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ABSTRACT

We design algorithms for optimally configuring, in terms of
model complexity as well as operating point, a cascade of
exclusive classifiers on distributed systems, given underlying
resource constraints. Under rate-dependent constraints we de-
sign a Viterbi-like strategy to determine the optimal solution
with significantly lower computational complexity than an ex-
haustive search. We illustrate the performance ofthis strategy
on a cascade of classifiers for a speaker verification task, and
highlight performance gains over using a single classifier.

Index Terms - Resource constrained classification, Multi-
stage classification, Distributed Stream Processing

1. INTRODUCTION

There is a large set of emerging applications that perform
classification, filtering, aggregation and correlation over high-
volume, unbounded, continuous data (email, instant messages,
transactional data, audio, video, sensor data etc.). Distrib-
uted stream processing systems (Aurora, Borealis, Telegraph
CQ, System S [1]) provide the framework to deploy and run
such applications on various resource topologies. Distributed
stream processing requires the decomposition of these clas-
sification tasks into a set of networked operations. In this
context, both classifiers in series with the same model (boost-
ing) and classifiers in parallel with multiple models (bagging)
have resulted in improved classification performance. Recent
work [2] shows that the optimal design of two-stage classi-
fication must explicitly consider interaction between stages.
However, this work has not considered resource management
issues [3, 4].

Prior research on resource constrained stream processing
focuses primarily on load-shedding [5, 6]. These approaches
are limited by their assumption that the impact of load shed-
ding on performance is known a-priori. Furthermore, load
shedding is often performed using locally available informa-
tion and metrics, and this may lead to sub-optimal end-to-end
performance. Finally, shedding load at intermediate classi-
fiers leads to resource wastage as data has been processed by
upstream classifiers.

* This work was done while at the IBM T.J. Watson Research Center. Con-
tact author: fwfu(ee.ucla.edu

In [7] we introduced a framework that allows individual
classifiers in the ensemble to operate at different performance
levels given the resources allocated to them. Expressed sim-
ply, instead ofdeciding whatfraction ofthe data toprocess, as
in load-shedding, we determine how toprocess available data
given underlying resource constraints. In this paper, we ex-
tend that framework to consider classifiers distributed across
several machines, and develop algorithms for optimally con-
figuring such a cascade of classifiers, under resource con-
straints. The paper is organized as follows. We formulate
the problem in Section 2, and provide solutions in Sections 3
and 4. We present experimental results on a real cascade for
speaker verification in Section 5, and conclude in Section 6.

2. DEFINITIONS AND PROBLEM FORMULATION

2.1. Utility Definition for Classifier Cascade

Consider a cascade ofN binary classifiers with input data X
(Figure 1). Classifier Ck (1<k<N) classifies data Xk-I into
either class Ho or class H, , and passes through only data
Xk that it classifies as belonging to Hok (filtering classifier).
Let pk and pF respectively denote the probabilities of correct
detection andfalse alarm.

C XNX Cl* kls

Fig. 1. Classifier Cascade

The total proportion (throughput) of data forwarded by
classifier Ck is labeled tk and the total proportion of data cor-
rectly forwarded is labeled 9k. We may compute these under
exclusivity, i.e. P(X C Hok|X C Hk 1) = 0 ( [7]) as:

tk 1 [ PF k(pk k) ] tk-I]
k -L 0 okpk Lgk-1

Tk

(1)

where k = P(X C HokX C Hok-1) is the data conditional
probability (on unfiltered data) across these two classifiers' in
the cascade. The above derived relationship accounts for the

1In this paper, we assume that classifiers are independently trained on the
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fact that the data density (a priori probability of belonging to
any class) is modified due to filtering by each classifier in the
cascade. Hence, the end to end throughput and goodput may
be computed as:

[N ]=TN . .. T' [ o (2)

where to = go = 1. This may be geometrically interpreted
(Figure 2 a.) in the performance space (throughput vs good-
put) where the impact of Tk corresponds to a translation in
the operating performance. The cascade of classifiers thus
moves the input point to, go towards the optimal ideal perfor-
mance point tN = gN = P(XcHoN) (i.e. the point where
all the data is correctly identified). The individual operating
points of the classifiers determine the matrices Tk or equiva-
lently the path in this space.
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The end to end throughput and goodput map directly to
the performance of a virtual combined classifier with 1PD =

gN and 1PF = tN _ gN. Hence, as for a single classifier [7],
we may define the performance of this cascade in terms of
utility U = ePDP-OF or U =(1+ e)gN _eqtN, where is
a control parameter that defines the desired tradeoff between
false alarms and misses.

