
 

Abstract—This paper considers the problem of how to allocate 
power among competing users sharing a frequency-selective 
interference channel. We model the interaction between selfish 
users as a non-cooperative game and analyze their strategic 
behavior. As opposed to the existing iterative water-filling 
algorithm, this paper introduces the Stackelberg equilibrium and 
shows the existence of this equilibrium for the investigated 
non-cooperative game. We model the two-user case as a bi-level 
programming problem and derive the necessary optimality 
conditions. It is analytically shown that a user can improve its 
performance if it knows the channel state information and the 
response strategy of the competing user. Due to computationally 
prohibitive nature of the optimal solution, a practical low- 
complexity approach is proposed based on the intuition gained 
from the necessary conditions. Numerical simulations verify the 
performance improvements. 
Keywords—interference channel, power control, Stackelberg 

equilibrium , non-cooperative game theory  

I. INTRODUCTION 
    The multi-user power control problem in frequency-selective 
interference channels was investigated from the game theoretic 
point of view [1]-[7]. In these multi-user power control games, 
users are modeled as players with individual goals and strategies. 
They are competing and cooperating with each other until they 
agree on an acceptable resource allocation outcome. Existing 
research can be categorized into two types, non-cooperative 
games and cooperative games. 

First, the formulation of the multi-user environment as a 
non-cooperative game has appeared in several recent works [1] 
[2]. An iterative water-filling (IW) algorithm has been proposed 
to mitigate the mutual interference and optimize the 
performance without the need for a central controller [1]. Users 
deploying the IW algorithm are assumed to be myopic in the 
sense that they try to maximize their achievable rate at every 
decision stage until a Nash equilibrium is reached.  

Second, there also have been a number of related works 
studying dynamic spectrum management in the setting of 
cooperative games [3]-[7]. The Optimal Spectrum Balancing 
algorithm [4], the Iterative Spectrum Balancing  algorithm 
[5][6], and the autonomous spectrum balancing technique [7] 
are proposed to achieve near-optimal performance. These works 
focus on cooperative games, because it has been well-known 
that the IW algorithm may lead to Pareto-inefficient solutions 
[8], i.e. selfishness is detrimental in the interference channel.  

In short, previous research mainly concentrates on studying 
the existence and performance of Nash equilibrium in 
non-cooperative games and developing efficient algorithms to 
cooperatively approach the Pareto boundary. However, an 
important intrinsic dimension of this information-decentralized 
multi-user interaction still remains unexplored. Prior research 
does not consider the users’ availability of information about 

other users. How should a selfish user behave if it gets the 
information about competing users? Can it achieve a better 
performance rather than adopting the IW algorithm? It is 
important to look at these scenarios in order to access the 
significance of information availability from the users’ 
viewpoint and shows why the selfish users have incentives to 
learn their environment and adapt their strategies [9]. A “clever” 
user with more information in this non-cooperative game should 
be able to gain more benefits [10].  

In this paper, we discuss how rational users should behave in 
non-cooperative power control games. As opposed to previous 
approaches considering myopic users [1], we focus on the 
strategic behavior of the selfish user with additional information 
about its competing users. We explicitly show that a strategic 
user can gain more benefits if it takes its competitors’ 
information and strategies into account. The concept of 
Stackelberg equilibrium is introduced in order to characterize 
the strategic behavior of a user by considering the response of its 
competing users. Particularly, for the two-user case, we 
formulate a bi-level programming problem and derive the 
necessary optimality conditions. Inspired by the optimality 
conditions, we provide a low-complexity solution of the original 
intractable non-convex optimization problem.  

This paper is organized as follows. Section II presents the 
non-cooperative game model and introduces the concept of 
Stackelberg equilibrium. In Section III, using a simple two-user 
example, we define the strategic behavior of a user to be a 
bi-level programming problem, and derive the necessary 
optimality conditions. Section IV discusses the complexity of 
the optimal solution and proposes a practical sub-optimal 
approach. Simulations show that a strategic user can achieve 
substantial performance improvement compared to the case in 
which users are myopic. Conclusions are drawn in Section V. 

