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ABSTRACT 

We consider the problem of optimally configuring classifier chains for real-time multimedia stream mining systems. 
Jointly maximizing the performance over several classifiers under minimal end-to-end processing delay is a difficult task 
due to the distributed nature of analytics (e.g. utilized models or stored data sets), where changing the filtering process at 
a single classifier can have an unpredictable effect on both the feature values of data arriving at classifiers further 
downstream, as well as the end-to-end processing delay. While the utility function can not be accurately modeled, in this 
paper we propose a randomized distributed algorithm that guarantees almost sure convergence to the optimal solution. 
We also provide results using speech data showing that the algorithm can perform well under highly dynamic 
environments.   
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1. INTRODUCTION 

Recently, data mining applications have emerged that require operations such as classification, filtering, aggregation, 
and correlation over high-volume, continuous multimedia streams in real time [1]. Due to the naturally distributed set of 
data sources and jobs, as well as high computational burdens for the analytics, distributed mining systems have been 
recently developed [2]. These systems leverage computational resources from a set of distributed processing nodes and 
provide the framework to deploy and run stream mining applications on various resource topologies [2]. A key challenge 
in distributed, real-time multimedia stream mining systems is how to cope effectively with system overload, while 
maintaining high performance under delay constraints. A commonly used approach is load-shedding, where algorithms 
determine when, where, what, and how much data to discard given the observed data characteristics, e.g. burst, and 
desired Quality of Service (QoS) requirements. Recent work on intelligent load shedding [3] attempts instead to 
maximize certain Quality of Decision (QoD) measures based on the predicted distribution of feature values in future 
time units. However, such load shedding algorithms are limited by the fact that the algorithms consider only local 
information and metrics pertaining to single classifiers. Because distributed systems process data using entire sequences 
(or chains) of classifiers [2], the performance of load shedding can be highly sub-optimal with regards to the end-to-end 
performance (and delay) across several classifiers, as data discarded at one stage may be essential for a downstream 
classifier. 

Optimally configuring classifiers across an entire chain is a difficult problem, not only due to the computational 
complexity, or the required coordination between autonomous sites, but also due to informational constraints. In most 
distributed stream processing systems, the analytics are distributed across autonomous sites that are neither willing to 
share their analytics, nor willing to provide a repository to store an entire collection of data across multiple sites [4].  

To overcome the unpredictable nature of the system, in this paper, we propose a low-complexity, stochastic algorithm 
for optimizing the performance of a real-time, distributed binary filtering classifier system. While the proposed 
algorithm requires periodic information exchange across the network, it requires no coordination between individual 
classifiers. Moreover, using a multimedia speaker verification application, we show experimentally that the algorithm 
can quickly adapt to new environments. 



 
 

 

 

The paper is organized as follows: Section II introduces the model used for classifiers and classifier chains, and derives a 
utility function for real-time multimedia stream mining applications. Section III discusses the limitations that prevent 
accurate modeling of the utility function, and proposes the stochastic algorithm for configuring a chain of classifiers. 
Section IV provides results based on a speech data mining application, and Section V concludes the paper. 

2. DISTRIBUTED STREAM PROCESSING SYSTEM MODEL 

2.1 Characterizing Binary Classifiers and Classifier Chains 

A binary classifier iv  processes an input stream by classifying each stream data object (SDO) iX  as belonging to a 

positive class Hi , or a negative class Hi . If the SDO is identified as positive, it is outputted as ˆiX  and forwarded to its 

next destination. Otherwise, the SDO is dropped from the stream. Given iX  and ˆ

iX , the proportion of correctly 

forwarded samples is captured by the probability of detection { }ˆPr H | HD
i i i i iP X X= ∈ ∈ , and the proportion of 

incorrectly forwarded samples is captured by the probability of false alarm { }ˆPr H | HF

i i i i iP X X= ∈ ∉ . 

Suppose that the input stream to classifier iv  has a priori probability (APP) iπ  of being positive. The probability of 
forwarding an SDO to the next classifier can be given by: 

 ( )1
D F

i i i i iP Pπ π= + −� . (1) 
Moreover, the probability of correctly forwarding data to the next classifier is: 

 D
i i iPπ℘ = . (2) 

A filtering classifier is often designed such that the probability of detection is maximized subject to a false alarm 
probability constraint [6]. Hence, by varying the false alarm constraint, different probabilities of detection can be 
obtained, and different volumes of the stream can be forwarded. Additionally, we assume that each classifier operates at 
a fixed complexity level, such that the ( ),

F D
i iP P  curve is fixed (See [7] for an example of different curves at different 

complexities.). Hence, given the APP iπ , i�  and i℘  are deterministic functions of F

iP . 