2.2. Resource Consumption for Classifiers

The performance ofeach classifier may be modified by chang-
ing its underlying model complexity, as well as selecting its
operating point, i.e. individual PD-PF tradeoff on the Detec-
tion Error Tradeoff (DET) curve. This may also affect the
resource consumption of future classifiers in the cascade as it
changes the amount of data filtered through. Consider a sim-
ple example of a Gaussian Mixture Model (GMM) classifier
using the likelihood ratio test. Changing the model complex-
ity corresponds to changing the number of Gaussians in the
mixture, while changing the operating point corresponds to
using a different threshold during the likelihood ratio test. We

original data set, without assumptions on cascaded data filtering. The training
of classifiers given the cascade structure is an important direction for future
research.

represent the model complexity of classifier Ck as Qk, and
the operating point in terms of the corresponding pk . We
consider two different types of resource consumption mod-
els, one for rate-independent resources (e.g. Memory) and
the other for rate-dependent resources (e.g. CPU). We model
rate-independent resource consumption as fk (Qk) = rkQk,
with r,k a constant that depends on data dimensionality, model
parameter set (means, covariances), points (for lookup) stored
per Gaussian, and the underlying system architecture. The
rate-dependent resource consumption depends on operating
points and complexities of C1..Ck as well as the input data
rate w and may be defined as:

hk(Ql-1k, PF 1--(k-1)) = W7kQktk-1 (3)

where y kis a constant similar to rk (in general 7rk k). Fur-
thermore, PF1 1) [ PF ... P 1 ]T and Q14k

rT

[ Q Qk ] , where T denotes the transpose. The re-

source consumption of the N classifiers may be aggregated
into vectors as:

f(Q) =[ r1Q1 r12Q2 ... rTNQN ] T

h(Q, PF) = [ W7y1Q1t' ... W7NQNtN-1 ] T.

2.3. Distributed Classifier Cascade

In a distributed streaming system these N classifiers may be
distributed across M servers. We define a location variable 1k
with 1k = m implying Ck is placed on server M2. Hence, we
construct a location matrix, A = }aijIM XN with aij 1
if 1i = i and zero otherwise, to represent the location of the
N classifiers across the M servers. If the available rate in-
dependent resources on server m are represented as Lm and
the rate-dependent resources as '/Zm, we may capture the re-
sources available over M servers as Ltt [ L1 ... LM ]

and Rt,t =[IZ RZM ]

2.4. Configuring Classifiers under Resource Constraints:
Formulation

The problem we are trying to solve is to optimally configure
(determine the model complexity Qk and the operating point
pk for each classifier) the cascade of classifiers to maximize
the utility given the distributed resource constraints. This
combined optimization may be formulated as:

maxQ,pF U(Q, PF)
s.t. Af(Q) < Ltot and Ah(Q, PF) < Rtot (5)

The optimal configuration is selected from among the feasible
set of complexities Qk (QkCQk) and operating points p(Qk)
(pk G(Qk)). Additionally, we use x < y to represent xi <

2We assume aforwardflow cascade, i.e. if ko < k1, we have lko <lk1 .
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yi with 1 < i < D for D dimensional vectors. A pure rate-
independent (rate-dependent) constraint optimization may be
solved for by setting Rt,t = Inf (Lt,t = Inf).

In terms ofthe geometric interpretation mentioned earlier,
these optimizations involve determining the optimal path in
the operating performance space that satisfies the underlying
resource constraints.