II. SYSTEM MODEL 

A. System Description 

 
Fig. 1. Gaussian interference channel model. 

Fig. 1 illustrates a frequency-selective Gaussian interference 
channel model. There are K  transmitters and K  receivers in 
the system. Each transmitter and receiver pair can be viewed as 
a player (or user). The transfer function of the channel from 
transmitter i  to receiver j  is denoted as ( )ijH f , where 
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0 sf F≤ ≤ . The noise power spectral density (PSD) that receiver 
k  experiences is denoted as ( )k fσ . Denote the player k ’s 
transmit PSD as ( )kP f . For user k , the transmit PSD is subject 
to its power constraint: 

( )
0

sF
kP f df ≤∫ kP .             (1) 

For a fixed ( )kP f , if treating interference as noise, user k  can 
achieve the following data rate: 

( ) ( )

( ) ( ) ( )

2

2 20
log 1
sF k kk

k
k j jkj k

P f H f
R df

f P f H fσ
≠

   = +   +  
∫

∑
.     (2) 

The payoffs for the players are the respective achievable data 
rates and their strategies are to determine their own transmit 
PSD. To fully capture the performance tradeoff in the system, 
the concept of a rate region is defined as 

( ) ( ) ( )( ){ }1 1, , : , , (1) (2)K KR R P f P f satisfying and= ∃R .  (3) 

Because of the non-convexity in the capacity expression, the 
complexity of optimal solutions in finding the rate region is 
prohibitively high. Existing works aim to efficiently approach 
the Pareto boundary of the rate region and provide near-optimal 
performance via the cooperation among users [4]-[7]. On the 
other hand, the interference channel can be modeled as a 
non-cooperative game among multiple competing users. Instead 
of solving the optimization problem globally, the IW algorithm 
models the users as selfish myopic decision makers [1]. This 
means that they optimize their transmit PSD by water-filling 
and compete to increase their transmission data rates with the 
sole objective of maximizing their own performance regardless 
of all the others. Under a wide range of realistic conditions 
[1][12], the existence and uniqueness of the Nash equilibrium is 
proved and can be obtained by the IW algorithm. This gives 
substantial performance improvements over static spectrum 
management algorithms. 

We still concentrate on the non-cooperative game setting in 
this paper. However, unlike the IW algorithm, in which users 
are assumed be myopic, i.e., they shortsightedly their update 
actions without considering the long-term impacts of taking 
these action, we study the problem of how a strategic user 
should behave rather than taking myopic action.  

B. Stackelberg Equilibrium 
Game theory studies the interaction of rational players. Let 

{ }, ,k kU =  G K A  represent a game where { }1, ,K=K  is the set 
of players, kA  is the set of actions available to user k , and kU  is 
the utility of user k . In our power control game, kA  is the 
transmit PSD satisfying the constraint in (1), and kU  is user k’s 
achievable rate kR . Recall that the Nash equilibrium is defined 
to be any ( )* *

1 , , Ka a  satisfying 

( ) ( )* * *, , 1, ,k k k k k k k kU a a U a a for all a and k K− −≥ ∈ =A ,  (4) 

where ( )* * * * *
1 1 1, , , , ,k k k Ka a a a a− − +=  [11].  

The Nash equilibrium is the best response only in a 
competitive optimality sense [1]. The Stackelberg equilibrium is 
a best response when a hierarchy exists between users [11], i.e. 

one of agents is the leader and the remaining ones are followers. 
Stackelberg equilibrium prescribes an optimal strategy for the 
leader if its followers always react by playing their Nash 
equilibrium strategies in the smaller sub-game. Let ( )kNE a  be 
the Nash equilibrium strategy of the remaining players if player 
k chooses to play ka .The strategy profile ( )( )* *,k ka NE a  is a 

Stackelberg equilibrium with user k leading iff 
 ( )( ) ( )( )* *, , ,k k k k k k k kU a NE a U a NE a a≥ ∀ ∈A .   (5) 

The following theorem establishes the existence of the 
Stackelberg equilibrium in this multi-user power control game. 

