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Abstract—In this paper, we study distributed solutions for joint 
power-spectrum resource allocation among delay sensitive users 
over multi-carrier networks. Our work differs from prior 
research in two ways. First, unlike prior works that only consider 
the impact of effective throughput of a user, our work also 
considers the source traffic characteristics of applications and 
applies queuing analysis to quantify the packet transmission delay, 
which is especially important to a delay sensitive user. Secondly, 
most prior works focus on the equilibrium of the decentralized 
solutions that usually require global information in a static 
network. Instead, we focus on interactive adaptation methods for 
users to dynamically maximize their expected utility based on the 
local observed information. We propose an interactive learning 
framework for users to adapt their power/channel selection to the 
wireless networks with interference coupling among users. Our 
simulation results show that the proposed interactive learning 
approach with information exchange among users improves the 
total utility significantly.  

Index Terms— dynamic resource allocation; power control; 
multi-carrier network; interactive learning; information 
exchanges. 

I. INTRODUCTION 
  Joint power and spectrum resource allocation research has 
been investigated extensively in multi-carrier wireless 
networks [1][2]. It is well-known that in a multi-user system, 
the resource allocation problem is complicated since the mutual 
wireless interference among users results in a nonconvex 
optimization problem. In the interference channels, the 
water-filling approaches [1][2] can only provide power 
allocation that is asymptotically optimal when the number of 
users is large. Alternatively, a centralized optimization 
approach provided in [3] proposes a dual method to solve the 
nonconvex optimization problem for maximizing the overall 
throughput. However, centralized solutions are not desirable in 
practice, since the centralized solutions tend to be complex and 
not scalable as the network size grows. Moreover, the 
centralized solutions require the propagation of global 
information back and forth to a common coordinator, thereby 
incurring delay that may be unacceptable for delay sensitive 
applications. Hence, it is essential to study distributed solutions 
for such power-spectrum resource allocation problems. 
  Prior distributed power allocation research [4][5] focuses on 
constructing a power control game where each user possesses 
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its own utility function. Various energy-efficient utility 
functions are developed. For instance, users maximize a ratio of 
throughput over the transmitted power (measured in bits/joule) 
instead of merely the throughput in [4][6]. However, for delay 
sensitive applications, these works only consider the impact of 
the effective throughput of a user, while ignoring the important 
impact of the source traffic characteristics of such applications. 
In this paper, we apply queuing analysis to quantify the packet 
transmission delay, which is impacted by both the effective 
throughput as well as the source traffic characteristics of delay 
sensitive users. 
  In addition, due to the informationally-decentralized nature of 
the wireless network, we approach this energy-efficient power 
control problem from a different angle. First of all, most of the 
game-theoretic works in wireless communication assume that 
users are able to obtain required global information to play in 
the game. However, in practice, users usually make decisions 
based on local observed information. Investigating the 
information availability and its impact on the resulting utility 
become an important issue in a wireless network. Moreover, 
unlike prior distributed power allocation research that focuses 
on the convergence to the Nash equilibrium [4][5], we 
emphasize the strategic learning approaches for users to adapt 
their frequency channel and power level selection to the 
dynamics of wireless networks. There are several reasons why 
we focus on the dynamic adaptation from the user side. First, 
even though the equilibrium exists, without sophisticated 
mechanism design [7], the equilibrium may only lead to a 
suboptimal result due to the myopic observation of the users. 
Moreover, in a dynamic wireless network, the wireless network 
environment and the source traffic may change before users 
transmission strategies converge to equilibrium. Hence, we 
study the strategic learning methods of a user to adapt its 
power/frequency channel selection to the dynamic wireless 
network with mutual interference coupling among users.  

In this paper, focusing on the dynamic adaptation from the 
user side, we propose an interactive learning framework for 
distributed power control of delay sensitive users in 
multi-carrier system. We consider not only the impact of the 
effective throughput over the wireless network, but also the 
source traffic characteristics including the source rates and the 
delay deadlines of the applications. In the proposed framework, 
wireless users are able to learn the behaviors of their major 
interference sources and strategically adapt their 
power/frequency channel selections. Based on the observed 
information, different types of learning approaches can be 
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adopted. Based on the impact on the expected utility function, 
different learning efficiencies can be quantified in different 
network scenarios. 

