
 

Abstract—This paper addresses the problem of multi-user video 
transmission over the uplink of multi-carrier networks from an 
information theoretic perspective. Under the constraints imposed 
by the Physical (PHY) and Medium Access Control (MAC) layers, 
we exploit the unique property of state-of-the-art video coders that 
can provide bitstream prioritization in terms of distortion impact 
and solve the problem of allocating wireless resources, i.e., power 
and rate among multiple users such that the weighted sum of the 
overall video qualities is maximized. An optimality condition is 
derived to describe the achievable convex utility region. We start 
from the two-user case and develop an algorithm for the optimal 
resource allocation. Inspired by the intuition gained from the 
two-user case, we extend the algorithm to the multiple-user case. 
Our numerical simulations show that the proposed resource 
allocation algorithms give significant performance improvements 
as compared to application-layer agnostic solutions that do not 
consider the quality impact. 

Keywords—wireless resource allocation, wireless multimedia, 
multi-carrier networks, utility driven resource management 

I. INTRODUCTION 
Multi-carrier communication is becoming the leading 

physical layer technology for many existing and emerging 
wireless networks and standards [1]. An important application 
over this network is bandwidth-intense multimedia streaming. 
Hence, the development of advanced resource allocation 
strategies for wireless multimedia has recently emerged as an 
important topic of research. In this paper, we study the problem 
of optimal resource allocation across multiple users transmitting 
video over the multi-carrier wireless network infrastructure 
from an information theoretic perspective. 

There has been significant research dedicated to studying 
resource allocation strategies in wireless networks. Recent 
research has shown that significant performance gains can be 
achieved by using dynamic resource allocation. The 
optimization for independent and identically-distributed (i.i.d.) 
fading channels is studied in [2] and [3], where the optimal 
power allocation which maximizes the weighted sum of the 
rates over time is characterized. Another important result in the 
area of wireless resource allocation is determined based on a 
combination of information theory and queueing theory. An 
optimum policy named “Longest Queue Highest Possible Rate” 
(LQHPR) is found [4], which allows the system to obtain the 
shortest average delay. Related cross-layer approaches on 
queueing stability, delay, and adaptive coding and modulation 
schemes can be found in [5]-[7]. Recent studies [8][9] show that 
for multimedia transmission, the approaches above are not 
optimal from a video quality perspective because the 
characteristics of video streaming also need to be considered 
into the cross-layer framework. The optimal rate allocation 
policy, Largest Quality Improvement Highest Possible Rate 
(LQIHPR), is proposed to maximize the overall video quality in 

a single-carrier multiple access fading channel [9]. However, 
prior works [8][9] cannot be extended to multi-carrier systems 
directly because allocating power and rate across different 
sub-carriers in order to maximize the overall quality is 
non-trivial due to the underlying vector channels.  

In this paper, we address optimal resource (power and rate) 
allocation in multi-user video transmission. Existing cross- 
layer research focuses on the Physical (PHY), Medium Access 
Control (MAC), and Network layers [2]-[8]. Alternatively, we 
study this problem using an integrated approach that also 
considers the source coder employed at the Application (APP) 
layer and the resulting utility impact (i.e. the video quality). We 
exploit the unique property of state-of-the-art video coders that 
prioritizes the encoded video streams based on overall distortion 
impact [10], which results in a concave increase of the video 
quality as a function of rate. We develop a unified 
PHY-MAC-APP framework and study the optimal resource 
allocation policy which maximizes the weighted sum of 
utilities. We take an information theoretic approach throughout 
this paper. Since the Shannon capacity region is the 
fundamental characterization of the achievable rates, we can 
derive the limit of the achievable video quality of a specific 
video coder by using the operational rate distortion theory. 
Typical applications of the proposed solutions include 
multi-user video transmission (e.g. uploading movies) over 
WLAN or cognitive radio [11], and video surveillance form 
wireless camera. 

Our main contributions in this paper are as follows. We 
demonstrate the convexity of the utility region measured in the 
Peak Signal-to-Noise Ratio (PSNR) sense. Without requiring 
full knowledge of the entire capacity region, we propose a 
procedure to determine the utility region for the two-user case 
and extend it to the multi-user case using a heuristic approach. 
The proposed algorithms make it tractable to describe the entire 
utility region and greatly reduce the complexity of the weighted 
sum maximization of the utilities. 