Theorem 1: In realistic channel settings, e.g., arbitrary 
symmetric interference environment and diagonally dominant 
asymmetric channel with any number of users [12], the 
Stackelberg equilibrium always exists. 

Proof : First, we can show that kR  is bounded because 

 ( ) ( )
( )

2*

20
0 log 1sF k kk

k
k

P f H f
R df

fσ

  ≤ ≤ +    
∫ ,   (6) 

where ( ) ( ) ( )( )2*
k k kkP f f H fλ σ

+
= −  is the water-filling solution, 

( ) ( )max 0,x x+ = , and λ  is a constant satisfying the constraint 
in (1) with equality. 

Second, we know from [12] that under a wide range of 
realistic channel, e.g., arbitrary symmetric interference 
environment and diagonally dominant asymmetric channel with 
any number of users, the existence and uniqueness of Nash 
equilibrium is always guaranteed. In other words, whatever 
form of ( )*

k kP f ∈ A  user k  chooses, the remaining users will 
regard user k ’s transmit PSD as background noise PSD, i.e. 

( ) ( ) ( ) ( )
2

,j j jk kf f H f P f j kσ σ= + ≠ , and the convergence to a 

unique Nash equilibrium always holds, i.e. a single ( )kNE a  
exists for ( )*

k k ka P f∀ = ∈ A . 
To summarize, since kR  is bounded, and for k ka∀ ∈A , the 

remaining players’ action will always lead to a unique Nash 
equilibrium, we have 

( )( ) ( ) ( )
( )

2*
* *

20
0 , log 1 ,

sF k kk
k k k

k

P f H f
U a NE a df

fσ

  ≤ ≤ +    
∫   (7) 

Therefore, there exist *
k ka ∈ A  such that ( )( )* *,k k kU a NE a =  

( )( ){ }sup ,
k k

k k k
a

U a NE a
∈A

. We can conclude that the Stackelberg 

equilibrium always exists for this power control game.   ■ 
In our problem, the requirement of hierarchic actions can be 

removed if the strategic user knows that all the other users use 
the IW algorithm. Note that we assume only one strategic user 
exists in this game. The strategic user will always regard itself 
as the leader and perform the Stackelberg-strategy, and the 
others will act their best responses until converging to the 
equilibrium.  

III. PROBLEM FORMULATION 

A. A Bi-level Programming Formulation 
The Stackelberg equilibrium applied to the two-user power 



 

control game can be represented by a bi-level mathematical 
problem [13], in which the strategic user acts as the leader and 
the other user behaves as the follower. The leader chooses an 
appropriate transmit PSD to maximize its own benefits by 
considering the response of its follower, who always reacts to 
the given transmit PSD of the leader by water-filling over the 
entire frequency band. The problem can be formulated as 

( ) ( )

( )
( ) ( ) ( )

( )

( )

( )
( )

( )
( ) ( ) ( )

( )

( )

1 2

2

1
0, 1 2 2

10

1

2
2 0 2 1 1

2

20

( )max ln 1

. . ( )

0 ( )

argmax ln 1 ( )

( ). . 0

( )

s

s

s

s

F

P f P f

F

F

P f

F

P f adf
N f f P f

s t P f df b

P f c

P f
P f df dN f f P f

es t P f

fP f df

α

α′

  +   + 

≤

≥

 ′  = +   + 
′ ≥

′ ≤

∫

∫

∫

∫

1

2

P

P

(8) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 1 11 1 12 22 2, ,N f f H f f H f H f N fσ α= = =  

( ) ( ) ( ) ( ) ( )2 2 2
2 22 2 21 11,f H f f H f H fσ α = . The sub-problem 

(8.a)-(c) is called the upper-level problem and (8.d)-(f) 
corresponds to the lower-level problem. 