A binary classifier chain is shown in Fig. 1, where an SDO forwarded from a classifier node iv  is inputted to the next 
classifier node 1iv +  in the chain. SDOs generated by the source 0v  are only received at the terminal Nv  if they are 

forwarded by every classifier in the chain (i.e. they are relevant for the application).  

 

Fig. 1. Classifier chain with probabilities labeled on each edge. 

2.2 Data Object Traffic Model and Delay Analysis 

Because the end-to-end delay for each received SDO is important for real-time applications [13], we provide in this 
section an analytical queuing model for a classifier chain to estimate the delay distribution. Since a distributed stream 
processing system is typically networked, we follow the / /1M M  queuing model often used for networks and 
distributed stream processing systems [11]. Hence the resulting output to each next-hop neighbor can also be modeled by 
a Poisson process [10]. The delay associated with a single classifier iv  then follows an exponential distribution [8]: 
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Because the output of an / /1M M  system has i.i.d. interarrival times [9], the delays for each classifier in a classifier 
system, given the arrival and service rates, are independent. Thus, the total end-to-end delay for the classifier chain in 
Fig. 1 is: 
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and follows a gamma distribution with a moment generating function given by: 
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2.3 Objective Function for a Filtering Classifier Chain  

In most prior works, the performance of a stream mining application is evaluated based on a linear cost in the fraction of 
misses and false alarms [12]. Based on a weight ratio iθ  between the cost of misses and cost of false alarms, a 
performance metric for classifier iv  given by: 
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Based on the chain of n  classifiers 1 2, ,...,
n

v v v , shown in Fig. 1, where each classifier iv  has a weighting parameter iθ  
depending on the function being performed, we define the total performance to be the product of all performance 
reductions induced by each classifier node in the chain, i.e.: 
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Note that we must set each [ ]
i iF F

+
=  (if the performance metric is negative, we set it to 0, such that no benefit is 

derived) since negative performance reductions could otherwise be multiplied to produce positive performance. 

Because the usefulness of data for real-time applications decays as a function of the processing time, we introduce a 
delay penalty factor ( ) D

G D e
ϕ−

=  for a processing delay of D . The decaying exponential form is versatile, since the 
parameter ϕ  can be adjusted to capture applications with a wide range of delay sensitivities (i.e. when ϕ  is large, the 

application has high delay-sensitivity, while when ϕ  is low, the application is not very delay-sensitive). Based on our 

traffic model in the previous subsection, the delay follows a gamma distribution. The average delay penalty is then the 
moment generating function for D , evaluated at ϕ−  (See (5)). Multiplying together all the penalties, the stream utility 
maximization problem can be given by: 
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3. DISTRIBUTED ALGORITHM FOR CLASSIFIER CHAIN CONFIGURATION 

3.1 Discussion of Limitations 

Before proposing any solutions, a fundamental question must be asked: Can all the necessary information be gathered to 
solve the utility maximization problem in (8)? In particular, the utility maximizing objective function relies on obtaining 
the terms i℘ , i� , and iλ , which are all functions of the APP iπ , the false alarm configuration F

iP , and the detection 

curve D

iP  across different classifiers. While classifiers may be willing to provide information about F

iP  and D

iP , the 
APP iπ  at every classifier iv  is, in general, a complicated function of the false alarm probabilities of all previous 

classifiers, i.e. ( )
( )anc

F
i i x

x i
π π

∈
= P . This is because setting different thresholds for the false alarm probabilities at 

previous classifiers will affect the incoming source distribution to classifier iv . As discussed in the introduction section, 
the analytics are not shared between classifiers, and constructing a joint classification model by inference requires 



 
 

 

 

intolerable time and complexity, especially for dynamic systems. Hence, for practical scenarios, the objective function 

( ),

FQ P B  is unknown. 