This paper is organized as follows. Section II describes the 
model of multi-carrier wireless networks for multi-user video 
streaming, explains the deployed utility function, and 
formulates the multi-user resource allocation into an 
optimization problem. In Section III, the optimality condition is 
derived and iterative approaches are developed to optimize the 
resource allocation. Section IV gives simulation results of the 
proposed algorithms. Conclusions are drawn in Section V.  

II. MULTI-USER MULTIMEDIA TRANSMISSION 

A. System Description 
We focus on the Gaussian multiple-access channel in this 

paper. A Gaussian multiple-access channel is a multiple-access 
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channel where the additive noise is Gaussian [12]. The system 
diagram is shown in Figure 1. The optimal transmission strategy 
for the multiple-access channels generally requires all the users 
to share the entire frequency band simultaneously. We focus on 
this strategy throughout this paper. 

Suppose there are N users in the system. The entire frequency 
band is divided into K sub-carriers and the available bandwidth 
of each sub-carrier is B. Each user experiences a flat fading 
channel within the bandwidth of each sub-carrier. We denote 
user i’s channel gain at the jth sub-carrier as Hij. In Figure 1, the 
received signal at the jth sub-carrier is given by 

( ) ( ) ( )

1

N

j ij ij j
i

Y n H X n N n
=

= +∑        (1) 

where Xij(n) is the transmitted symbol of user i at jth sub-carrier 
at time n and Nj(n) is the additive white Gaussian noise 
(AWGN) with two-sided spectral density of 0 /2N . The power 

that user i  allocates at the j th sub-carrier is ( )
2

[ ]ij ijE X n P= .  
We denote the CSI vector as ( )1 2, , , N=H H H H in which 

( )1 2, , ,i i i iKH H H=H , the power allocation vector as 
( )1 2, , , N=P P P P in which ( )1 2, , ,i i i iKP P P=P , and the 

achievable rate vector 1 2[ ]TNr r r=r in which ir  is user i ’s 

achievable rate under current power and sub-carrier allocation. 
We assume that users are streaming pre-compressed video 

content over a multi-carrier wireless infrastructure. The Central 
Spectrum Moderator (CSM) collects the CSI H and utility-rate 
functions from all users and performs resource allocation to 
maximize the overall video utility based on the collected 
information. To perform the resource allocation, the CSM 
optimally determines the power allocation vector P. Here we 
assume each user is subjected to its maximum power constraint 
and the maximum allowable power for user i  is max

iP : 

max

1

K

ij i
j
P P

=

≤∑ ,         (2) 

and we denote ( )max max max
1 2, , , NP P P=maxP . 

B. Utility-Rate Functions 
Here we define the utility to be the video quality in terms of 

the PSNR, which is the only widely accepted metric for 
assessing the video quality. It has been shown that partitioning 
the packets into different priority classes and adjusting the 
transmission strategies for each class can significantly improve 
the received quality and provide graceful degradation [13]. 
Several operational utility-rate models can accurately capture 
the performance of various coders for different video sequence 

characteristics [14][15]. In this paper, we use a popular utility 
rate model that is well-suited for the operational performance of 
state-of-the-art prioritized video coders [15]. Based on this 
model, the utility (PSNR) for user i  is given by 

 ( )
( )

( )

2
0

0 0

255
10 log i i

i i
i i i i

r R
U r

D r R c
−

=
− +

, (1) 

where 0 0, ,i i iR D c  are the parameters for this model, which are 
dependent on the video sequence characteristics and operational 
encoder-selected parameters. Throughout this paper, we assume 
that 0i ir R> . 

C. Problem Formulation 
We denote the capacity region with the power constraint maxP  

as ( )C maxP . Figure 2 shows the basic idea in formulating this 
problem, which can be summarized into two steps. First, for any 
power allocation ≺ maxP P , there is an achievable rate vector r 
within the capacity region ( )C maxP , i.e., ( )C∈ maxr P  [17]. 
Second, by mapping the rate vector r  into the utility vector u  
using the utility-rate functions ( )i iU r , we can obtain the utility 
region ( )U maxP  , which is defined to be: 

( ) ( ) ( ) ( )( ) ( ) ( ){ }1 1 2 2 1 2, , , : , , ,n n nU U r U r U r r r r C= ∈max maxP P (2) 

Note that  ( )i iU r  depends on the video characteristics and 
encoder-selected parameters. The objective function that we 
aim to maximize is the weighted sum of the overall utilities: 

 ( )max , . .s t U∈ max
u

u u Pβ ,                (3) 

where with 1, 1NR+∈ =β β , is a weighted vector whose 

components indicate the importance of the various users.  
Figure 2 highlights that, in order to solve the optimization 

problem in (3), we need to describe the capacity region first and 
map it into the utility region. In the next section, we derive the 
optimality condition for achieving the utility boundary and 
develop efficient algorithms to solve the problem in (3).  

