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Abstract— In this paper, we model the various wireless users 
streaming delay-sensitive data in a wireless network as a 
collection of selfish, autonomous agents that strategically 
interact in order to acquire the spectrum opportunities. The 
spectrum allocation is coordinated by a central spectrum 
moderator which deploys an incentive compatible 
mechanism. We further model the repeated spectrum 
competition as a stochastic game through which we are able 
to characterize the interaction among wireless users. Based 
on the observed resource allocation and corresponding 
rewards from previous allocations, we propose a best 
response learning algorithm that can be deployed by 
wireless users to improve the accuracy of their private 
information at each stage. The simulation results show that 
by deploying the proposed best response learning algorithm, 
the wireless users can significantly improve their own 
performance.  

I. INTRODUCTION 
Wireless networks are envisioned to play a crucial role in 
the delivery of various delay-sensitive multimedia 
services to homes, enterprises, and campuses. A 
fundamental problem in enabling the large scale 
deployment of such networks is the absence of effective 
resource allocation schemes, which can arbitrate the 
division of the scarce wireless resource among competing 
and strategic delay-sensitive users.  

To overcome the resource allocations over 
informationally decentralized wireless networks, pricing-
based distributed resource allocation algorithms have 
been extensively investigated [1], where the network 
users are assumed to be “price-takers”, i.e. the users 
accept the price announced by the network and do not 
consider the effects of their actions on the network price. 
To prevent the network users from anticipating the effects 
of their own actions on network performance, mechanism 
design-based resource allocation schemes have also been 
extensively studied in static network settings [3][4]. 
However, these solutions may not be suitable for the 
networks in which the available resources and network 
users’ traffics are time-varying.  

In this paper, we focus on developing solutions that 
can be employed by the wireless users to improve their 
performance in the dynamic wireless network. 
Specifically, we aim at investigating how delay-sensitive 
applications (e.g. multimedia applications) can efficiently 
forecast their future utility impact, and then determine 
their resource requirements and associated transmission 
strategies over time, based on information about the 
available spectrum opportunities, their source and 
channel characteristics, and interactions with the other 

competing users. Our solutions take into account the 
“self-interested” behavior of individual users/applications 
that may try to selfishly influence the resource 
management.  

In our considered wireless network, the users are 
modeled as rational and strategic ones. We model the 
spectrum management as a stochastic game [5] in which 
the users simultaneously and repeatedly compete for the 
available wireless network resource (e.g. bandwidth). The 
competition for the resources is assisted by a central 
spectrum moderator (CSM) (similar to that in existing 
wireless LAN standards such as 802.11e HCF [6]). We 
assume that the CSM deploys a Vickery-Clarke-Groves 
(VCG) mechanism [9] for dynamically allocating 
resources which is similar to [4]. In order to capture the 
network dynamics, we allow the CSM to repeatedly 
allocate the available spectrum. Meanwhile, each user is 
allowed to strategically reveal to the CSM its private 
information about its source and channel characteristics, 
and impacts of the other users’ private information. 

Using this general stochastic wireless allocation 
framework, the key focus of this paper is to develop a 
learning methodology for users to improve their policies 
for playing the resource allocation game, i.e. the policies 
for generating and revealing the private information about 
the dynamics they experience. Specifically, during the 
repeated multi-user interactions, the users can observe 
partial historic information of the outcomes of the game, 
through which the users can estimate the impact on their 
future rewards and then adopt their best response in order 
to effectively compete for the spectrum resource. The 
estimation of the impact on the expected future reward 
can be performed using reinforcement learning [7] 
because this allows the users to improve their revealing 
strategy based only on the knowledge of their own past 
received payoffs, without knowing the private 
information and payoffs of the other users. Our proposed 
best response learning algorithm is inspired from the Q-
learning [8] for the single agent interacting with 
environment. By deploying the best response learning 
algorithm, the user can strategically predict the impact of 
current actions on future performance and then optimally 
reveal its private information. 

The paper is organized as follows. In Section II, we 
describe a system model for delay-sensitive transmission 
over wireless networks and a general model for the 
resource competition among the users. In Section III, we 
propose a stochastic framework to model the multi-user 
interactions. In Section IV, we propose a best response 
learning approach for the users to predict their future 
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rewards impact based on the observed historic 
information. In Section V, we present the simulation 
results, followed by the conclusions in Section VI. 