The bi-level programming formulation is different from the 
IW approach. By letting ( )1P f  and ( )2P f  to be the individual 
transmit PSD of the IW algorithm, we can see that the Nash 
equilibrium actually gives the lower bound of the problem (8). 
By taking the opponent’s reaction into account, the user can 
improve the myopic behavior of the IW approach and improve 
its performance. Note that in order to achieve the Stackelberg 
equilibrium, the complete information of the game is 
indispensable, which includes the other user’s channel condition, 

( )2N f  and ( )2 fα , and best response strategy. Possible ways of 
acquiring such information include channel state estimation and 
learning [9][16]. 

Noting that the lower-level problem is a standard convex 
programming problem, KKT conditions are necessary and 
sufficient for the lower-level problem to achieve the optimum. 
Therefore, we can replace the lower-level problem by its KKT 
conditions, leading to the single-level reformulation: 

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )
( )

( ) ( ) ( )

1 2 2 2

1
0, , , 1 2 2

1 20 0

1 2 2 2

2 2

2 2 1 1
2 2

max ln 1

. . ,

0, 0, 0, 0

0

1

s

s s

F

P f P f f K

F F

P f
df

N f f P f

s t P f df P f df

P f f P f K

f P f

P f N f f P f
K f

λ α

λ

λ

α
λ

  +   + 

≤ =

≥ ≥ ≥ >

=

= − −
−

∫

∫ ∫1 2P P

      (9) 

Note that here we assume that the myopic user will always 
choose to transmit at its maximum power, i.e. ( )20

sF P f df =∫ 2P  

and 2 0K > . In the following, we will investigate (9). However, 
the above mathematical problem is not easy to solve because of 
the non-convexities that occur in the Lagrangian constraints of 
the lower-level problem. Therefore, we study the necessary 

optimality conditions first, and then develop a sub-optimal 
solution using intuition gained from the derived conditions. 

B. Necessary Conditions of Optimality 
Although the problem in (9) is non-convex, the KKT 

conditions are still necessary for the optimal solution [14]. The 
Lagrangian function of (9) can be written as a function of 

( ) ( ) ( )1 2 2 2, , ,P f P f f Kλ : 
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( )

1 2 2 2 1 2 3

1
1 10 01 2 2

1 1 2 2 3 20 0 0

4 2 2 2 2 3 20 0

5 2 2
2 2

, , , , , , ,

ln 1

1

s s

s s s

s s

F F

F F F

F F

P f P f f K f K K K

P f
df K P f df

N f f P f

f P f df f f df f P f df

f f P f df K P f df K K

f P f N f
K f

λ

α

µ µ λ µ

µ λ

µ α
λ

′ ′ ′ =

    ′ + − −      + 

+ + +

 ′  ′+ + − +  

+ − + +
−

∫ ∫

∫ ∫ ∫

∫ ∫

1

2

P

P

L µ

( ) ( )1 10

sF
f P f df

 
 
 
 

∫

(10) 

where ( ) ( ) ( ) ( ) ( )1 2 3 4 5 1 2, , , , , , ,f f f f f K Kµ µ µ µ µ ′ ′  and 3K ′  are 
Lagrangian multipliers. Table I shows the relationship between 
the constraints and the multipliers. 