3. SOLUTION: RATE-INDEPENDENT
CONSTRAINTS

Consider, without loss of generality, a case with two clas-
sifiers on one machine with a given desired e. Consider
two complexity configurations of these classifiers: a) Q1 =

0, Q2 = tot and b) Ql L,Q2 L=Ctt-L, i.e. op-
erate classifier 1 as an all pass filter in scenario (a). Under
these complexities, let the classifiers be tuned to the opti-
mal operating points (1, 1), (pF ,pD) and (PF P,p), (P2 P,)
respectively. Note that because of the higher resource allo-
cation to classifier 2 in case (a), we can easily show that
PD-% P2 >P2- o -2 By writing out the respective ma-
trices Tk, we may compute the corresponding utilities U and
U respectively. With some tedious algebra, and using these
properties, we can then show that U>U for all values of e.
Intuitively, this makes sense as the first classifier does not help
alleviate the resource requirements for the second classifier,
and only ends up erroneously discarding some correct data
early. This idea can be extended to N exclusive classifiers,
and we may conclude that under rate-independent constraints,
it is always better to allocate all available resources to the last
classifier in the chain.

4. SOLUTION: RATE-DEPENDENT CONSTRAINTS

Unlike for the rate-independent constraints, a cascade of clas-
sifiers is often necessary to meet rate-dependent constraints.
This is because early simple (low-complexity) classifiers may
be used to reduce the rate of data flow, thereby alleviating the
resource requirements of future classifiers. The correspond-
ing savings in resources, often outweigh any misclassifica-
tions by the early classifiers in the cascade. In this section, we
use a Viterbi-like search strategy to configure the cascaded ex-
clusive classifiers by selecting the operating points and model
complexity, under rate-dependent resource constraints.

4.1. Viterbi-like Search Strategy

Note that the Viterbi decoding algorithm is useful when the
feasible configuration set is finite and limited. At classifier
Ck, there are Qk feasible complexity points and Jp(Qk)I
feasible operating points to select for each complexity Qk,
where I* is the cardinality of the set. Over the entire chain,
there are f 1 EQkQk p(Qk) combinations, which can
grow prohibitively large. However, we may use the follow-
ing proposition to limit the number of points that need to be
searched in a Viterbi-like search strategy.

Proposition 1 For classifier Ck the point (tk, gk) cannot lead
to better end-to-end utility than (tk, gk) if either of the two
following conditions are satisfied:
1) tk >tk and gk<gk
2) O<tk tk<gk -gk

Proof. Consider that the best end-to-end utility that can be
achieved given point (tk, gk) is U (correspondingly U for the
other point). This end-to-end utility may be written as:

U 0 1 (3 jTN...T+ tk T tk

(6)
It is straightforward to show that x<O and y>O. If condition
1 holds, it is evident that U>U independent of the actual val-
ues of x and y. If condition 2 holds, then we can create an
intermediate point (tk_em, gk), with resulting best utility Urem
by removing purely good (i.e. correctly classified) data frac-
tion gk -gk from (tk, gk). Note that, since we discard only
correctly classified data, it is guaranteed that U>Urem. Fur-
thermore, we observe that

trem t - (gk - ) < t - (tk - tk (7)

directly from condition 2. Now we may use condition 1 to
show that Urem>U. This means that U>Urem>U, thereby
proving the proposition. D

We may use the above proposition to discard search can-
didates given the resource constraints. For each (tk, gk) we
compute the rate-dependent resources consumed 1ZO on server
1k due to classifiers C1 through Ck. We can then discard all
(tk, gk) that satisfy Proposition 1 and the condition 1Zkn<1Zcon
i.e. all points that cannot lead to better utility while consum-
ing more resources up to this machine3. Additionally, we
also discard points (tk, gk), if the point (tk, gk) is feasible in
the worstfuture case, i.e. resource consumption up to Ck is
such that C0k1..CN can be operated at maximum complex-
ity without violating the end-to-end resource constraint, i.e.
RPm,Ox < Rtot, where RPmaox is the projected resource con-
sumption assuming the maximum complexity for Ck+±..CN.
Finally, we also discard points (tk, gk) that violate the CPU
constraint up to the current classifier. An illustration of the
set of points that can be discarded is shown graphically in
Figure 2 b. The designed strategy is shown in Algorithm 1.