II. SPECTRUM SHARING MODEL FOR DELAY-SENSITIVE 
APPLICATIONS 

We consider a situation in which M  users, each formed 
by a single transmitter-receiver pair transmitting delay-
sensitive data and denoted by i , coexist to share the same 
spectrum with bandwidth W Hz. We assume that each 
user experiences a Gaussian interference channel in 
discrete time fashion. By assuming that other users’ 
transmitted signals are treated as white Gaussian noise, 
user i  can achieve the transmission rate for a specific 
power allocations at time t :  
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where ( )t
ip f  is the power spectral density of the input 

signal of user i  at time t , 0N  is the power spectral 
density of the white Gaussian noise, and ,i jc  is the path 
gain from user i  to user j . The power allocation ( )t

ip f  is 
constrained by:  
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In this paper, we assume that the path gains , , ,i jc i j∀  
are constant during the whole course of transmission and 
satisfy a pairwise high interference condition (i.e. 

, , , ,i j j i i i j jc c c c> ). As shown in [2], when the channel 
satisfies a pairwise high interference condition, the 
optimal power allocations are orthogonal (i.e. 

( )( ) 0t t
i jp f p f =  for [ ]0,f W∈  ). Then the power 

allocations for the M  users become the allocations of 
bandwidth, i.e. [ ]1,...,t t t
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To achieve the efficient allocations, the information 
exchange among the users is required [4]. In this paper, a 
mechanism for information exchange coordination is 
proposed which will be detailed in Section II.B.  We first 
present the model for delay-sensitive applications. 
A. Modeling for delay-sensitive applications 
We consider that each delay-sensitive application 
associated with user i  generates a random number of 
data in packets, denoted by t

iA , for transmission at time 
t . The average packet length is iL . The data generated at 
time t  will expire at time it n+  if they are not 
successfully received. in is referred to as the life time of 
the data from user i  and assumed to be constant. The 
data arrival t

iA  at any time t  is assumed to follow the 
Poisson distribution with average iλ . The packets 
arriving at time t  will be in the buffer with life time in  
at time 1t + . We assume that the packet with life time 

n  at time t  has utility (i.e. quality contribution) ,
t
i nψ . 

We define a “state” t
is  for user i  at time t  as the 

number of packets remaining for transmission, i.e. 
[ ],1 ,, ...,

i

t t t
i i i nv v=s  where ,

t
i nv  represents the number of 

remaining packets with life time ( )1 in n n≤ ≤ . Given 
the bandwidth allocation iw , the number of packets 
which can be transmitted in total is  /t t

i i im R L= . The 
state transition of user i  is expressed by the following 
equations:  
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where  [ ] { }max 0,xx + = .  
At time t , we assume that user i  receives utility 

( ) 1
,

n t
i i nα ψ−  if it sends out a packet with life time n . This 

can be interpreted that the utility ,
t
i nψ  of a packet with life 

time n  is discounted by ( ) 1n
iα

−  if it sends out at the 
current time. The factor ( )0 1i iα α≤ <  is the 
discounted factor determined by a specific application. 
Hence, by obtaining the bandwidth t

iw , user i  can get the 
gain  
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Recall the computation t
im  and t

iR . we note that t
ig  is 

determined by , 0, , , , ,ti i i i i iL c P N w α , ,1 ,, ...,
i

t t
i i nψ ψ and 

,1 ,, ...,
i

t t
i i nv v . Since ,, ,i i i iL c P  and 0N  are constant in the 

whole course of transmission, we write t
ig  as a function 

of t
iw , t

is  and ( ) 1
,
tn

i i nα ψ− , i.e. ( ), ,t t t
i i i

t
ig w s φ  where 

( )[ ]1
,1 ,, ..., i

i

t t tn
i i i i nψ α ψ−=φ .  

B. Bandwidth allocation Mechanism 
As mentioned in Section I, in a wireless network, the 
information is decentralized, and thus, the information 
exchange between the users needs to be kept limited due 
to the incurred communication cost. On the other hand, 
the users competing with each other are selfish and 
strategic and hence, the information they hold is private 
and may not be shared with each other. Therefore, one of 
our key interests in this paper is to determine what 
information should be exchanged between users and how 
this information should be exchanged.  

In this section, we propose that the users exchange 
information with central spectrum moderator (CSM) 
instead of direct communicating with each other. 
Specifically, we present a mechanism named as VCG1 [9] 
for dynamically coordinating the interactions among 
users. 