III. OPTIMAL RESOURCE ALLOCATION 
A. Convexity of the Achievable Utility Region 
Lemma 1:  If a rate vector ( )1 2, , , NR R R=R  is achievable, 

any rate vector ( )1 2, , , NR R R′ ′ ′ ′=R  that satisfies ,i iR R i′ ≤ ∀  is 
also within the achievable capacity region ( )C maxP . 
Proof: It follows from the convex hull operation that forms the 

capacity region of a multiple access channel [12].     ■ 
Lemma 2:  The utility-rate function in (1) is a monotonically 

increasing and concave function in ir . 
Proof: This can be verified by taking the first and second 

derivatives of the utility-rate function. Note that the 
monotonically increasing and concave property comes from the 
inherent prioritization of the video bitstream.       ■ 
Proposition 1:  The utility region ( )U maxP  is convex. 
Proof: The convexity can be proven using Lemma 1 and 2.  

We denote ( )PR  and ( )PU  as the rate vector and utility 
vector associated with a power allocation vector P . We also 
denote the utility vector associated with a rate vector 1[r=r  

2 ]TNr r  as ( )U r , where ( ) ( ) ( ) ( )1 1 2 2[ ]TN NU r U r U r=U r . 

( )1 1,rP

( ),N NrP

1N

KN

( ),P r

11H
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NKH
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H

( )i iU r

Figure 1. System Structure. 



 

First, consider two power vectors P  and ′P  that satisfy 

andmax max

1 1
, 1,2, ,

K K

ik i ik i
k k
P P P P i N

= =

′≤ ≤ ∀ =∑ ∑ . 

Define ( )ˆ 1 ,0 1α α α′= + − ≤ ≤P P P . Obviously, for this 
convex combination to be in ( )U maxP , it must satisfy:  

 ( ) max

1 1 1

ˆ 1 , 1,2, ,
K K K

ik ik ik i
k k k
P P P P i Nα α

= = =

 
 ′= + − ≤ ∀ = 
  

∑ ∑ ∑ .  (4) 

The rates are concave functions in P  [17], therefore 
( ) ( ) ( ) ( )( ) ( )ˆ1 1α α α α′ ′+ − + − =≺P P P P PR R R R .   (5) 

By the property in Lemma 2, (5) can be converted into 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )( ) ( )
1 1

ˆ1 1

α α α α

α α α α

′ ′+ − = + −

′ ′+ − + − =

≺

≺

P P U P U P

U P P U P P P

U U R R

R R R U
.(6) 

By the monotonically increasing property of ( )i iU r , from (6), 
we know that there exists a rate vector r  satisfying  

( ) ( ) ( ) ( ) ( )( )1 1α α α α′ ′= + − ⇒ + −≺U r P P r P PU U R . 
By Lemma 1, we can conclude that r  can be achieved 

directly by a certain power allocation vectorP : 
 ( )=Rr P .         (7) 

Therefore, ( ) ( ) ( ), , 0 1U α′∀ ∈ ≤ ≤U U maxP P P
 

( ) ( ) ( ) ( ) ( )1 Uα α ′⇒ + − = ∈U U U maxP P P P . 

Hence, we can conclude that the utility region is convex. ■ 
Thus, explicitly characterizing the entire convex utility 

region ( )U maxP  is equivalent to solving the optimization 
problem in (3) for all possible NR+∈β  and 

1 1=β .  