This paper is organized as follows. In Section II, we present 
our network settings and formulate the distributed 
power-spectrum resource allocation problem with interference 
coupling in the wireless network. We next introduce our 
interactive learning framework for multiple delay sensitive 
users in Section III. The adopted interactive learning approach 
is driven by the observed information of a user. In Section IV, 
we characterize the observed information. Based on the 
observed information, we introduce two types of interactive 
learning approaches. Section V gives the simulation results and 
Section VI concludes the paper.  

II. NETWORK SETTINGS AND PROBLEM FORMULATION 

A. PHY/MAC layer network settings 
We assume that there are V  network users in the wireless 

network ( v =1,…,V ), which are organized in an ad-hoc 
manner. Each network user v  has a source node s

vn  and a 
destination node d

vn  that can establish a direct communication 
connection in order to transmit a delay-sensitive data stream, 
i.e. { , }s d

v vv n n= . Assume that the users in the wireless 
network may utilize multiple frequency channels for 
transmission. Let F  represent a set of all possible frequency 
channels. Without losing generality, we assume that only 
frequency channels in the set v ∈F F  are available to the 
user v . Each user tends to maximize its own utility function by 
selecting appropriate frequency channels and transmitted 
power levels in the selected channels. Assume that a network 
user v  transmit its application through only one 1  of the 
available frequency channels v vf ∈ F  with a power level vP  
below the maximum power limit max

vP , i.e. max0 v vP P≤ ≤ . 
In this paper, we assume that the transmitter can only select 
discrete power levels in a set vP . Hence, we define the action 
of a user v  as [ , ]v v v v v vA f P= ∈ = ×A F P . Let 

[ , 1,..., ]vf v V= =F  and [ , 1,..., ]vP v V= =P  represent the 
selected frequency vector and power vector across all the users. 

The Signal-to-Interference-Noise Ratio (SINR) experienced 
by a user v  in frequency channel vf  depends on the user’s 
action vA  and the action of all the other users, denoted as vA− . 
Hence, 

'
0 ' '' ,

( )
( , ) ( , )

( )
v v v

vv v v
v v v v

f v v v vv v f f

G f P
A A

N W G f P
γ γ−

≠ =

= =
+ ∑

F P

,                       (1) 
where ' ( )v v vG f  represents the channel gain from the 
transmitter (the source node '

s
vn ) of the user 'v  to the receiver 

(the destination node s
vn ) of the user v , which is related to the 

distance of the two nodes and channel characteristics. To 
 

1 In [4], it is shown that the energy-efficient utility function (measured in 
bits/joule) is maximized when the user only transmits over its “best” frequency 
channel. The “best” frequency channel is the channel that requires the least 
power vP  to achieve a certain target SINR tar

vγ . 

calculate the SINR value, the channel gain matrices 
'( ) [ ( )]v v V Vf G f ×=G  for all frequency channels vf ∈ F  

needs to be determined. 
  Let vT  and vp  represent the physical transmission rate and  
packet error rate of user v  using the frequency channel vf . 
Denote (1 )v v vB T p= −  as the corresponding effective 
throughput. vT  and vp  are estimated by the MAC/PHY layer 
link adaptation [8], which can be modeled as sigmoid functions 
of the SINR ( , )v v vA Aγ − : 

( , ( , ))v v v v vp f A Aγ −
1

1 exp( ( ( , ) ))v v vA Aζ γ δ−
=

+ −
,    (2) 

( )
( , ( , ))

1 exp( ( ( , ) ))
v v

v v v v v
v v v

T f
B f A A

A A
γ

ζ γ δ−
−

=
+ − −

,  (3) 

where ζ  and δ  are empirical constants corresponding to the 
modulation and coding schemes for a given packet length vL  
for user v .  