Constraints of the primal problem Multipliers 
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( ) ( ) ( )

10

1

2

2

2 2

20

2

2 2 1 1
2 2

0

0

0

0

0

1

s

s

F

F

P f df

P f

f

P f

f P f

P f df

K

P f N f f P f
K f

λ

λ

α
λ

≤

≥

≥

≥

=

=

>

= − −
−

∫

∫

1

2

P

P

 

( )

( )

( )

( )

( )

1

1

2

3

4

2

3

2
5

0

0

0

0

1

0

s

s

F

F

K

f

f

f

f

K

f
K

K

µ

µ

µ

µ

µ

′ ≥

≥

≥

≥

′

′ ≥

∫

∫

 

Table I.  Lagrangian multipliers for the problem in (9). 
Taking the derivative with respect to the primal variables in 

(9) gives part of the necessary KKT conditions: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )
( )( )

1 1 1 5
1 2 2 1

2 4 2 5 2
2 2

2 1

1 2 2 1 2 2 1

3 4 2 5 2

5 20
2 2

1 ( )

1
0 ( )

( )

1
0 ( )

sF

K f f f a
N f f P f P f

f f P f f b
K f

f P f
c

N f f P f N f f P f P f

f f f f K

f df d
K f

µ α µ
α

µ µ µ
λ

α
α α

µ µ λ µ

µ
λ

′= − −
+ +

+ − ⋅ =
−

+ + +

′= + + +

⋅ =
−∫

(11) 

In the four equalities above, Eq. (11.a) describes the 
summation of the overall PSD level experienced by the user 1, 
which is a flat water-level in the IW algorithm. Eq. (11.c) gives 
user 1’s signal to interference-and-noise ratio (SINR), i.e. 

( ) ( ) ( ) ( )( )1 1 2 2P f N f f P fα+ , at the optimum. Eq. (11.b) and (d) 

provide additional constraints over the primal and dual variables. 
Note that (11.d) holds because we always have 3 0K ′ = .The 
remaining parts of the necessary KKT conditions are given by 
the constraints of the primal and dual variables in Table I, and 
complementary slackness [14].  



 

Based on the necessary conditions, some key remarks can be 
made. The details of the derivation are omitted here. 

Remark 1 : The Nash equilibrium achieved by the IW 
algorithm may not satisfy the necessary KKT conditions. 
Therefore, it may not solve the problem in (8). 

Remark 2 : Non-Nash-equilibrium strategies may satisfy the 
necessary optimality conditions and solve the problem in (8), 
because it is possible that there exist primal and dual variables 
with ( ) [ ]5 0, 0, sf f Fµ ≠ ∃ ∈ , which form non-Nash-equilibrium 

strategies and satisfy (11). 
Remark 3 : If ( )1 0P f >  and ( )2 0fλ > , it always holds:  

 
( ) ( ) 1
1 1

1 K
N f P f

′=
+

.          (12) 

Note that ( )2 0fλ >  leads to ( )2 0P f = . In other words, for the 
strategic user, waterfilling gives the optimal power allocation 
within the interference-free frequency band. 

Remark 4: For a non-Nash-equilibrium strategy to satisfy the 
necessary conditions, it is impossible to have only these two 
power allocation patterns, ( ) ( ) ( )( )1 2 20, 0 0P f f P fλ> > ⇒ =  and 

( ) ( )1 20, 0P f P f= > , over [ ]0, sF , i.e. user 1 can still adjust its 
power allocation and increase its achievable rate. 

IV. A LOW-COMPLEXITY SOLUTION 

A. Optimal Solution 
Since the optimization problem in (8) is non-convex, it 

generally can only be solved through an exhaustive search. A 
possible exhaustive search is to divide the whole frequency 
band into /s fN F= ∆  bins. Define user k’s transmit power in 

the i-th frequency bin to be i
ks  and the granularity in the 

transmit PSD as P∆ . The value of iks  can now be limited to the 
set {0, , , }P∆ kP . By performing an exhaustive search of the all 
possible combinations, the optimum could be found. Therefore, 
such a exhaustive search in 1( , , )Nk ks s  has a overall complexity 
of (( ) )NP∆kPO . Generally speaking, in order to approximate 

the optimal solution, we need to divide the frequency band into 
small bins, i.e., N  will be sufficiently large. Therefore, to 
reduce the computation complexity, we propose a sub-optimal 
approach in the following subsection based on the necessary 
optimality conditions. 

