to save leakage power, we have an
additional operating level for sleep mode.
 The goal of a DVS algorithm is to find a scheduling solution,
which consists of the time and the operating voltage for each
switch, to minimize total energy consumption. The constraint is
that the decoder can only start decoding a job after it arrives, and
each job should be finished before its display deadline.
 Given M decoding jobs, let C = {C1,…,CM} , T = {T1,…,TM}, D
= {D1,…,DM} be the complexity, arrival time and display
deadline of jobs, respectively; let F = {F0,…,Fk}, P = {P0,…,Pk}
(F0 and P0 for sleeping mode) be associated clock frequencies and
powers for K voltage levels, respectively; let S = {Ts, Vs, N} be
the scheduling solution, where N is the number of voltage
switches, Ts={t0,…,tN, t0=0} and Vs={v0,…,vN} is the time and
voltage level for each switch. When the precise complexity of
each job is known, the constraints for the problem are given by
deterministic Ci and Ti. However, when uncertainties exist in the
workload, Ci and Ti can be viewed as stochastic variables and
DVS scheduling algorithms cannot guarantee that all jobs will be
decoded before their deadlines. Hence, in the stochastic case, the
hard deadline constraint can be replaced with the constraint of
keeping the miss rate for jobs within a tolerable range.

Figure 3 DVS problem formulation

 We further illustrate the DVS problem in Figure 3. Here, the
step function U(t) is the accumulated complexity (i.e., total
complexity in terms of clock circles) of decoding jobs transmitted
since time zero, and the widths of the steps are transmission times
of jobs over network. Another step function L(t) indicates the total
complexity that needs to be processed by time t in order to meet
display deadlines. I.e.,

1 0
1

() (), , 1 , 0
k

j k k
j

U t C for T t T k M T
=

= < = (3.3)

1

1 0 0
0

() (), , 1 , 0, 0
k

j k k
j

L t C for D t D k M C D
=

= < = = (3.4)

 Since the decoder cannot start decoding a job before it is
completely received from network, and it must finish the job
before its deadline, a valid DVS solution is a piecewise linear
curve between U(t) and L(t). The slope of each piece indicates the
associated clock frequency of the selected voltage level and a
corresponding power is associated with each frequency.
 The arrival time intervals can vary between each job. As shown
in Figure 3, the transmission time for job 3 is larger than others.
This can often occur when the network bandwidth is time-varying,
which is common in wireless networks.

4. OPTIMAL OFFLINE SOLUTION
 In this section, we show that the deadline-driven multimedia
DVS problem can be mapped into a LP problem, which can be
efficiently solved. Furthermore, if we know the precise
complexity and arrival time of each decoding job, we can obtain
the optimal scheduling solution.
 We define a transition point as the time when a new job arrives
(i.e. any Ti), or when a job deadline is reached (i.e. any Di). We
also define an adaptation interval as the time period between two
adjacent transition points. The adaptation intervals for sample U(t)
and L(t) curves are marked in dotted lines in Figure 4. We now
prove an important result for voltage scheduling.

Figure 4 Adaptation intervals

Theorem 1. Within a single adaptation interval (i.e. when U(t)
and L(t) are constant), an arbitrary ordering of any feasible
voltage schedule is feasible and consumes the same amount of
energy.

Proof: Suppose we have a voltage time allocation of each
voltage level in this interval. Then, the total energy consumption
is the sum of each allocated time slot multiplies the corresponding
power. Similarly, the total complexity consumption is the sum of
each allocated time slot multiplies the corresponding frequency.
Then, if the time allocation is fixed, the energy and complexity
consumptions are both fixed. Since the voltage scheduling

solution is valid and U(t) and L(t) are stable within this interval,
the piecewise linear solution curve will not break the bound in
spite of the ordering. As an example in Figure 5, the complexity
consumption of sequence 2,0,1,3,4 and 0,1,2,3,4 (the numbers
refer to the slopes) with the same time allocation is the same.