3.2 Decomposing the Utility Function into a Distributed Form 

While the utility can not be explicitly formulated as a function of F
P  due to informational constraints, the utility at any 

given time instant can still be estimated by exchanging information based on information available to each classifier 
(See. First, the average service rate iμ  is fixed (static) for each classifier and can be exchanged with other classifiers 

upon system initialization. Second, the arrival rate into classifier iv , iλ , can be obtained by simply measuring (or 
observing) the number of SDOs in the input stream. Finally, the goodput and throughput ratios i℘  and i�  are functions 

of both the configuration F

iP  and the APP iπ . The configuration is set by the classifier and therefore known, while the 
APP can be estimated from the input stream. Based on the locally available information, we can decompose the overall 
utility function into a product of locally observable utility functions: 

 

( ) ( )( )

( )( )

1 1

1

11 1

1 1 11

constant known at i

n n

i iF
i i i i

i ii i

n

i i i

i i i i

i i ii

v

Q
μ λ

θ
μ λ ϕ

μ λμ λ
θ

μ λ ϕ μ λ ϕ

= =

−

+

+=

⎛ ⎞− ⎟⎜= ℘ − −℘ ⎟⎜ ⎟⎜⎝ ⎠− +

⎛ ⎞⎛ ⎞ −− ⎟⎜⎟⎜ ⎟≈ ℘ − −℘ ⎜⎟⎜ ⎟⎟⎜ ⎜ ⎟⎜⎝ ⎠− + − +⎝ ⎠

∏ ∏

∏

P �

����� ��
������������������ �����������������������������������������

( )( )

( )

known at 

1

n

n n n n

v

n

F
i i

i

K Q P

θ

=

℘ − −℘

= ∏

�� ��
�����������������������

�

, (9) 

where the local utility functions can be determined by each classifier: 
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Hence, rather than exchanging information about every single observed parameter, classifier iv  needs only exchange its 

local utility at a given time t , ( )( )F
i iQ P t , to construct the global utility at time t , ( )( ) ( )( )

1

nF F
i i

i
Q t Q P t

=

=∏P . 

The information observed and exchanged are highlighted in Fig. 2. 

 
Fig. 2. The various parameters in relation to iv . 

3.3 Safe Experimentation Algorithm for Finite Sets of Configurations 

As an alternative to the model-based approaches, we introduce a low-complexity, model-free learning approach called 
Safe Experimentation [14] for choosing the best configuration out of a finite set of configurations. Safe experimentation 
was first proposed for large, distributed, multi-agent systems, where each player is unable to observe the actions of all 
other players and hence can not build a model of other players. The player therefore adheres to a “trusted” action, but 
occasionally “explores” a different action in search of a potentially better action. The safe experimentation algorithm for 
the stream processing system is given as follows: 

1) Initialization: At time 0t = , each classifier randomly selects a configuration ( )0F

iP  from a discrete set of 

configurations iA , which is set as the baseline configuration ( ),

1
F b

i
P . After exchanging information about the derived 
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local utilities from the initial configurations, each classifier’s baseline utility at time 1 is initialized as 
( ) ( )( )1 0

b Fu Q= P . 

2) Configuration Selection: At each subsequent time step, each classifier selects his baseline configuration with 

probability ( )1 tε−  or experiments with a new random configuration with probability tε . Hence, ( ) ( ),F bF

i i
P t P t=  

with probability ( )1 tε− , and ( )F

iP t  is chosen uniformly over iA  with probability tε . tε  is denoted the exploration 
rate at time t . 

3) Baseline Configuration and Baseline Utility Update: Each classifier obtains the utility at time t , ( )( )FQ tP , by 

multiplying the exchanged local utilities from each classifier ( )( )F
iQ tP . The utility is then compared with the baseline 

utility ( )b
u t , and the baseline configuration and utility are updated as follows: 
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 ( ) ( ) ( )( )( )1 max ,b b F
i iu t u t Q t+ = P , (12) 

4) Return to step 2 and repeat. 

The reason why this learning algorithm is called “Safe Experimentation” is because the baseline utility is non-decreasing 
with respect to time, and hence the performance of the algorithm only improves over time. Note that our stream 
processing system falls under the category of a common interest game [15], where distributed classifiers (i.e. players) 
want to configure themselves (i.e. perform actions) to maximize the same unknown utility function. A strong result 
about convergence can be proven for this scenario, as shown below. 

