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ABSTRACT
Analytical modeling for video coders can be used in a variety of
scenarios where information concerning rate, distortion or
complexity is essential for driving system or network interactions
with media algorithms. While rate and distortion modeling have
been covered extensively in previous works, complexity is not
well addressed because it is highly algorithm dependent and
hence difficult to model. Based on a stochastic modeling
framework for the transform coefficients, we present a novel
complexity analysis for state-of-the-art wavelet video coding
methods by explicitly modeling several aspects found in
operational coders, i.e. embedded quantization and quadtree
decompositions of block significance maps. The proposed
modeling derives for the first time analytical estimates of the
expected number of operations (complexity) for a broad class of
wavelet video coders based on stochastic source models, coding
algorithm and system parameters.
Index Terms: Multimedia Systems, Resource Modeling,
Statistical Modeling ofMedia Decoding Complexity

I. INTRODUCTION
Recent compression algorithms such as the H.264/AVC

standard and wavelet video compression [1] achieve
breakthroughs in terms of rate-distortion (R-D) performance at
the expense of a significant increase in complexity (in terms of
CPU time, or energy dissipation) compared to older coding
schemes such as MPEG-I or MPEG-2. Hence, accurate models
that encapsulate the source, algorithm and system characteristics
are very important for benchmarking existing video coders and
facilitating the design of future video coders.
Two methods have been used to determine the complexity

characteristics of operational video coders. The first is an
empirical approach, where analytical formulations are fitted to
experimental data to derive an operational model for a particular
class of video sequences, instantiation of a compression
algorithm, and a fixed architecture [2]. While this modeling
approach is simple, fine-granular adaptation of algorithm or
system parameters is not possible, since one can not predict the
expected complexity for a different input video source or
compression algorithm configuration. This led to current state-of-
the-art multimedia compression algorithms and standards
providing only very coarse levels (profiles) of complexity [2] and
hence quality, thereby neglecting the vast resource diversity and
heterogeneity of devices and systems.

The second approach is a theoretical approach, where a
stochastic model is used for each pixel or transform coefficient.
While several works have modeled complexity using operational
source statistics and offline or online training to estimate (learn)

the algorithm and system parameters [4], to the best of the
authors' knowledge, scarcely any work has addressed the
information-theoretic modeling of complexity in function of
stochastic source models and practical algorithm characteristics.

In this paper, we follow the second approach to predict
complexity in terms of the number of certain operations
performed (e.g. the number of symbols read from the bitstream),
thereby complementing prior work on information-theoretic R-D
modeling [3]. We focus mainly on the quantization and coding
process of intra and error frames and present for the first time a
stochastic framework for complexity prediction of entropy
decoding and the inverse spatial transform in a broad class of
wavelet video coders based on easily-obtained source, algorithm
and system parameters.

The paper is organized as follows. Section II introduces the
coder, a model for wavelet coefficients, and some important
nomenclature. Based on these models, in Section III we derive
probability estimates for a variety of coding/decoding operations
that will be used to determine the complexity (Section IV) for
decoding a video sequence. Section V displays theoretical and
experimental complexity-quality results that validate the proposed
models. Section 0 concludes the paper.

II. CODER STRUCTURE AND WAVELET COEFFICIENT MODELING
A. Coder Structure

Recent state-of-the-art scalable video coding schemes are based
on motion compensated temporal filtering (MCTF) [1]. During
MCTF, the original video frames are filtered temporally in the
direction of motion, prior to performing the spatial transformation
and coding. Video frames are filtered into L (low-frequency) and
H (high-frequency) frames [1]. The process is recursively
applied to subsequently-produced L frames to form a total of
TMCTF temporal levels. The derived L and H temporal frames
are spatially decomposed in a hierarchy of spatio-temporal
subbands.
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Figure 1. Block diagram of intra-band coding process of state-of-
the-art wavelet-based coders encompassing quadtree and block
coding of the significance maps.
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In all state-of-the-art wavelet coders [5], the coding process
exploits intra-band dependencies following a block-partitioning
process within each transform subband. A generalized form of
this partitioning for every bitplane b is outlined in Figure 1. As
indicated there, several coding passes that identify coefficient
significance or refine wavelet coefficients with respect to the
current SAQ threshold are performed within quadtree coding or
within block coding.
B.Wavelet Coefficient Modeling of Spatio-temporal
Subbands
Low-frequency wavelet coefficients are typically modeled

using independent Gaussian random variables after subtracting
the mean value [3] [5]. High frequency wavelet coefficients are
often modeled by decorrelated, but non-independent random
variables X using a doubly-stochastic process, i.e. a Gaussian
distribution parameterized by ( , which follows a marginal
distribution of a Laplacian random variable with variance 2 [3]
[6]:

(i p(o) = Ila' exp(-0/02)(1
p(x) f p(x O)p(O)dO =1/X,J exp (- x f7u) (2)

The results of Table 1 show an instantiation of this model fitted
to a real video sequence. We conclude that the coarser spatio-
temporal high-frequency subbands exhibit significant variance
and the correlation of the subband statistics (parameter 0 ) varies
significantly as well. Consequently, contrary to the notion that
only the low-frequency subbands are essential for complexity
prediction, high-frequency subbands contain a significant portion
of complexity for a variety of quantization thresholds, and hence
an accurate model is important for predicting the overall
complexity.

Temporal Subband variance u2 [variance of 0]
(T)-Spatial ,LH HL H, LL (if exists
(S) level
2T-2S 6.59, [37.5] 5.55, [22.8] 4.46, [25.7]

4T-4S 39.69, [241] 33.23, [496] {25.98,[ 44]},
Table 1. Examples of subband variances as well as the variance of
the correlation 0 (for a block of 4 x 4 ) formed across the
spatio-temporal MCTF decomposition of sequence Foreman.

We now introduce some important nomenclature. Denote the
minimum decoded bitplane threshold level as TB = 2Bmin In
addition, we define the following parameters for all bitplanes:

Vb = Tb/07, Pb = e VVb (3)
where Vb describes the ratio of the threshold of bitplane b to the
variance of each wavelet coefficient and Pb is the probability of
significance of a wavelet coefficient under a certain Vb under the
model of (2). In this paper we analyze intra-band coders that use
quadtrees to decompose subbands into non-overlapping blocks of
dyadically-decreasing sizes and then encode the minimum block
size using context-based adaptive arithmetic coding. The initial
subbands are hierarchically split in K quadtree levels, with
blocks at quadtree level K having the smallest size. If a block at
quadtree level k, 2 < k < K, has n coefficients, its parent
block at level k -1 has 4n coefficients. We define the
significance test of a block of n coefficients with respect to a
threshold Tb as sig(Vb, n) = {0,1}. We also define the newly

significance test as newsig(Vb, n) = 0,1} , which returns one if
the block was found to be significant at bitplane b and
insignificant at bitplane b + 1, i.e. sig(Vb, n) = 1 and
sig(Vb+l, n) = 0 . For notational abbreviation, the probability of
a block being significant or newly-significant at bitplane b is
indicated by Xband and 6band respectively, with
band = {low,high} indicating the frequency subband that the
block belongs to.

III. APPROXIMATION OF BLOCK SIGNIFICANCE
PROBABILITIES IN QUADTREE DECOMPOSITIONS

Under the stochastic modeling framework, we derive several
important probabilities of significance for quadtree
decompositions of quantized spatio-temporal subbands. These
probabilities form the core of the complexity estimation as they
provide the means of establishing the percentage of blocks that
are expected to be coded or decoded at a given terminating SAQ
threshold TBi In addition, the percentage of significant blocks
within the spatio-temporal subbands along with the percentage of
non-zero coefficients are the two features that express the
complexity of the inverse DWT [4].

A. Probability of Block Significance at Bitplane b
Let us first consider a high-frequency spatio-temporal subband,

which may be any subband of an error (H) frame, or any high-
frequency subband of an L frame. Assuming the variance of the
subband coefficients to be 32, we have:

Pr{sig(vb,n) = 1} = 1-Pr{| X loo< Tb} (4)
where X = (X1, X2,...,Xn) is a length- n random vector of all
the coefficient random variables Xi (1 < i < n ) of a block, and
*10o is the Linf norm. Considering that block sizes are generally

small enough to capture local variances, we follow the doubly
stochastic model in equation (3) to derive the conditional joint
distribution of X:

p(X) f p(X O)p(O)dO

f0f/2 e (2r0) 'C +X+(20 (5)

Proposition 1: The probability that a block of size n is significant
compared to threshold Tb can be approximated by:

XvbAn
A

Pr{sig(vb, n)=1} - exp{ vb /k(n)} (6)
with k(n) = ln(n)1 296+0.166.
Proof. See [8]. 0
For low-frequency subbands, the probability of block

significance is simply the n-dimensional Gaussian tail
probability along one of the orthogonal axes:

,low A Pr{Sig(Vb, n) =1} _ [erfc(vb/ ) ]XVb ,n Lx!!I (7)

B. Probability of a Newly Significant Block at Bitplane b
In order to model the number of operations performed during

the quadtree significance pass at each bitplane, it is necessary to
derive the probability that a block is found significant at bitplane
b , but not at any higher bitplanes.
Proposition 2: The probability that a block of n coefficients in a
high-frequency subband is found significant at bitplane b, but it
is insignificant at bitplane b + 1, Bmax is:

6high high )6VIb,n = Xvl , Xub ,n (8)
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Proof: See [8]. x
Proposition 3: The probability that a block of n coefficients in a
low-frequency subband is found significant at bitplane b , but it is
insignificant at bitplane b + 1,...,Bmax is:

61,n,w - (1 XIOwI,n)XIOw (9)

Proof The approximation of (9) is a straightforward result of
independent Gaussian coefficients. x
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Figure 2. Simulation and model prediction of Xhigh eh
(4 x 4 blocks in high-frequency spatio-temporal subbands).
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Figure 3. Simulation and model prediction of blb1" 64
( 4 x 4 blocks in LL subbands of L frames).

condition (ii) is added in most state-of-the-art coders to exploit
the property of intra-band spatial correlation of coefficients.

Under the above-stated two conditions, the probability that the
significance of a block of size n is coded at bitplane b and that
its parent's significance is coded at bitplane b + r, r > 0,
(which means that the block significance will be coded a total of
r + 1 times) can be formulated as:

Cblock sig (newsig(Vb, n))

ZEBmaxb Pr{sig(Vb+r,4n) = 1 newsig(vb,n) = 1}
Averaging over all bitplanes b + r, b + r-1, b, we get the
following rate estimate:
Cblock sig (Vb, n)
Bm. Bm. 3 ( 11)

where band = {low,high} depending on the frequency
subband of interest. Pr{sig(vb+, 4n) = 1 newsig(vb, n) = 1} can
be obtained using Bayes' rule:
Pr{sig(vb+r,4tn) = 1 newsig(vb,n)}

(12)
.d.> = Pr{newsig(vb, n) =n1 6}x vbn

where:
- p(O sig(Vb+r,4n))

l/xVb+,, 4n 'I - erf (Tb+r+/] )ff e J

Using similar approximations as in [8], we obtain the following
(details can be found in [8]):

Pr{newsig(vb,n) = 1 1e1} A 7Vb,n,r (14)

Figure 2 and Figure 3 demonstrate the accuracy of the model
prediction of probability of block significance and newly-
significance (with n = 16) for several subbands belonging to
two MCTF-decomposed frames of video sequences. Note that the
high-frequency subbands exhibit a heavy-tail for significance
(and newly-significance) between bitplanes b = {1, 6}; hence the
complexity of high-frequency subband coding is significant at
finer quantization levels.

IV. COMPLEXITY OF ENTROPY DECODING AND IDWT
We model the complexity of decoding in terms of the number

of symbols read from the entropy decoder (Subsection A and B)
since predicting the symbol encoding/decoding operations
captures the complexity of entropy coding implementations in
real processor-based designs in an accurate manner [4]. Similarly,
the complexity of inverse spatial DWT is modeled as a
decomposition to a pair of functions relating to the sparsity of
each subband's decoded wavelet coefficients (Subsection C).
A.Quadtree Decoding Complexity

The complexity of decoding the quadtree significance at
bitplane b depends on the size of the quadtree before the
significance pass. The significance of a block in the quadtree
decomposition may be encoded in two cases: i) If the block is
found newly significant at bitplane b, its significance will be
encoded at that moment and it will never be encoded again; ii) if
the block's parent is found to be significant at bitplane b even
though the block itself is non-significant, it will be coded
continuously until it is found newly significant. Notice that

I ( ,band
band 6band vb+a 4n
'Vb,n,r = vb,n

~band j T2 Tb2xVb+l,n )+ T6 < Tb+>
/'k(n) k(4rn) (1r5)

otherwise

Combining (1 1)-(15) together, we obtain the final expression:

Cblock sig(Vb n) B- E Xmax-band band (16)

The average rate per coefficient is Cblo,k sig (Vb, n) / n. If we
let n be the smallest block size, then summing up the rates for
K levels of the quadtree decomposition gives the total rate for
quadtree encoding within the subband:

Cquadtree(Vb) =Z 0 Cblock sig(Vb,4kn)/(A4k n) (17)
B. Block and Refinement Decoding Complexity
We group together the number of symbols read from

significance coding and refinement, since a coefficient will be
significance-coded or refined at bitplane b as long as the it is in a
significant block at bitplane b or higher. The sign is also encoded
once when a coefficient is significant, which occurs with
probability Pb at bitplane b Summing up all symbols read in the
passes down to Bmin:

Ccoe(VB88,) K~?jlow + m low
ccoef (vBmin) 4' n (PBmi. + b VVb,n)

+4K n} Pigh +Z Bm. 8 vb0 n)high)
Since each subband is encoded independently, the complexity

metrics must first be estimated for each subband and then
summed in the same weighted fashion as the rate calculation. In
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other words, for a given frame i, 1 < i < N , we have:
J 3

COP (VBin) 4COP,J,O(VBZin 4JCOPj,k(VBi) (19)
j=l k=1

where op {quadtree,coef} and C0p,j,k(VBmpn) is the
quadtree and block coding complexity for each subband at spatial
resolution j. A linear combination of block and quadtree
complexity metrics alCquadtree(VBmi ) + a2Cb1oCk(VBmj,) estimates
the total number of RS operations for frame i
C.Complexity of the Inverse Spatial DWT
We model the transform-related complexity of a coding system

that processes N video frames by expressing it as a
decomposition into two functions relating to: i) the percentage of
non-zero coefficients for a given SAQ threshold Tb (function
7nonzero ); ii) the sum of run-lengths of zero wavelet coefficients
(function Thunlen ). The motivation behind (i) is that the number
of non-zero multiply-accumulate (MAC) operations in the
synthesis filter-bank is directly proportional to the percentage of
non-zero coefficients. Moreover, the distribution of zero run-
lengths within the transform subbands affects the number of
consecutive filtering operations that can be avoided altogether.
The complexity of the inverse spatial DWT (non-zero MAC
operations) can be formulated as:
CN=CN rN cN 7-N CNCF CfjnonzeroT nonzero +runlen runlen +deC const1 (20)

with Tnonzero and Trunlen the N-element vectors of the
corresponding functions. The parameter vectors Conzero and
CNnien can be estimated based on linear MMSE fitting over the
actual number ofMAC operations and model-based Tnonzero and
,Tjien .nonzero for the high-frequency spatio-temporal
subbands is derived by (3), while for the low-frequency spatio-
temporal subbands it is derived by:

7nonzero = erfc ( ) (21)
In addition, 7runlen is derived by the percentage of non-
significant blocks for a certain SAQ threshold TBmi , given by:

frunlen = Pr{sig(vBm,, n) = O} =1xIIbnd (22)
with Xband estimated by (6) for the high-frequency temporal
subbands and by (7) for the LL subband of the L frames.
Following the lifting dependencies of popular wavelet filter-pairs,
we set an average of n = 64 since a window of 7 x 7
coefficients and 9 x 9 coefficients is used in the lifting steps of
the inverse DWT [5].

V. EXPERIMENTATION AND RESULTS
We validate the derived analytical complexity expressions

above by presenting experiments with two common interchange
format (CIF) resolution sequences ("Coastguard", "Foreman")
that encapsulate a variety of motion and texture characteristics
using the coder in [7]. Figure 4 and Figure 5 present our results
for a variety of spatial (S) and temporal (T) decomposition levels.
The results indicate that the proposed complexity modeling
predicts the experimental behavior of the advanced MCTF-based
wavelet video coder accurately for the different cases under
investigation. Note that different coding parameters, such as the
number of spatio-temporal levels, can lead to significant tradeoffs
between entropy decoding and inverse transform complexity.

VI. CONCLUSIONS
This paper presents an analytical modeling framework that

derives complexity predictions for wavelet-based video coders.

By analytically deriving probabilities for block and coefficient
significance according to the quantization threshold, we derived
analytical models that approximate well the complexity behavior
of a wide variety of modem wavelet-based video coder. In this
way, this work bridges the gap between the operational
measurements used in prior complexity modeling work and
information-theoretic estimates common in rate-distortion
modeling work.
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Figure 4. Entropy decoding complexity vs. distortion plots for
different spatio-temporal decomposition parameters; "S" and "T"
indicate the number of spatial and temporal levels (respectively).
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