B. Optimality Condition 
Conventional approaches in solving (3), such as LQIHPR [9], 

continuously searches the optimum along the utility rate 
functions until reaching the boundary of the capacity region. In 
the case of scalar non-fading AWGN channel, the capacity 
regions exhibit the polymatroid structure, and the boundary can 
be characterized by finite inequalities. Therefore, by checking 
these inequalities, we know that whether a rate vector reaches 
the capacity boundary. However, for multi-carrier cases, this 
approach is computationally intensive because it is in general 
impossible to describe the capacity region in finite inequalities. 
The only way to trace out the entire capacity region is to 
maximize the weighted sum of the rates for all possible µ : 

( )max s.t. C∈ max
r

r  r Pµ ,      (8) 

in which with 1, 1,NR+∈ =µ µ is a given weighted vector whose 

components represent the relative priority for each user. The 
iterative water-filling algorithm provides an efficient solution of 
the problem in (8) for the Gaussian vector multiple-access 
channel [17]. We also use this algorithm in this paper. Now the 
problem is reduced to how to find the optimal solution of 
problem (3) efficiently, based on the assumption that we are 
already able to efficiently solve problem (8) for all possible µ .  

Now we derive the mapping function, which projects the 
normal vector to the tangent hyperplane at each boundary point 
from the capacity region ( )C maxP  to the utility region ( )U maxP . 
Suppose a power allocation P reaches the boundaries of 

( )C maxP and ( )U maxP . We denote the normal vectors to the 
tangent hyperplanes at the capacity and utility boundary as 

( ) ( )
1 1

arg max
NR and+∈ =

=
µ µ

µ µP PR  and ( ) ( )
1 1

arg max
NR and+∈ =

=
β β

β βP PU . 

Proposition 2:  For any power allocation ( )1 2, , , N=P P P P   
that achieves the boundary of ( )U maxP and satisfies (3), the 
relation between ( )Pµ  and β  is given by  

 ( ) ( )
( ) ( )

( )
1

=
β λ

µ
β λ

P P
P

P P
,       (9) 

in which ( )
( ) ( ) ( )

1 2

1 2
1 2, [

N

N

x r x r x r

U x U x U x r r
x x x= = =

 ∂ ∂ ∂ = = ∂ ∂ ∂  
λ P r   

( )]TNr = PR , and  represents the Hadamard product [19]. 
Proof : Since the capacity region is convex, it can be 

described by infinite inequality constraints 
( )

{ }
{ } 1
| , 1NC R and+= ≤ ∀ ∈ =∩ i

i

max i i i iP r r rµ
µ

µ µ µ µ , (10) 

where 
( )

arg max
C∈

=µ µi
max

i
r P

r r . Form the Lagrangian of (3): 

 ( ) ( ) ( )
1

, i
i

v v
∞

=

= + −∑ µβ µ µi
i ir P u r rL ,     (11) 

in which ( ) ( )( ) ( )= = =u P U P U rU R  and 0, 1,2,iv i≥ = . In 

general, for the Shannon capacity region of the Gaussian 
multiple access channel with ISI, ′≠r rµ µ , if ′≠µ µ . By using 
the Karush-Kuhn-Tucker (KKT) condition, we take the 
derivative of (11) with respect to r . At the optimum, only one 
inequality constraint in (10) holds with equality.  We denote that 
active constraint to be ≤ opt

opt optr rµµ µ . According to 
complementary slackness [18],  0optv > , and  

 ( ) ( ) opt
optv=P Pβ λ µ ,       (12) 

in which ( ) ( )
1 1

arg max
NR and+∈ =

= =opt P P
µ µ

µ µ µR . Note that (12) is 

identical to (9), because 
 ( ) ( )

( ) ( )
( )

1 1 1

opt opt
opt

opt opt
opt

v
v

= = =
P P

P
P P

µβ λ µ
µ

β λ µ µ
,   (13) 

where ( )µ P  and ( )β P  are the normal vectors to the tangent 
hyperplanes at the boundary of the capacity and utility region 
respectively, and ( )λ P  consists of the first order derivatives of 
the utility-rate functions. This equality links the boundary points 
of capacity region and utility region.        ■ 

By the equality in (9), we can project the normal vector to the 
tangent hyperplane at each boundary point from ( )C maxP  to 

( )U maxP . This process is illustrated by the right pointing arrow 
in Figure 3. For NR+∀ ∈µ  and 

1 1=µ , we solve the problem (8), 
get the boundary point r , and subsequently use (9) to calculate 

P
H

( )C maxP ( )U maxP
max

u
uβ

 
Figure 2. Problem Interpretation.