Figure 5 Different voltage scheduling orderings

 Theorem 1 is the key idea to map the DVS problem into a
tractable LP problem. Rather than finding the precise times for
voltage switch, which would create an intractable integer linear
programming (ILP) problem as in [11], we instead solve the
percentage of time that the processor is operating at each voltage
level within each adaptation interval. The LP problem can be
formulated as follows:

Problem Formulation 1: label the transition points as an
ordered set I = {I0,…,IL}, where I0=0 and IL = Tend, i.e. we have a
total of L adaptation intervals. For these L intervals, we have
voltage level allocation vectors given by A = {A1,…,AL}, where
Ai={Ai0,…,AiK} and Aij is the allocation of voltage level j in
adaptation interval i. Then, the DVS problem is:

1
1 0

min (())
N K

ij j i i
i j

E A P I I
= =

= (4.1)

such that

0
0 1, 0 1

K

ij ij
j

A for j K and A
=

= (4.2)

 1
1 0

() (()) (), 1
n K

n j ij i i n
i j

L I F A I I U I n L
= =

 (4.3)

Here, the unknown is the voltage level allocation vectors given by
A. The constraint shown in (4.3) is the valid DVS solution
between U(t) or L(t) which are defined in (3.3) and (3.4).
 One can easily prove that the problem defined in (4.1) to (4.2)
is a linear programming problem. Hence, with this formulation,
solving this LP problem leads to the optimal solution for offline
DVS problem. Note that this formulation is pervasive: the
operating voltages can take on any set of discrete values, and
there is no requirement for the power-frequency model (no need
for a convex power-frequency function). Furthermore, this
formulation is also applicable to other delay-sensitive DVS
problems of real-time applications.
 In our formulation, we have made the assumption that the
values of U(t) and L(t) are precisely known, which means that we
know the exact complexity and arrival time for each decoding job.
This information can be obtained from the trace of the video
decoding task. This approach can be used to determine the
operational lower bound for energy consumption, as well as
whether the utilized online DVS algorithm operates close to the
optimal scheme.

5. EFFECTIVE ONLINE ALGORITHM
 For online multimedia applications, where jobs are received
through a network, we often do not know the precise complexity
and arrival times of each decoding job. Nevertheless, the idea of
mapping DVS into a linear programming problem in section 4 can
still be used for online DVS. We solve the stochastic online DVS
problem by sequentially solving robust linear program (rLP). We
label our algorithm SLP/r.
 The main idea of SLP/r is: we predict the stochastic complexity
of decoding jobs in a future time window by using the means and
variances of jobs, and solve an rLP problem to obtain the
scheduling solution for the predicted decoding jobs in the window.
After completing a decoding job (or several decoding jobs), we
move the window forward based on the current time, adjust the
predictions in the future window, and repeat the rLP based on
possibly new statistics.

5.1 Consideration of Stochastic Complexity
The prediction of future decoding job complexities (in the

sliding window) is crucial to our real-time DVS solution. In real
time video transmission, this can be accomplished by having the
encoder send complexity specifications, such as the mean and
variance of each job class for each video scene, prior to
transmitting the corresponding frames [8].

Using only the mean of each job class for prediction may lead
to a high miss rate. To reduce the probability of misses, we
incorporate the variance of each job class with mean to estimate
the bounded “worst case” complexity in a probabilistic manner.
Due to the central limit theorem, when uncertainties accumulate
over many jobs (See Figure 2 for workload distribution
examples.), the total workload tends toward a Gaussian
distribution. In this case, the mean and variance for each job class
can explicitly determine the miss rate probability under different
adjustments of U(t) and L(t). The adjustments are based on a
confidence level to adjust the new bounds. Note that for jobs far
into the future of a prediction window, the accumulated variance
over many jobs may be large. Hence, a scaled coefficient
(possibly 0, such that only the mean is considered) can be used to
guarantee feasibility. Using a small coefficient for jobs far into
the future does not necessarily increase the miss rate, since the
rLP solution will only determine the DVS schedule for imminent
jobs, after which the rLP is solved again for the future jobs based
on the decoding results.
 The rLP problem for a given prediction window is as follows:

Problem Formulation 2:

1 0
min ()

W K

ij j
i j

E A P
= =

= (5.1)

 such that

0

0 1, 0 1
K

ij ij
j

A for j K and A
=

= (5.2)

1 0
() () (), 1

n K

n j ij n
i j

L I F A U I n W
= =

(5.3)

Where is the display interval, W is the prediction window size.

Adaptation intervals I, U(t) and L(t) are defined as follows
(detailed description is in section 5.2):

0{ ,..., },W iI I I I i= = (5.4)

0 1
1

() (), , 1
k

W j k k
j

U t C I t I k W+
=

= < (5.5)

() max(0, ())L t U t= (5.6)
Where W0 is the current adaptation interval and iC is stochastic
complexity of job i based on [8]. Specifically we have:

0 0 0W j W j j W jC v+ + ++ (5.7)

max(0, (1)/),1
j

R j R j W= + (5.8)

where i and vi is the mean and variance of stochastic complexity
of job i, is the confidence level set by the user and R is a
constant. (5.8) indicates that, j is linearly scaled between and 0
over time. Note that a tradeoff between miss rate and energy
consumption could be achieved by tuning . For example,
increasing will make the bounds tighter and lead to more energy
consumption but a lower miss rate.
 One can easily show that the problem defined by equations (5.1)
to (5.8) is an rLP problem. Note that with stochastic complexity
model, the proposed online algorithm applies to other real-time
applications although we only use video decoding as an example
in this paper.
 After we finish decoding one job, we need to adjust U(t) and
L(t) dynamically. The idea is shown in Figure 6. The gray area
indicates the variance part of prediction, the dotted line indicates
the adaptation intervals and the dotted area indicates the bound
adjustments. Figure 6(a) shows the solution from robust linear
programming using mean and variance of each job class as a
prediction. The real complexity of each job is shown in Figure
6(b). In this particular case, we used three adaptation intervals to
finish decoding job No.1. As our granularity for recalculating the
solution is one adaptation interval, we may consume more
complexity than that of the specific job. As shown in Figure 6(b),
after finishing job No.1, we also finished job No.2 and part of job
No.3. Hence, we need to adjust the prediction dynamically to give
more accurate prediction. As shown in Figure 6(c), the dotted area
indicates that part of job No.3 is already finished in the previous
interval, and when we move the window forward, we need to
adjust U(t) and L(t) accordingly.

5.2 Extension to Variable Communication
 For SLP/r, another problem is that we need to deal with
variance of network bandwidth, because we do not know the
exact arrival time of each job. The idea is that we assume that a
network buffer at the decoding side collects packets and
dispatches jobs to the decoder according to the display frame rate.
We fix the dispatch time as display intervals before the display
deadline of the job. This means that we predict adaptation
intervals using only display intervals. In this fashion, we can
reduce the number of adaptation intervals (hence the size of the

rLP problem). In this case, the adaptation intervals I, U(t) and L(t)
are defined as (5.4) to (5.6). If a job arrives before our scheduling
solution (i.e. the real U(t) is higher than the complexity
consumption line), we just switch voltages as guided by rLP.
Sometimes, a job may arrive very late due to insufficient
bandwidth of network, which may occur in unreliable wireless
networks. In this case, if a job arrives too late to be processed,
power gating can be used to shut down the processor until a new
job arrives, based on which U(t) and L(t) are adjusted for the next
rLP.

6. SIMULATIONS AND RESULTS

6.1 Experimental Setup
 For experiments, we adopted the power and frequency model
for the 70nm technique node in [9][11]. We considered discrete
voltage levels Vdd between 0.6V and 1.0V with voltage step sizes
of 0.1V. The clock frequencies and power for different Vdd levels
are presented in Table 1.

Table 1. Frequency and power for different Vdd levels
Vdd (V) 0.6 0.7 0.8 0.9 1.0

Frequency (GHz) 0.79 1.27 1.81 2.42 3.09

Dynamic Power (10-5W) 0.12 0.27 0.50 0.84 1.33

Leakage Power (10-5W) 0.21 0.29 0.40 0.54 0.72

Total Power (10-5W) 0.33 0.56 0.90 1.38 2.05
 We combined 10 video sequences into a long sequence, which
was then decoded. We measured the complexity for each
decoding job in terms of clock cycles and used the measurement
for offline scheduling. We also tuned the stochastic model using
the measurement for the proposed online algorithm SLP/r.
 Furthermore, we generated more data based on Monte Carlo
method to present a more general simulation. The experiment
observation was almost the same as the result from real data.
Hence, we only present the result from the real data here.
 To simulate a real-time video decoding environment with
sequences that have a frame rate of 30Hz, we fix the hard display
deadlines. We assume that the (soft) frame arrivals from the
network follow norm distribution as in [13] to simulate a wireless
network, and we applied the same generated arrival times of jobs
for all algorithms in our experiments. For all algorithms, we
calculate energy with the same power model considering leakage
power. Since the absolute value of energy is not important, we
report normalized energy with respect to energy consumed by the
optimal solution.

6.2 Optimality Study
 In our experiment, we revised power models of laEDF [3] and
queuing based algorithms [8] to consider leakage power. Also we
revised these algorithms to consider sleep mode for a fair
comparison.

Figure 6 Dynamic adjust of prediction for rLP

 For queuing based algorithms 1 and 2 in [8], we selected
algorithm 2 for comparison as it outperforms algorithm 1
experimentally. We tuned the parameters to obtain different trade
off points for energy and miss rate. For the queuing based
algorithm, we tuned the delay sensitivity parameter , and for
laEDF, we used different WCETs. The result is shown in Figure 7.
The energy achieved by the optimal offline LP solution (e.g. the
lower bound) is normalized to 1. Note that based on our
formulation, the optimal solution always has zero miss rate. The
result shows that for a zero miss rate, laEDF consumes
approximately 15% more than the optimal and queuing based
algorithm 2 consumes approximately 4% more than optimal.