B. A Low-Complexity Sub-optimal Approach 
From the necessary conditions in (11), we have 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 4 2 5 2
1 0 2 1 1 1 5

ln 1
sF f f f f K

R df
f K f f f

µ µ λ µ
α µ α µ

 ′+ + +  = +    ′ − −  
∫ . (13) 

For the integration over [ ]0, sF  in (13) to be large, we expect 
that ( )5 0fµ >  when ( )2 fα  is small and ( )1 fα  is large. In other 
words, user 1 should allocate its power in such that, at the 
frequency band it occupies, the maximal rate is achieved with 
minimal noise and interference of user 2, i.e. ( )1N f  and ( )2 fα  
are small. On the other hand, if user 2 to avoid some frequency 
channels, we expect that, in those channels, user 2 experiences 
weak channel condition and strong noise and interference, i.e. 

( )2N f  and ( )1 fα are large. 
Based on the arguments above, we develop a sub-optimal 

power allocation strategy and summarize it in Algorithm 1. We 
propose a metric ( )sM f , which is defined as the ratio between 
the noise and interference PSD that the strategic user and its 
competing user experience at frequency bin sf f= . The value 
of ( )sM f  reflects the incentive of the strategic user to occupy 
the frequency bin sf f= . The basic idea is to rank the frequency 
bins based on this metric. Initially, user 1 owns no frequency 
bins and all the bins belong to user 2. According to Remark 3, 
user 1 water-fills its allocated frequency bins. It continues 
moving the frequency bin with the largest value of ( )sM f  from 
user 2 to user 1 until no rate improvement in 1R  can be 
achieved. This procedure is proposed based on the observation 
in Remark 4 that for sufficiently large 1P , initially, 1,f ′∃ ∈ F   

2f ′′ ∈ F satisfying ( ) ( ) ( )1 1 20, 0, 0P f P f P f′ ′′ ′′> = > and ( )1N f ′ +   

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 2 2 2 0f P f P f N f f P f fα α λ′ ′ ′ ′′ ′′ ′′ ′+ > + ⇒ > , 

adjusting ( )1P f  might further improve the performance. 
If the achievable rate of the above procedure is less than the 

IW approach, user 1 will choose the Nash-equilibrium strategy, 
which guarantees that the performance of Algorithm 1 is no 

1 ( )( ), ,waterfilling N fP F  denotes the water-filling transmit PSD with power constraint P  in frequency set F  treating ( )N f as 
noise, and ( ) ( )( ),rate P f N f denotes the achievable rate of transmit PSD ( )P f  with respect to the noise PSD ( )N f . 

ALGORITHM 1  SUBOPTIMAL POWER ALLOCATION STRATEGY1 

input: ( ) ( ) ( ) ( )1 2 1 2, , , , ,N f N f f fα α 1 2P P  
initialization: 1 2

1 1, 0, 0, , ,s fK K R N F′= = = = ∆ = ∅F1P  
{ } { }2 1,2, , , 1,2, , , 1N N flag= = =F F  

procedure: 
Calculate ( )1

nashP f  and 1
nashR  of the IW algorithm 

while 1flag =  do  

1) ( )
( ) ( )
( ) ( )