 

the vector β . As mentioned before, the right pointing arrow 
provides a possible solution of the problem in (3), that is, 
enumerate all the possible µ  until the normal vector after 
mapping coincides with the original β  in (3). This solution is 
impractical because there are infinite possible choices in µ . As 
illustrated by the left pointing arrow in Figure 3, if β  is given, 
we are interested in how to search µ  until the optimality 
condition in (9) holds. 

We discuss how to search and find the optimal solution of (9) 
efficiently starting from the two-user case. Based on the insights 
gained from the two-user case, we develop a practical heuristic 
search algorithm for the multiple-user case. We first highlight 
several monotonic properties upon which the search algorithms 
of optimal power allocation are based. 
Proposition 3:  For any given , , 0µ λ β  satisfying 1 =µ  

1 1=β and 

1

=
β λ

µ
β λ

, 

where ( ) ( ) ( )

1 2

1 2

N

N

x r x r x r

U x U x U x
x x x= = =

 ∂ ∂ ∂ =  ∂ ∂ ∂  
λ  and 1[r=r  

2 ]TNr r , if the m th component mr of r  is increased and the 
others are held fixed, the m th component mµ in µ  decreases. 

Proof: The equality is identical to 
1 1 2 2

1 1 2 2
1

N N

N N

λ β λ β λ β

λ β λ β λ β

 
  =
 
  

µ . 

Suppose we increase ir  and fix all the other ( )jr j i≠ . Due to 

the monotonically increasing and concave property of the utility 
rate functions, iλ  will decrease while all the other ( )j j iλ ≠  

remain fixed. Consequently, iµ will decrease.      ■ 

Proposition 4:  Suppose 1 2= [ ] N
N Rµ µ µ +∈µ , 

1 1=µ , and 

max=
r

r rµ µ . For all m , if the m th component mµ of the 

weighted vectorµ  increases and the other components are fixed, 
the m th component of the rate vector rµ  remains the same or 
increases while all the other components of rµ  decreases. 

Proof: See Lemma 6 in [20].            ■ 
C. Algorithm for Describing the Two-User Utility Region 
Now we consider the two-user case. In the Shannon capacity 

region, we are able to solve (8) for arbitrary 2
1 2 Rµ µ +

 = ∈  µ  and 

1 1=µ . Note that 1 21µ µ= − , hence finding µ that satisfies 
the equality in (9) is equivalent to finding 1µ . Proposition 3 and 
4 enable us to use the bisection algorithm, which does not 

require full knowledge of the entire capacity boundary, to solve 
the problem in (3) efficiently. 

Suppose that the rate vector 1 2[ ]TNr r r=r  maximizes rµ . 

we can take the vector ( ) ( ) ( )

1 2

1 2

N

N

x r x r x r

U x U x U x
x x x= = =

 ∂ ∂ ∂ ′ =  ∂ ∂ ∂  
λ  

and get a new vector ′µ by ′ ′ ′=µ β λ β λ . Denoting 

( )1 1gµ µ′ = and ( ) ( )1 1 1f gµ µ µ= − , the bisection search algorithm 
for the two-user case is summarized in Algorithm 1.  
Algorithm 1: Two-user optimum search algorithm 

Input:  , ,maxH P β ; error tolerance ε  ; both users’ utility rate 
models;  

Initialization: Take (0)µ  randomly which satisfies 
(0) 1

1=µ , 

1i = , flag = 0 
Repeat:  
1) Use the iterative water-filling Algorithm in [17] to find the 

point on the capacity boundary which maximizes ( )iµ r ; 

2) Denote the solution in 1) as  
( ) 1( ) 2( )

T
i ir r =   ir  and get the 

corresponding slopes 1( ) 2( ),i iλ λ  on each utility rate curve; 

3) Calculate 
( ) 1( ) 1 2( ) 2 1( ) 1 2( ) 2

1
i i i i iλ β λ β λ β λ β   ′ =       µ  and 

 ( ) ( )1( ) 1( ) 1( ) 1( ) 1( )i i i i if gµ µ µ µ µ′= − = −  ; 

4) If flag = 0 
         ( ) ( )(0) 1 0 (0) 1 0,a bµ µ′= =  , flag = 1; 

Else 
If ( ) ( )( )( ) 1 0i if a f µ⋅ <  , ( )1( 1) ( ) 1( ) ( 1) ( ) ( 1) 1( )2, ,i i i i i i ia a a bµ µ µ+ + += + = = ; 