Theorem 1: The following two conditions for the exploration rate tε  are sufficient to guarantee that the Safe 
Experimentation algorithm for common interest games converges to the global optimal solution with probability 1: 

 lim 0t
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Proof: The proof is similar to the proof for Theorem 3.1 in [14]. First, the exploration rate must converge to 0 as 
t → ∞ , as indicated by (13), such that the algorithm will play its baseline configuration with probability 1. Moreover, 
note that each multiplicative term in (14) represents the probability that the joint configuration played at time τ  is not 
the optimal joint configuration, or all classifiers experimented at time τ . Hence, the left-hand side of (14) is an upper 
bound on the probability that the optimal joint configuration is not played before time t . Thus Eq. (14) provides a 
sufficient condition for the optimal joint configuration to be eventually played with probability 1.   ■ 

3.4 Continuous Relaxation and Reducing Convergence Time 

Note that the safe experimentation algorithm is guaranteed to find a best (discrete) configuration with probability 1, 
given a proper exploration rate over time, such as 1/ n

t . However, the convergence time for the Safe Experimentation 

algorithm can be (loosely) bounded below by 1 2 ...

n
A A A=A , which is the expected time for finding the optimal 

solution via i.i.d. uniform sampling (i.e. 1,t tε = ∀ ). Hence, Safe Experimentation is limited by its long convergence 
time when configurations are finely quantized. 

We propose a solution for continuous configuration sets, which also overcomes the slowness of the convergence time for 
the discrete Safe Experimentation algorithm. In this algorithm, we combine a uniform random search for a baseline 
configuration with a randomized local search algorithm around the baseline configuration: 

1) Initialization: At time 0t = , each classifier randomly selects a configuration ( )0F

iP  from a feasible (or 

operational) subset of the interval ( )0,1 , which is then set as the baseline configuration ( ),

1
F b

i
P . After exchanging 



 
 

 

 

information about the derived local utilities from the initial configurations, each classifier’s baseline utility at time 1 is 
initialized as ( ) ( )( )1 0

b Fu Q= P . 

2) Configuration Selection: At each subsequent time step, each player selects his baseline configuration with probability 
( )1 tε−  or experiments with a new random configuration with probability tε . If the baseline configuration is 

selected, it is perturbed by a small random variable (e.g. Gaussian, uniform, etc.) ( )
iZ t . Hence ( )F

iP t  is chosen 

uniformly over the feasible configuration space with probability tε , and ( ) ( ) ( ),F bF

i ii
P t P t Z t= +  with probability 

( )1 tε− , where ( )
iZ t  is a zero-mean random variable, with ( )lim 0i

t

Z t
→∞

= . 

3) Baseline Configuration and Baseline Utility Update: Each player compares the utility received, ( )( )FQ tP , with his 

baseline utility ( )b
u t , and updates his baseline configuration and utility as follows: 
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 ( ) ( ) ( )( )( )1 max ,b b F
i iu t u t Q t+ = P . (16) 

4) Return to step 2 and repeat. 

If the size of the local search random perturbations do not decay too quickly (e.g. ( ) 2 2/iE Z t K t⎡ ⎤ =⎣ ⎦
, where 0K >  

is a constant), it can be shown that (in a stationary setting) the local search algorithm eventually converges to a local 
maximum with probability 1 [16]. While the exploration rate can be set sufficiently high to ensure eventual convergence 
to the global maximum with probability 1, it is impossible to guarantee both fast and sure convergence in a dynamic 
environment. Nevertheless, Lipschitz-continuous utility functions often yield similar utilities for configurations within 
small neighborhoods of each other. Because of these correlations between the utility of nearby points in the joint 
configuration set, some methodologies can be considered for dynamic environments. For example, it is useful to have a 
very high exploration rate at the beginning of the algorithm, such that a good baseline configuration can be found as a 
starting point for local search. During later iterations, a very low exploration rate is preferable, such that the local search 
algorithm can perform “refined” exploration around a good baseline point until stream characteristics change again. 