B. Queuing model for delay sensitive applications 
  Assume that a delay sensitive application with delay deadline 
vd  is sent by the user v  through the network using the average 

input rate vR  (bits/sec). Assume that the user v  maintains a 
queue with an infinite buffer size in the application layer. We 
model the packet arrival process using a Poisson process. The 
packet arrival rate is hence defined as /v v vR Lλ =  
(packet/sec). The packet protection scheme at the MAC is 
assumed to be similar to the Automatic Repeat Request 
protocol in IEEE 802.11 networks [9]. Then, the transmission 
time of a packet can be modeled as a geometric distribution 
[10]. For simplicity, we approximate the queuing model as 
M/M/1 queue with the service rate 

( , ) ( , ( , ))/v v v v v v v v vA A B f A A Lμ γ− −=  (packet/sec). We 
denote the end-to-end delay of transmitting the delay sensitive 
application through the network as ( , )v v vD A A− . The average 
end-to-end delay can be obtained by 

1
[ ( , )]

( , )v v v
v v v v

E D A A
A Aμ λ−

−
=

−
, for ( , )v v v vA Aμ λ− > .  

(4) 
Using the M/M/1 queuing model, the probability that the packet 
of the user v  can be received before the delay deadline vd  is 

Prob{ ( , ) }

1 exp( ),  for ( , )
[ ( , )]

0                  ,  otherwise

v v v v

v
v v v v

v v v

D A A d

d
A A

E D A A
μ λ

−

−
−

≤

⎧⎪ − − >⎪⎪⎪= ⎨⎪⎪⎪⎪⎩

,   (5) 

C. Utility function 
  The behaviors of the users highly depend on their utility 
functions. In this paper, as in  [4][6], we assume the users tend 
to maximize their energy-efficient utility functions (measured 
in bits/joule). The difference is that we consider the end-to-end 
packet loss due to the expiration of the delay deadline for delay 
sensitive applications, which is not only impacted by the 
effective throughput but also the source traffic characteristics. 
The utility function of a user v  is defined as 
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Prob{ ( , ) }
( , ) v v v v v
v v v

v

D A A d
u A A

P
λ −

−
× ≤

= .      (6) 

This utility function reflects the expected number of bits that 
are successfully received (rather than transmitted) per joule of 
energy consumed. Figure 1 illustrates the utility function of a 
user v  using different power max0 v vP P≤ ≤  in a selected 
frequency channel vf  with fixed interference.  
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Throughput vB  vs. vP  in a selected frequency channel vf  with 

fixed interference. (b) Utility vu  vs. vP  in a selected frequency channel vf  
with fixed interference. 

  Figure 1 shows that the utility function remains 0 unless the 
transmitted power is high enough to support a sufficient 
throughput. A user v  needs to maintain a sufficient throughput 

( , ( , ))v v v v v vB f A A Rγ − >  so that the service rate of the queue 
( , )v v v vA Aμ λ− >  to keep the probability 

Prob{ ( , ) } 0v v v vD A A d− ≤ > . Hence, the operational region 
each of a delay sensitive user needs to satisfy the condition 

( , ( , ))v v v v v vB f A A Rγ − > . Note that there exists an optimal 
power level ( )tar

v vP f  to maximize the utility function. 

D. Problem formulation 
Conventionally, the optimization problem of a user v  can be 

formulated as: 
[ , ] arg max ( , )

v v

opt opt opt
v v v v v v

A
A f P u A A−

∈
= =

A
.            (7) 

As mentioned before, due to the interference coupling in the 
PHY/MAC layer, the utility vu  depends on the action vA  
taken by the user v  and also on the actions of other users vA− . 
In order to select an optimal action opt

vA , user v  needs to 
evaluate its utility ( , )v v vu A A−  given the action vA− . Note that 
the action opt

vA  in equation (7) is optimal only when the action 

vA−  is fixed. However, in practice, after the action opt
vA  is 

selected by user v , the actions of other users vA−  will also 
change due to the mutual interference coupling in the wireless 
network. Hence, interactive adaptation over time is necessary 
for user v to keep maximizing its utility. Moreover, the 
optimization solution is only valid when other users do not 
change their actions in a static network condition. In a dynamic 
wireless environment with interference coupling, equilibrium 
may not exist and the network can change faster than the 
decision making of a user before it converges. Dynamic 
adaptation to the changing network is more important in 
practice than just identifying the equilibrium. Hence, we focus 
on how users make their own decisions based on the 
information they observed. Note that the observed information 
is usually incomplete (either due to insufficient measurement of 