The VCG mechanism is performed by the CSM during 
each time slot. At the beginning of the time slot, the users 
are required to submit their own private information 

                                                        
1 Other mechanisms like the ones in [3] can also be deployed without 
modifying our framework. 
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t
ic P L Nθ = s φ . In general, the submitted 

version t
iθ  of the private information can be different 

from the true value t
iθ  due to the strategic behavior of 

user i . It has been proved that, in VCG mechanism, the 
optimal submitted version of the private information is 
the true value, i.e. ,t opt t

i iθ θ= , which is called “truth 
telling” property of the VCG mechanism [9]. From now 
on, we assume that user i  always reveals the true value 
t
iθ . As assumed before, the value of , 0, , ,i i i ic P L N  keeps 

constant during the transmission, and hence they are only 
required to submit once to the CSM. Thus, at each time 
slot (expect the first time slot), user i  submits the private 
information { },t t

i i
t
iθ = s φ . For the remaining text, we 

rewrite ( ), ,t t t
i i i

t
ig w s φ  as ( ),t t t

i i ig w θ .  
After receiving the announced private information 

from the users, CSM computes the optimal bandwidth 
allocation ,t opt

iw  for each user i  based on the submitted 
information { }1,..., Mθ θ by maximizing the sum of gain 
at time t :  
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M
t opt t t t
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 To compel the users to declare their private 
information truthfully, the CSM also computes the 
payment t

iτ −∈  that the users have to pay for the use 
of resources during the current stage of the game as:  

  ( ) ( ), , max ,
t
i

t t t opt t t t t
i j j j j j j

j i j i

g w g wτ θ θ
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= −∑ ∑
w
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where {1,..., 1, 1, ..., }i i i M− = − + . It is easy to see that 
0t

iτ ≤ . The absolute value of the payment is the amount 
of “money” or tokens that user i  has to pay the CSM for 
the used resources. The allocation result is then 
transmitted back to the users which can deploy their 
transmission strategies in different layers and send data 
over the assigned spectrum. After the data transmission, 
another competition starts at the next time slot 1t + .   
C. Private information for users in repeated games 
The variations of the source characteristics of delay-
sensitive applications are characterized by the current 
“states” as shown in Section II.A. At the various state t

is , 
user i  will announce different private information t

iθ . As 
discussed in Section II.B, for one stage of allocation 
game induced by the VCG mechanism, user i  takes the 
optimal announcement ,t opt t

i iθ θ= . When the user is 
aware of the sequential games it has to play, it also has to 
take into account the future impact of current 
announcement as its private information in the current 
stage. In other words, the key questions to determine 
private information in the repeated allocation games 
among the users are: (i) what state each user experiences 
in each time slot in the dynamic network; (ii) during the 
repeated competition, how the interactions among the 
users are modeled; and (iii) how the users forecast the 
impact of the current announcement on the future 
performance.   

To overcome the above addressed problems, we present 
in the next section a stochastic framework for modeling 
the dynamic interaction among users. 

III. STOCHASTIC MODEL FOR USERS INTERACTION 
The users announce their own private information in the 
repeated games given their dynamically changing states 
which they experience. The evolution of users’ indirect 
interactions across the various time slots can be modeled 
as a stochastic game [5]. In the stochastic game, every 
user has its own state and its own action space for that 
state. The time slot corresponds to the “stage” commonly 
used in the stochastic game. In the remainder of the 
paper, we use the time slot and stage interchangeably. 
The users choose their own actions independently and 
simultaneously at each time slot. Next, they receive their 
rewards and transit to the next states. It is worth noting 
that the reward received by each user, and state transition 
also depend on other users’ states and actions.  

Formally, a stochastic game is a tuple 
( , , , , )PI S RΘ , where I  is the set of users, i.e. 

={1,..., }MI , S  is the set of state profiles of all users, 
i.e. 1= M× ×S S S  with iS  being the state set of user 
i , andΘ  is the joint action space 1= MΘ Θ× ×Θ , with 
iΘ  being the action (revealing) set available for user i  to 

play the game. P  is a transition probability function 
defined as a mapping from the current state profile 

∈s S , corresponding joint actions ∈θ Θ  and the next 
state profile ' ∈s S  to a real number between 0 and 1, 
i.e. : [0,1]× ×P S SΘ . R  is a reward vector 
function defined as a mapping from the current state 
profile ∈s S  and corresponding joint actions ∈θ Θ  to 
an M -dimensional real vector with each element being 
the reward to a particular user, i.e. : M×R S Θ . 