If ( ) ( )( )( ) 1 0i if a f µ⋅ >  , ( )1( 1) 1( ) ( ) ( 1) 1( ) ( 1) ( )2, ,i i i i i i ib a b bµ µ µ+ + += + = = ; 

5) 2( 1) 1( 1) ( 1) 1( 1) 2( 1)1 , , 1i i i i i i iµ µ µ µ+ + + + +
 = − = = +  

µ ; 

Until:  ( )1( )if µ ε<  

Return: ( )ir   and its corresponding power allocation P  

Proposition 5:  Algorithm 1 converges to the solution of (3). 
Proof: By the concavity of ( )i iU r  and proposition 3 and 4, 
( )1g µ  is a monotonically decreasing function. Therefore, ( )1f µ  

is monotonic in 1µ . For the convex utility region, there exist 
solutions for ( )1 0f µ = . The monotonicity of ( )1f µ  ensures that 
there is a unique zero of [ ]0,1f ∈ R . The convergence of the 
bisection search is guaranteed and we can use it to find the 
boundary point where the optimality condition in (9) holds. ■ 

Note that we choose bisection algorithm, because no closed 
form expression exists in general for ( )1f µ . Within the i th 

iteration in Algorithm 1, 1( )iµ  lies in the interval ( ) ( ),i ia b     and 

1( ) 2( ) 1( ) 2( ), , ,i i i ir r r r′ ′ are on the Shannon capacity boundary. The 
monotonic properties in proposition 3 and 4 ensure that both 
1( ) 1( )i iµ µ′− and 

2( ) 2( )i iµ µ′−  decrease after each iteration until the 

optimality condition holds. The number of iterations for this 
bisection search is upper bounded by 2log 1/ ε   . 

µ µ

2C

1C

2r

1r

1

=
β λ

β µ
β λ

2U

1U1u

2u

( ) ( )1 1 1 2 2 2,u U r u U r= =

Figure 3. Optimality Condition for the Two-user 



 

D. Algorithm for Describing the Multi-User Utility Region 
Since proposition 3 and 4 only guarantee component-wise 

monotonicity, Algorithm 1 cannot be extended to the 
multiple-user case directly. In the multiple-user case, the only 
way to find the optimum is to characterize the entire capacity 
region ( )C maxP  first, map the capacity region into the utility 
region, and use (13) to find the optimal rate vector. This 
algorithm is impractical, because the boundary of ( )C maxP  
consists of infinite points and lacks closed form expression. In 
this subsection, we will discuss how to search the optimum by 
developing a heuristic search algorithm inspired by the intuition 
gained from the two-user search algorithm.  
Algorithm 2: Multiple-user low-complexity heuristic search. 

Input: , ,maxH P β ; error tolerance ε ; step size δ ; all users’ 
utility rate functions; maximum iteration number maxI  

Initialization: Take (0)µ  randomly which satisfies 

(0) 1
1=µ , 1i =  

Repeat:  
1) Use the iterative water-filling Algorithm in [17] to find the 

point on the capacity boundary which maximizes ( )iµ r ; 

2) Denote the solution in 1) as ( ) 1( ) 2( ) ( )[ ]Ti i i N ir r r=r  and get 

the corresponding slopes ( ) 1( ) 2( ) ( )[ ]i i i N iλ λ λ=λ  on each utility 

rate curve; 
3) Calculate  ( ) ( ) ( ) 1i i i′ =µ β λ β λ ; 

4) Use Algorithm 5 in Appendix A to find the point on the 
capacity boundary which maximizes ( )i′ rµ  and denote the 

solution as ( ) 1( ) 2( ) ( )[ ]Ti i i N ir r r′ ′ ′ ′=r ; 

5) Let 
( ) 1( ) 2( ) ( )

T
i i i N ie e e =   e , where ( )( ) ( ) ( ) 0 ,n i n i n ie I r r ′= − <  

1,2, ,n N=  and ( )I i  is the indicator function; 
6) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

( 1)
( ) ( ) 1

1 1

1 1

i i i i
i

i i i i

δ δ

δ δ
+

+ + − −
=

+ + − −

1

1

e e

e e

µ µ
µ

µ µ

,where [1 1 1]=1 , 

1i i= + ; 
Until: , 1,2, ,ni nir r n Nε′ − < =  or maxi I=  

Return: ( )ir and its corresponding power allocation P  

In the two-user case, both 1( ) 1( )i ir r ′− and 2( ) 2( )i ir r ′− decrease 

after each iteration. Intuitively, in the multiple-user case, we 
should update µ  so that ( ) ( )n i n ir r ′−  decreases for 1,2,...,n N= . 