SINR, buffer length, or incomplete information exchange from 
localized users due to the informationally decentralized nature 
of the wireless networks). In summary, the action t

vA  at time t  
is determined based on the observed information 1t

vo
− , which 

implicitly model the actions vA− . The problem is now 
reformulated as: 

1[ , ] arg max [ ( , )]
v v

t t t t
v v v v v v

A
A f P E u A o −

∈
= =

A
.            (8) 

The question is what information should be observed and how 
to model the actions vA−  of other users from the observed 
information 1t

vo
−  to evaluate [ ]vE u . For example, the 

evaluation of the utility [ ]vE u  can be performed by observing 
the SINR ( , )v v vA Aγ −  in PHY/MAC layer or by direct 
information exchange from other users. In Section IV, we will 
discuss the observed information 1t

vo
−  in more details. Figure 2 

illustrates the mutual interference coupling in the dynamic 
wireless network. In the next section, we provide an interactive 
learning framework for a delay sensitive user v  to model vA−  
and make such adaptive decisions. 
 
 
 
 
 
Fig 2. The mutual interference coupling in the dynamic wireless network at time 

t . 

III. INTERACTIVE LEARNING FRAMEWORK FOR DYNAMIC 
RESOURCE ALLOCATION FOR DELAY SENSITIVE USERS 

  The goal of the user v  in our interactive learning framework 
is to adapt the action [ , ]t t t

v v vA f P=  given the observed 
information 1t

vo
− . We first present two propositions to simplify 

the learning problem for delay sensitive users with the utility 
defined in Section II.C. 
Proposition 1:  Assume the users that select a certain frequency 
channel f  form a set fN . The target SINR value 

( ),tar
v ff vγ ∈ N  that jointly maximizes ( ),v fu f v ∈ N  is the 

unique positive solution of ( )
( , )

( , ) 1v v
v

v

B f L
F f

d
γ

γ γ
γ

∂
= −

∂
, 

where 

( , ) exp( ( , ) )v
v v v v

v

d
F f B f d

L
γ γ λ≡ − .                 (9) 

Proof:  Given the channel model ( , )vB f γ  for the frequency 
channel f  in equation (3), user v , fv ∈ N  can apply queuing 
analysis with the application characteristics vR , vL  and vd . 
From equation (4) and (5), we have 

1
Prob{ } 1v v

v
D d

F
≤ = − . The optimality condition of 

0v

v

u
P

∂
=

∂
 becomes 1 1

( ) (1 )v
v v v

P
P F F
∂

− = −
∂

. The left hand 

side can be derived as 1v v
v

v v v

B d
L F

γ
γ

∂
∂

, since v
v v

v
P
P
γ

γ
∂

=
∂

. By 
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multiplying vF  to both sides, we have the optimality condition 
in Proposition 1 and the corresponding tar

vγ  that maximizes the 
utility function vu .                                                                

Proposition 1 suggests that user v  using the frequency 
channel f  should adapt the target power level ( )tar

vP f  to the 
observed interference to support the target SINR value ( )tar

v fγ . 
If the target SINR ( )tar

v fγ  requires a power higher than max
vP  

(the interference in the frequency channel is too high), 
max( )tar

v vP f P= . Next, we further determine the frequency 
selection of the user v  given the observed interference in 
channel vf ∈ F . 
Proposition 2:  Let ( ) ( , ( ))tar tar

v v vF f F f fγ= . Given the 
observed interference and the corresponding target ( )tar

vP f , 

the optimal action *
vA  of a user v  is 

* ( )
arg min{ ( ) }

( ) 1v

tar
vtar

v v tarf v

F f
f P f

F f∈
= ×

−F
 

 and * *( )tar
v v vP P f= .                           (10) 