The state profile ∈s S  can be sometimes rewritten as 
( , )i i−=s s s  to distinguish the state of user i  and the 

states of other users. Similarly, the joint action ∈θ Θ  
can also be represented as ( , )i iθ −=θ θ . In the 
subsequent sections, we specify the elements of the 
stochastic game model for the interactions among the 
users in the considered wireless network.  
A. State transition 
We will now discuss the state transition process. 
Remember that the state of user i  includes the buffer 
state ,

t
i nv  with the life time n . Given the bandwidth 

allocation t
iw , user i  can transmit t

im  packets at most. 
Remember that the number of packets arriving at time t  
is t

iA  according to Poisson distribution. Then the next 
state 1t

i
+s  at time 1t +  is computed as Eq. (4). The state 

transition probability is expressed by 
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B. Stage reward 
By playing the allocation game in the current stage, user 
i  receives the bandwidth t

iw  and needs to pay the 
corresponding payment t

iτ . Based on the allocated 
bandwidth, the user transmits the available packets in the 
buffer. In the next time slot, new packets arrive into the 
buffer. The reward at time t  for user i  is expressed 
using the quasi-linear form t t t

i i ir g τ= + . Note that the 
gain t

ig  and payment t
iτ  depend on the states and 

revealed information of all the competing users in the 
network.  
C. Determining the private information 
In the wireless network, we assume that the stochastic 
game is played by all users for an infinite number of 
stages. This assumption is reasonable for applications 
having a long duration, e.g. video streaming. We assume 
that the revealing policy is to submit the private 
information t

iθ   to the CSM always. Unlike the private 
information for one-shot game discussed in Section II.B, 
the private information t

iθ  in the repeated game should 
include the impact of the current announcement on the 
expected future rewards.  

The reward for user i  at the time slot t  is 
(( , ),( , ))t t t t
i i i i ir θ− −s s θ . This reward (( , ),( , ))k k k k

i i i i ir θ− −s s θ  of 
the stage k  is discounted by a factor ( )k tiα

−  at time t  
( )t k≤ . The discounted factor is the same as before. 
The total discounted sum of rewards ( )t t

iQ s  for user i  
can be calculated at time t  from any state profile ts  as:  
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The total discounted sum of rewards in Eq. (9) 
consists of two parts: (i) the current stage reward and (ii) 
the expected future reward discounted by iα . Note that 
user i  cannot independently determine the above value 
without explicitly knowing the private information of 
other users. We define the impact of t

iw  as  
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which is interpreted as the extra expected future reward 
when allocating t

iw  comparing to that when no 
bandwidth is allocated. It is clear that ( ),t t t

i iF w s  varies 

as t
iw  increases. By receiving the allocation t

iw , user i  
obtains utility ( ) ( ), ,t t t

i i i i
t t t
i ig w F wα+s s  now . 

 From Eq. (9) and (10), we observe that the private 
information t

iθ  should be modified to include the 
information t

is , t
iφ , and the parameters for computing 

( ),i
t t t
i iF wα s . However, to reveal the entire function to 

the CSM, it may require a large number of parameters 
which characterize the function and thereby, resulting in 
huge communication cost. To avoid this difficulty, we 
approximate the function ( ),t t t

i iF w s using the same form 
as t

ig . That is,  
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where ,
t
i nϕ  is determined using least square 

approximation [10]. We should note that the 
approximation trades off the revealing complexity and 
performance of playing the allocation game. In this way, 
the private information required to reveal is 

{ },t t t
i i i

t
i iθ α= +s ϕ φ  where [ ],1 ,, ...,t t t

i i i nϕ ϕ=ϕ .  
However, from Eq. (10), we know the computation of 
( ),t t t
i iF w s  depends on other users’ states and revealing 

strategies which, in general, is unknown to user i . In 
next section, we develop a simple learning algorithm for 
user i  to estimate the value of ( ),t t t

i iF w s . 

IV. LEARNING FOR FUTURE REWARD IMPACT 
In this paper, we assume that user i  observes the 
information 0 0 0 0 1 1 1 1{ , , , ..., , , , }t t t t t

i i i i i i i i iw wθ θ− − − −s , s , sτ τ . We 
introduce learning as a tool to predict the impacts of 
current announcement and hence, current private 
information. However, a key question is what needs to be 
learned. Here we simply assume that user i  models the 
dynamics of other users as a stationary process. Hence 
the state of other users is degenerated into a stationary 
state (i.e. one state). By this approximation, the state 
transition probability for other users becomes 1, and the 
computation of ( )t t

iQ s  and ( ),t t t
i iF w s  are simplified, 

respectively, as  
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Since the state transition 1( | , )t t
i i i

t
iq w+s s  is known, 

user i  only needs to estimate ( )1 1t t
i iQ + +s  to 

predict ( ),t t
i i

t
iF w s . Inspired by the Q-learning [8], we can 

estimate 1 1( )t t
i iQ + +s  in the similar way which is described 

as follows. 
We use a table to store the value ( )i iV s  representing 
1 1( )t t

i iQ + +s  with i is ∈ S . User i  updates the value of 
( )i iV s  at time t  according to the following rules:  
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where [0,1)t
iγ ∈  is a learning rate factor satisfying 