Similar to Algorithm 1, we still calculate ( )iµ and ( )i′µ  within 
each iteration. Here, we denote the maximizers of 

( )iµ r  and 

( )i′µ r  as ( )ir  and ( )i′r , and the mth components of ( )iµ and ( )ir  as 

( )m iµ  and ( )m ir . The basic idea of this N-user heuristic search 
algorithm is to partition the users into two groups according to 
the component-wise relationship between ( )ir  and ( )i′r , i.e., if 

( ) ( )m i m ir r ′< , we put user i  in group 1, otherwise group 2. For 
users in group 1, because 

( ) ( )m i m ir r ′< ,  we should update ( 1)i+µ  in 
order to cause ( 1)m ir + to increase. Similarly, we should decrease 

( 1)m ir +  for users in group 2. From proposition 4, intuitively, we 
can infer that if we increase ( )m iµ , there is a high possibility that 

( )m ir  also increases. Therefore, to update ( 1)i+µ , we can simply 
partition the users into two groups mentioned above, keep the 
ratio of ( )iµ  within each group and adjust the ratio between the 
two groups. The new ( 1)i+µ  will cause ( ) ( )m i m ir r ′−  to decrease 

for all 1,2, ,m N=  with large probability. We can repeat this 
procedure until the optimality condition in (9) holds. The 
low-complexity heuristic search in the multiple-user case is 
summarized in Algorithm 2. 

It should be pointed out that the step size δ  should be 
carefully chosen. Large step sizes δ  will have fast rates of 
convergence, but small step sizes δ  will result in better 
achieved accuracy. Therefore, the step size δ  could be chosen 
according to the specific requirement of convergence-rate and 
desired accuracy [21]. 

IV. SIMULATION RESULTS 
The performances of the proposed algorithms are examined 

in this section. For the purpose of illustration, we consider a 
multi-carrier system with only 8 sub-carriers. We assume the 
bandwidth of each sub-carrier is B = 50 kHz.  

Now we consider the two-user case. The channel conditions 
of the sub-carriers for the two users are given in Table I. We 
choose the weighted vector [0.9 0.1]=β for illustration and 
max 1.2 max 2
1 210 , 10P P= = . The parameters values for the utility- 

rate function deployed for these experiments are determined 
based on a state-of-the-art wavelet video coder. We assume that 
user 1 wants to transmit the Mobile video (CIF, 15Hz) with 
01 1D = , 01R = 44.04kbps, and 1c = 38230kbps, while user 2 has 

the the Foreman video (CIF, 15Hz) for transmission 
with 02 1D = , 02R = 20.72kbps, and 2c = 2760kbps. 0 0, ,i iR D  and 
ic  are the parameters of the utility-rate model in (1).  
We apply Algorithm 1 to maximize uβ  and examine its 

convergence. As shown in Table II, Algorithm 1 converges after 
around 7 iterations. The rate vector that Algorithm 1 returns is 
[685.23 786.87]T (kbps) and it approximately satisfies the 

optimality condition in proposition 2. The optimal power 
allocation is given in Table III. Under this power allocation, 
user 1’s average PSNR is 30.5929dB, user 2’s average PSNR is 
41.5009dB and the weighted sum of PSNRs is 31.6837dB. As 
opposed to our algorithm, conventional sum-rate-maximizing 
approach that does not consider the video characteristics will 
maximize 1 2r r+ , which result in that user 1 experiences an 
average PSNR of 28.1790dB, user 2 experiences an average 
PSNR of 42.7704dB, and the weighted sum of PSNRs is 
29.6382dB. For user 1, the sum-rate-maximizing approach will 
result in an unacceptable video quality below 30dB. 

We also simulate the multiple-user case with 3N =  users. 
The channel conditions for the three users are given in Table IV. 
We choose the weighted vector 0.3 0.3 0.4 =   β  for illustration 

and max max 1.5 max 2
1 2 310, 10 , 10P P P= = = . We assume that user 1 

transmits the Foreman video (CIF, 15Hz) with 01 1D = , 01R =  



 

20.72kbps, and 1c = 2760kbps, user 2 has the Coastguard 
video (CIF, 30Hz) for transmission with 02D =4.3, 02R =0kbps, 
and 2c =6329.7kbps, while user 3 transmits the Foreman video 
(CIF, 30Hz) with 03D =3, 03R =55.08kbps, and 3c = 4610kbps. 