Proof:  From Proposition 1, maximizing 1
(1 )v

v
v v

u
P F
λ

= −  

leads to the solutions in equation (10).                                                                                                          
  Modeling the action vA−  , a user v  can estimate the 
observed interference, and thereby selects the frequency 
channel *

vf  and power level *
vP  iteratively to match the SINR 

value ( , )v v vA Aγ −  to the target SINR *( )tar
v vfγ . In this paper, 

we rely on the strategic learning approaches [11] to model the 
action vA− , which is driven from the observed information 

1t
vo
− . Assume ( )t

vS A  represents the probability that a user v  
takes A  as its action at time t .  The strategic learning enables 
users to learn their transmission strategies 

[ ( ),  for ]t t
v v v vS A A= ∈ ∈S A S , where vS  is a set of 

probability distributions over all feasible actions vA ∈ A . 
  Figure 3 provides the block diagram of a two-user case as an 
example of our interactive learning framework. The strategic 
learning approach is driven by the observed information 1t

vo
− , 

which will be discussed in detail in the next section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. System block diagram for the interactive learning for the dynamic power 

level/frequency channel adaptation with two users. 

IV. OBSERVED INFORMATION FOR INTERACTIVE LEARNING 
A user can apply different strategic learning methods to 

evaluate the expected utility 1[ ( , )]t t
v v vE u o −S  in a dynamic 

network environment. Different information types drive the 
learning approach of the users that result in different expected 
utility. In our problem settings, we define the “entire” history 
of the information in the network at time slot t  as 

 { , , , [ ], for 1,..., , 0,..., }t s s s s
v v v vh A E D v V s tγ= = =G . 

  From the history, the observed information of a user v  at 
time t  is a subset of the entire history t t

vo h⊆ . Note that the 
user v  at a certain time slot s  can observe the information in 
two types: private information 

, { , [ ], 0,..., }t priv s s
v v vo E D s tγ= = or public information 
, { , , for , 0,..., }t pub s s
v u u vo A u s t− = ∈ Ω =G , where vΩ  

represents a set of neighbor users of user v . Note that a user 
can also observe a subset of ,t priv

vo  or ,t pub
vo−  (not necessarily 

observe information at each decision time slot). Depending on 
the type of information, two classes of strategic learning 
approaches can be adopted: 

1) Payoff-based learning without information exchange 
from other users 
  Without information exchange from other users, a user learns 
its transmission strategy from the experienced payoff 
(experienced utility values). The observed private information 
can be , { , 0,.., }t priv s

v vo s tγ= =  or 
, { [ ], 0,..., }t priv s
v vo E D s t= =  to evaluate the expected utility. 

The payoff history reinforces the best response transmission 
strategy [11]: 

1,arg max [ ( , )]
v v

t t priv
v v v vE u o −

∈
=

S
S S

S
.                  (11) 

( )t t
v vA Rand= S ,                              (12) 

where ( )tvRand S  represents a random selection based on the 
probability distribution v v∈S S . This class of learning is 
referred as the reinforcement learning [11], which is a type of 
payoff-based learning. Note that the actions of other users are 
embedded in the measurement of the experienced SINR values 
s
vγ  in PHY/MAC layer or expected delay [ ]svE D  in 

application layer. 

2) Model-based learning with information exchange from 
other users 

To model the other users’ behavior when public information 
,t pub
vo−  is exchanged, a user directly counts the frequency with 

which other users select certain actions [11]. Denote the 
strategy set of other users as { , }t t

v u vu− = ∈ ΩS S . Based on 
1t
v
−
−S  at time t , a user selects the best response strategy as 

1arg max [ ( , )]
v v

t t
v v v v

A
A E u A −

−
∈

= S
A

.                      (13) 

This class of learning is referred as fictitious play [11], which 
is a model-based learning.   