5. EXPERIMENTAL RESULTS

We consider a speaker verification task, where we want to
verify whether speech samples belong to a particular female
speaker. We build a cascade of two classifiers for this task,
with C1 being a gender detector (i.e. forwards only female
speech) and C2 being the actual speaker verifier (tries to ver-
ify whether speech belongs to specific speaker). These clas-
sifiers are trained on real Switchboard telephony data with

3We do not consider servers I..l -1 due to the forward flow assumption
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Algorithm 1 Viterbi-Like Search Strategy
Set (t°,go) = (1,1) andk = 0
repeat

Forward. For each (tk, gk) generate possible
(tk+1, gk+1) and computeRI"c
Pruning 1. Discard (tk+1,gk+) if R4on > Thk
Pruning 2. Discard (tk+1,gk+1) if 3 (tk+1,gk+1) s.t.
Proposition 1 is satisfied and R,on < R,+' or R oj <
Rtot.
k = k + I

until k = N
From remaining points pick point that maximizes utility.
return (Q, PF)

176 female speakers, and 106 male speakers using the IBM
speaker verification system [8] at complexities (number of
Gaussians in the GMM) of Q1 C {8, 16, 32, 64} and Q2 C
{8, 16, 32, 64, 128}. Our experimental setup is described in
more detail in [7]. We assume that the classifiers are located
on one machine with -y1 = ty2 = 1, and we use e = 0.1
corresponding to the cost-tradeoff between misses and false
alarms in NIST testing scenarios. We vary the rate-dependent
resource constraint R1c{40, 80, 160} and show examples of
the selected optimal operating point and classifier complexity
(using the Viterbi-like strategy) in Figure 5. The first thing we

DET curves Gender Detector C1 E uvsSeae eiirc
1 3. cEurveimntae R: Verification
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0.8 R1=160 0.9 Q 16
Q =32

R1=80 =64
0o6 iQt ,8Qtr 128

Q1=16 R1=80
0.4 -Q1=64
0o3 0.6

01[~~~~~~~~~~~~~~~~~~.

Fig. 3. Experimental Results: Speaker Verification

observe is that, as the resource constraint is relaxed, the clas-
sifiers expectedly use higher complexity, and improve their
utility. It is more important to notice that by providing a small
amount of resources to (simple) C1, C2 can operate at very
high model complexity, while satisfying resource constraints.
We highlight this, by comparing the utility derived from the
cascade against using only the speaker verifier in Table 1.

Table 1. Utility (U x 100) Under Resource Constraints.
Classifier Topology R1 = 40 R1 = 80 1I = 160
Cascade: C1l-*C2 0.17 0.27 0.32
No Cascade: C2 0.03 0.15 0.30

Clearly, under resource constraints, a classifier cascade
(even with independently trained classifiers), outperforms a
single classifier. As the available resources increase, the gains
from using a cascade decrease, as expected. We also com-
pare the complexity of our Viterbi-like strategy against a full

search, and observe savings (in terms of the number of points
in the search space) of a factor of 10-100 for this two classi-
fier cascade. We also explored a more general topology with 6
simulated classifiers (over 3 machines), and observe savings
of up to a factor of 106 over the exhaustive strategy, while
achieving the optimal utility. Note that the actual savings de-
pend on the classifier characteristics, the topology, and the
resource constraints (with higher savings under tight resource
constraints).

6. CONCLUSION

In this paper we design an algorithms for optimally configur-
ing cascaded exclusive classifiers, on distributed systems, un-
der resource constraints. We show that a classifier cascade de-
generates into a single classifier under rate-independent con-
straints. We then propose a Viterbi-like search strategy to de-
termine the optimal operating points and classifier complexi-
ties under rate-dependent constraints. We examine the perfor-
mance of this strategy on a cascade of two classifiers (gender
detector followed by a speaker verifier) in a real speaker veri-
fication system. We show that under resource constraints, this
cascade outperforms a single classifier. The computational
complexity of the Viterbi-like strategy is 10-100 times lower
than an exhaustive search, while guaranteeing solution opti-
mality. Under simulated scenarios with 6 classifiers, we have
observed complexity savings of up to a factor of 100. There
are several directions for future research. We would like to
extend these ideas for more complex topologies and also con-
sider the construction of such topologies, including the train-
ing of classifiers specific to a cascaded structure. We would
also like to examine the cascade performance in dynamically
varying scenarios.
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