4. SIMULATIONS 

The test data consisted of cepstrum tuples from speech signals taken from utterances of the Japanese vowels ‘a’ and ‘e’ 
from 8 different speakers (See [5] for more details.). By sampling different portions of the cepstrum data, we were able 
to cluster each speakers hierarchically, such that a sequence of classifiers can be used to sequentially filter out speech 
signals from irrelevant speakers. For example, if the speaker of interest is speaker 1, the data may be first split into two 
speaker groups {1,2,7,8} and {3,4,5,6} using classifier 1v , then split from {1,2,7,8} into {1,2} and {7,8} using 2v , and 
finally {1,2} into {1} and {2} using 3v . We obtained a Gaussian mixture model (GMM) based on prior training data 
(270 speech samples), performed optimization based on a test data stream that comprises of a total of 370 speech data 
objects divided among the 8 speakers. We also constructed a synthetic speech data set that provided a uniformly 
distribution along the feature values. The results are shown in Table 1 for synthetic data (assuming the speech samples 
are distributed across the entire spectrum uniformly) and Table 2 for real speech test data. In our experiments, the 
randomized local search was performed using a Gaussian random variable with variance that decayed on the order of 

( )2
1/O t , where t  is the iteration number. Note that we provided an approximate global maximum, which was 

obtained by sampling over 64000 joint configurations of the 3 classifiers. The approaches are compared against a data-
independent load shedding scheme, and an “intelligent load shedding” scheme that optimizes the local utility function. 

As can be seen from the results for both synthetic data and real speech data (Fig. 3), the continuous Safe 
Experimentation with random local search greatly outperforms the local utility-based load shedding algorithm, which 
outperforms the data-independent load shedding scheme. In fact, it can be seen that our algorithm also uses far fewer 
than 64000 iterations to find the solution that is better than the best sampled discrete configuration point! 

 



 
 

 

 

Table 1 Performance comparison for synthetic data, normalized to the global maximum. 
 shedding distributed safe exp. (1000 iterations) approx. global max 
low load, low delay-sensitivity 0.1259 0.5806 0.9789 1.0000 
high load, high delay-sensitivity 0.2701 0.5776 0.9999 0.9816 

Table 2 Performance comparison for speech data test set. 

 shedding distributed safe exp. (1000 iterations) approx. global max 
low load, low delay-sensitivity 0.0900 0.0814 1.0000 0.9715 
high load, high delay-sensitivity 0.0283 0.0893 1.0000 0.9556 
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Fig. 3. Comparison of utility versus iteration for load-shedding, distributed, and safe experimentation algorithms under: (a) 

synthetic data, low load and low delay-sensitivity, (b) synthetic data, high load and high delay-sensitivity, (c) a real 
speech data stream. The exploration rates in these experiments were set to 1/ t . 

Secondly, we analyzed the adaptation time for Safe Experimentation using synthetic data. In particular, we considered 

the cases where each classifier experiments with probability 1/t , 31/ t , and /t r
t
− , where r  indicates the approximate 

number of explorations performed at the beginning. Some sample curves are shown in Fig. 4 to highlight the rate of 
adaptation. In particular, note that the exploration rate is very low with 1/t  and is insufficient for finding the global 

optimal utility. On the other hand, using 3
1/ t , which satisfies the minimal exploration rate condition in Theorem 1, is 

sufficient for finding the global optimal point, but the exploration rate decays very slowly, and even up to the 1000th 

iteration. Finally, for /50t
t
−  (as shown in Fig. 4c), frequent exploration is performed during the first few iterations, 

while local search dominates the later iterations. Fig. 5 shows that for the exploration rate /50t
t
− , in most cases the 

algorithm adapts quickly to dynamic environments, where we have set the stream characteristics (i.e. fraction of speech 
signals from each user) to change between every 50 and 100 iterations. Overall, our experiments verify our intuition that, 
during the first few iterations, it is important to explore frequently to find a good baseline configuration, while for later 
iterations, “playing it safe” by using randomized local search performs better. 
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Fig. 4. Comparison of utility versus iteration for load-shedding, distributed, and safe experimentation algorithms under: (a) 

Comparison of adaptation times for exploration rates (a) 1/t , (b) 3
1/ t , and (c) /50t

t
− . 
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Fig. 5. Dynamic adaptation results of Safe-Experimentation with exploration rate /50t

t
−  for non-stationary streams. 

Vertical lines indicate the arrival of new stream characteristics. 

5. CONCLUSIONS 

In this paper, we showed that by exchanging some local performance metrics between classifiers, each classifier can run 
a low complexity, randomized distributed algorithm that converges “almost surely” to an optimal or near optimal system 
configuration, even when the global utility function can not be analytically determined. We also provided some insights 
into the tradeoffs between information availability, complexity, convergence rate, and dynamics in a classifier system, 
and confirmed these insights through simulations. Most importantly, our solution framework can be extended and 
applied to any informationally-distributed network or parallel computing system where individually configurable entities 
have the common goal of optimizing system performance. 
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