Due to the space limit, we only briefly describe the insight of 
the two learning approaches and omit the implementation 
details of using the interactive framework in Figure 3. 
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V. SIMULATION RESULTS 
 We simulate an ad hoc wireless network shown in Figure 4 
with 5 users (with distinct source and destination pairs) and 3 
frequency channels. The frequency channels are accessible for 
all the users, i.e. ,  for all v v=F F . Each user can choose its 
power level vP  from a set {20, 40,60, 80,100}=P  (mW). 
Hence, there are a total of 15 actions vA  (3 channel selections 
with 5 power levels). For the physical layer parameters, the 
channel gain between different network nodes can be modeled 

using 0
' 0

'
( )vv

vv

disG K dis
α= × , where 'vvdis  represents the 

distance from the transmitter of the user v  to the receiver of the 
user 'v , and 4

0 5 10K −= × , 0 10dis = , 2α =  are 
constants. For the application layer parameters, we set the 
average packet length 1000vL = bytes, 500vR = Kbps, and 

200vd =  msec for all the users. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 5 shows the simulation results of the total utility 
(summation over 5 users) versus the physical bandwidth vT  of 
frequency channels. Since the required rates of the applications 
are fixed to 500vR = Kbps, the total utility will saturate as the 
bandwidth increases. We simulate three different cases with 
different information types – 1) no learning, 2) reinforcement 
learning (the payoff-based learning), and 3) fictitious play (the 
model-based learning). Each simulation result is averaged over 
500 time slots in the dynamic network settings with mutual 
interference in Equation (1). The results show that the 
reinforcement learning with private information ,t priv

vo  
outperforms the no learning case (actions are iteratively 
selected in a myopic manner as in [4]). Moreover, with public 
information exchange ,t pub

vo− , users are able to exploit the 
resource more efficiently, since the users can one step further 
predict the behaviors of other interference sources in the 
network. The total utility can be significantly improved 
compared to the other two cases. 

VI. CONCLUSION 
In this paper, we provide an interactive learning framework 

for users to adapt their frequency channel and power level 
selections in multi-carrier wireless networks. The results show 

that depending on the observed information, interactive 
learning significantly improves the performance of delay 
sensitive users. Note that in this paper, we assume the available 
information is observed at each decision time slot. However, in 
practice, the information can be observed with other 
observation frequencies. The adaptive information observation 
and its impact on the interactive learning performance form an 
interesting area to look at. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
[1] S. Vishwanath, S. A. Jafar, and A. Goldsmith, “Adaptive resource 

allocation in composite fading environments,” Proceedings of the IEEE 
Global Telecommunications Conference (Globecom), pp. 1312-1316, San 
Antonio, TX, Nov 2001. 

[2] Z. Shen, J. G. Andrews, and B. L. Evans, “Optimal power allocation in 
muli-user OFDM systems,” Proceedings of the IEEE Global 
Telecommunications Conference (Globecom), pp. 337-341, San 
Francisco, CA, Dec 2003.  

[3] W. Yu, R. Lui, “Dual Methods for Nonconvex Spectrum Optimization of 
Multi-carrier Systems,” IEEE Transactions on Communications, vol. 54, 
no. 7, July 2006. 

[4] F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz, “A 
game-theoretic approach to energy-efficient power control in 
multi-carrier CDMA systems,” IEEE Journal on Selected Areas in 
Communications (JSAC), vol. 24, pp. 1115-1129, June 2006.  

[5] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multi-user power control 
for digital subscriber lines,” IEEE Journal on Selected Areas in 
Communications (JSAC), vol. 20, pp. 1105-1115, June 2002.  

[6] D. J. Goodman and N. B. Mandayam, “Power control for wireless data,” 
IEEE Personal Communications, vol. 7, pp. 48-54, Apr 2000. 

[7] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Pricing and power 
control in a multi-cell wireless data network,” IEEE Journal on Selected 
Areas in Communications (JSAC), vol. 19, pp. 1883-1892, Oct 2001. 

[8] D. Krishnaswamy, “Network-assisted Link Adaptation with Power 
Control and Channel Reassignment in Wireless Networks,” 3G Wireless 
Conference, pp. 165-170, 2002. 

[9] T. S. Rappaport. Wireless Communications: Principles and Practice. 
Prentice Hall, 2002. 

[10] A. G. Konheim, “A Queuing Analysis of Two ARQ Protocols,” IEEE 
Transactions on Communications, vol. com-28, no. 7, July 1980. 

[11] H. P. Young, Strategic Learning and its Limits, Oxford University Press, 
NY 2004.  