1
2 1

22
1 2

,s s
s s

s s

N f f K
M f f

N f f K
α
α

+
= ∀ ∈

+
F  

2) ( ) { }
2

max max
1 1argmax , ,

s
s s s

f
f M f f

∈
′= = ∪

F
F F  

{ } ( )
2

max max
2 2 \ , argmax

s
s s s

f
f f M f

′∈
′ ′= =

F
F F  

3) ( ) ( )( )1 1 1, , ,sP f waterfilling N f′= 1P F  

( ) ( ) ( ) ( )( )2 2 1 1, ,P f waterfilling N f f P fα= +2P F   

4) ( ) ( ) ( ) ( )( )1 1 1 2 2, ,R rate P f N f f P fα′′= +   

( ) ( ) ( ) ( )( )2 2 2 1 1,R rate P f N f f P fα′ = +  

if 1 1R R′′ ′≥  

( ) ( )1 max
1 1 2 2 1 1 1, , 1 ,sK P f′ ′= = = ⋅ +F F F F F F  

( ) ( )2 max
2 2 2 1 11 ,sK P f R R′ ′ ′′= ⋅ + =F F  

end if 
if 1 1R R′′ ′<  or 2′ = ∅F   

        0flag =  
end if 

end while 
if 1 1

nashR R′<  
    return ( )1

nashP f  and 1
nashR  

else 
    return ( ) ( )( )1 1 1, , sP f waterfilling N f= 1P F  and 1R′  

end if 
end procedure 



 

worse than the IW algorithm. The complexity of Algorithm 1 is 
only ( )2 /s fF ∆O , which reduces the complexity by a factor of 

( )/(( / ) /(2 / ))s fF
P s fF∆∆ ∆kPO  compared with the optimal 

solution, which is considerably large if 0f∆ →  and 0P∆ → . 

C. Simulation Results 

 
Fig. 2. Histogram for the ratio of 1 1/ nashR R′ . 
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Fig. 3. cdf for the ratio of 2 2/ nashR R′ . 

We evaluate the performance of the proposed sub-optimal 
algorithm by comparing with the IW algorithm. We simulate a 
wireless system with 200 sub-carriers over the 10-MHz band. 
We assume that 100= =1 2P P  and ( ) ( )1 2 0.01f fσ σ= = . To 
evaluate the performance, we tested 53 10×  sets of 
frequency-selective fading channels where the Nash 
equilibrium exists, which are simulated using a four-ray 
Rayleigh model with the exponential power profile and 100 ns 
root mean square delay spread [15]. The simulated power of 
each ray is decreasing exponentially according to its delay. The 
total power of all rays of ( )11H f  and ( )22H f  is normalized as 
one, and that of ( )12H f  and ( )21H f  is normalized as 0.5. 

Fig. 2 shows the histogram of the ratio of 1R′  over 1
nashR . If 

the ratio is larger than one, Algorithm 1 provides a performance 
strictly better than the IW algorithm. We can see from the curve 
that Algorithm 1 achieves a higher rate 1R ′  than 1

nashR  most of 
the time. It is because Algorithm 1 mitigates the interference by 
explicitly considering the other user’s rational response. On the 
other hand, there is a small probability of approximately 14% 
(the shaded area in Fig.2 ) that the rate 1R ′  is smaller than 1

nashR . 

Note that in these cases, Algorithm 1 returns the same power 
allocations as the IW algorithm, which ensures a solution no 
worse than the IW algorithm. The average improvement of 
Algorithm 1 over the IW algorithm is 16.43%.  

The ratio between user 2’s achievable rate 2R ′  and 2
nashR  in 

IW algorithm is shown in Fig. 3. It is surprising to find that, in 
very few cases with only a probability of 0.05%, Algorithm 1 
will result in a rate 2R′  smaller than 2

nashR . The average rate 
improvement for user 2 is 74%, which is significantly higher 
than that of user 1. This is because user 1 plays the Stackelberg 
equilibrium strategy that mitigates the interference to user 2. 
However, if user 1 plays the Nash strategy, user 2’s achievable 
rate will be reduced immediately after user 1 updates its ( )1P f . 

V. CONCLUSION 
This paper considers the strategic behavior in determining the 

transmit power PSD for selfish users sharing a frequency- 
selective interference channel. We introduce the concept of 
Stackelberg equilibrium to model the two-user non-cooperative 
case as a bi-level programming problem, and derive the 
necessary optimality conditions. We show that a strategic user 
will avoid shortsighted Nash-strategy and improve its 
performance if it has the knowledge of the channel state 
information and best-response strategy of the competing user. A 
low-complexity sub-optimal approach is proposed and 
numerical results show substantial performance improvements. 
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