We set step size δ = 0.1 and apply Algorithm 2 to search the 
optimum. In this case, Algorithm 2 converges after around 20 
iterations. The rate vector which approximately maximizes uβ  
is [586 698.4 937.1]T (kbps) and the power allocation is given in 

Table V. Under this power allocation, user 1’s average PSNR is 
40.4379dB, user 2 is 36.8719dB, user 3 is 39.1417dB, and the 
weighted sum of PSNRs is 38.8496dB. The existing sum-rate- 
maximizing approach with = 1/3 1/3 1/3 

  µ  leads the 

weighted sum of PSNRs to be 36.2988dB, which is of nearly 
3dB degradation. 

We can see that, by explicitly considering the operational 
rate-distortion performance of video coders, both Algorithm 1 
and 2 can achieve significant performance improvement than 
the existing rate-maximizing approach. 

V. CONCLUSION 
In this paper, we address the problem of multi-user video 

transmission in multi-carrier wireless networks. A general 
procedure is proposed to determine the achievable utility region 
under the constraints of the capacity regions. We first develop 
iterative search algorithm to optimize the resource allocation for 
the two-user case. Subsequently, inspired by the intuition 
gained from the two-user case, we extend them to the 
multiple-user case using heuristic approaches. Experiments 
show that these algorithms achieve significant performance 
improvements by considering the video utility impact and the 
rate-distortion performance of the video coder.  
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TABLE I 
CHANNEL CONDITION OF A TWO-USER SYSTEM ( 0 1N B = ) 

User 2
1iH  2

2iH  2
3iH  2

4iH  2
5iH  2

6iH  2
7iH  2

8iH  

User 1 0.5718 1.4196 0.0466 1.3392 1.3138 2.3280 0.4179 2.2805 

User 2 1.4406 1.3182 0.5150 0.6160 0.1048 0.0625 0.4122 1.0255 
  

TABLE II 
AN EXAMPLE OF ALGORITHM 1 

Iteration ( )iµ  
( )
T
ir   

( )i′µ
 

( )
T
i′r  ( ) ( )[ ]i ia b  

1i =  [0.5391 
0.4609] 

[601.39 
934.16] 

[0.9509   
0.0491] 

[685.33  
785.25] 

[0.5391   
0.9509] 

2i =  [0.7450 
0.2550] 

[679.49  
813.06] 

[0.9342   
0.0658] 

[685.24  
786.64] 

[0.7450   
0.9509] 

      

7i =  [0.9316 
0.0684] 

[685.23  
786.87] 

[0.9311   
0.0689] 

[685.22  
786.91] 

[0.9251   
0.9316] 

  
TABLE III 

POWER ALLOCATION OF THE TWO-USER SYSTEM 
User 1iP  2iP  3iP  4iP  5iP  6iP  7iP  8iP  

User 1 1.4505 2.5221 0 2.5245 2.6773 3.0088 0.8308 2.8348 

User 2 19.454 17.249 18.783 13.612 0 0 17.456 13.445 
  

TABLE IV 
CHANNEL CONDITION OF A THREE-USER SYSTEM ( 0 1N B = ) 

User 2
1iH  2

2iH  2
3iH  2

4iH  2
5iH  2

6iH  2
7iH  2

8iH  

User 1 0.3758 4.1200 2.0213 1.7739 0.8033 1.7400 0.9460 0.2058 

User 2 4.9634 7.3880 3.1333 0.9054 0.0961 4.4658 0.9182 0.4643 

User 3 2.2758 0.3953 0.8065 1.6528 1.1393 0.4865 2.1461 3.4382 
  

TABLE V 
POWER ALLOCATION OF THE THREE-USER SYSTEM 

User 1iP  2iP  3iP  4iP  5iP  6iP  7iP  8iP  

User 1 0 2.077 1.921 1.995 1.167 1.581 1.259 0 

User 2 5.307 8.709 8.445 0 0 9.162 0 0 

User 3 11.683 0 0 20.772 21.818 0 22.498 23.229 

 