6.3 Effectiveness of SLP/r
 We also compared the proposed online algorithm SLP/r with
the optimal solution and existing DVS algorithms. For SLP/r, we
tuned the confidence level to obtain different trade off points for
energy and miss rate. The sliding window size of SLP/r is set to
16 jobs (2 GOPs).
 From Figure 7, one can see that SLP/r has only about 1% more
energy consumption than the optimal solution while keeping the
miss rate below 0.1%. The existing best algorithm (the queuing-
based algorithm 2 in [8]) consumes roughly 3% more energy than
SLP/r under the same missing rates (0.1%), while laEDF
consumes approximately 13% more than SLP/r. Compared with
queuing based algorithm 2, SLP/r shrinks the gap between online
algorithm and the optimal offline algorithm by nearly 75%.

Figure 7 Energy and miss rate

 The total runtime of SLP/r for the combined 512s long video
sequence is 36s, which means that the overhead of the online
scheduling algorithm is approximately 7% of the video decoding
workload, which is acceptable. We expect this relative runtime
overhead to decrease in the future with a more careful
implementation. The associated energy overhead of scheduling
will also decrease relatively to the more computationally intensive
multimedia algorithms for higher resolution video decoding in the
future.

7. CONCLUSIONS AND FUTURE WORK
 In this paper, we have analyzed the optimality of online DVS
algorithms by formulating the optimal off-line DVS into a linear

program (LP). We show that at a zero miss rate, existing works
consume at least 4% more energy than the optimal. We have also
developed an effective online DVS algorithm using robust
sequential linear programming (SLP/r), which significantly
outperforms existing online DVS solutions and is merely
1% away from the optimal. Furthermore, we plan to develop
algorithms that are more efficient than SLP/r. For example, we
can provide more precise prediction of the jobs by exploiting
video sequence characteristics and coding parameters in state-of-
the-art coding algorithms. In this way, we can reduce the
overhead by reducing the frequency of solving the LP problem,
and increasing the performance of the scheduling solution.
Preliminary results (refer to [14] for details) show that we can
speed up the runtime to 8x compared with SLP/r while reducing
energy consumption at the same miss rate.

8. REFERENCES
[1] L. Benini, and G. De Micheli. Dynamic power management:

design techniques and CAD tools. Kluwer Academic Publishers,
Norwell, MA, 1997.

[2] D. Marculescu. On the use of microarchitecture-driven dynamic
voltage scaling. Proceedings of the Workshop on Complexity-
Effective Design, 2000.

[3] P. Pillai, and K. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. Proceedings of the 18th ACM
symposium on Operating Systems, 2001.

[4] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets.
GRACE: cross-layer adaptation for multimedia quality and battery
energy. IEEE Transactions on Mobile Computing, 2006.

[5] Y. Zhu, and F. Mueller. Feedback EDF scheduling exploiting
dynamic voltage scaling. Proceedings of the 11th international
conference on Computer Architecture, 2004.

[6] K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-based
dynamic voltage and frequency scaling for a MPEG decoder.
Proceedings of ICCAD, 2002.

[7] Y. Zhu, and F. Mueller. DVSleak: combining leakage reduction
and voltage scaling in feedback EDF scheduling. Proceedings of
LCTES, 2007.

[8] B. Foo, and M. van der Schaar. A queuing theoretic approach to
processor power adaptation for video decoding systems. IEEE
Trans. Signal Process, to appear.

[9] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. Proceedings of
DAC, 2004.

[10] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined
dynamic voltage scaling and adaptive body biasing for low power
microprocessors under dynamic workloads. Proceedings of
ICCAD, 2002.

[11] S. Zhang, and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. Proceedings of ICCAD,
2007.

[12] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls. An all-digital
phase-locked loop with 50-cycle lock time suitable for high-
performance microprocessors. IEEE Journal of Solid-State
Circuits, Volume 30, Issue 4, Apr 1995 Page(s):412 – 422.

[13] A. Adas. Traffic Models in Broadband Networks. IEEE
Communications Magazine, Vol. 35, Issue 7, July 1997.

[14] Z. Cao, B. Foo, L. He, and M. van der Schaar. Optimality and
Improvement of Dynamic Voltage Scaling Algorithms for
Multimedia Applications. Technical Report UCLA, 08-267, 2008.