1
t
it

γ∞

=
= ∞∑  and ( )

2

1
t
it

γ
∞

=
< ∞∑ [8] and ( )t t

i iQ s  is 

computed as in Eq. (12) by replacing 1( )t
i iQ + s  with 

( )1t
i iV − s . In summary, the learning procedure that is 

developed for a user is shown in Table 1. 
Table 1. Learning Procedure 

Initializing: ( )( )0 0i iV s ⇐  for all possible states i is ∈ S .  
Learning:   At time t , user i :  
1) Observes the current state t

is ; 
2) Compute ( )t t

i iF w  in Eq. (13) by replacing  1 1( )t t
i iQ + +s  with 

( )ti iV s , approximate ( ),t t
i i

t
iF w s  using Eq. (11) to produce 

t
iϕ  and announce t

iθ ; 
3) Receives the allocation t

iw  and payment t
iτ ; 

4) Computes the expected total discounted sum of the rewards  
( )t t
i iQ s  as in Eq. (12); 

5) Updates the future reward table ( )i iV s  at the state t
is  

using the learning rate factor t
iγ ,  according to Eq. (14). 

V. SIMULATION RESULTS 
In this simulation, we aim at verifying that the proposed 
learning algorithm predicts the impact of current 
revealing action (determining the private information) on 
future rewards and hence, improve the users’ 
performance in terms of gained utility.  

We consider multiple (five) users streaming delay-
sensitive data over the wireless network. The signal to 
noise ratio ( / 0iP N ) is 30dB for all users. The bandwidth 
W  is normalized to 1. The path gain 1,,c ii i = ∀ . The 
packet arrive rate iλ  is 10 packets/slot and the slot length 
is 0.01s. The discounted factor 0.2iα = . Similar 
parameters are used for the five users in order to clearly 
illustrate the performance differences obtained based on 
the different strategies. The similar observations are 
obtained in other settings.  

We first compare two scenarios: (1) no user is 
deployed with the proposed learning algorithm; (2) user 1 
uses the proposed algorithm to determining its private 
information. Figure 1.(a) shows the accumulated gained 
rewards under the two scenarios. The average rewards 
gained per time slot are 2.71 and 2.98, respectively. The 
learning algorithm improves the average reward by 
around 10%. This improvement is due to the successful 
prediction on the future reward impact and more accurate 
private information.  

We further consider the case where multiple users 
learn simultaneously. The average rewards under 
different scenarios with various learning users are 
illustrated in Figure 1.(b). Interestingly, when part of 
users ((e.g. user 1 and 2)) are deployed with the learning 
algorithm, they can improve their own average rewards 
by around 10% but penalize other users by around 
2%~8%.  While all users start learning, all users obtain 
benefits from 0.5%~6%, comparing to the case of no 
users learning.  This can be briefly explained as follows: 
when part of users learn, only these users can accurately 
evaluate their private information and announce it 
properly. While those users without learning misrepresent 

their private information and thereby, losing 
performance. When all the users start learn, they are able 
to announce their accurate private information and hence, 
obtaining various benefits. More investigation on multi-
user learning will be conducted in the future. 

 
(a) (b) 

Figure 1. (a) Accumulated rewards of user 1 when no user learns or 
only user 1 learns; (b) average rewards of users under the scenarios 

with various users learning.  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we model the wireless resource allocation 
problem as a “stochastic game” played among strategic 
users. The users are allowed to simultaneously and 
independently determine and reveal their own private 
information about the dynamics of networks. To improve 
the revealing strategy at each stage, we propose a best 
response learning algorithm to predict the possible future 
reward at each state. The simulation results show that our 
proposed learning algorithm can significantly improve 
the users’ performance. The proposed stochastic game 
framework can further allow wireless users to compete 
for the time-varying available network resources, e.g. in 
cognitive radio networks by deploying more complicated 
strategies, e.g. cross-layer optimization. How the network 
dynamics is further exploited during multi-user learning 
falls into our future research.  
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